2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-23 22:25:40 +08:00
linux-next/net/iucv/af_iucv.c
Oliver Hartkopp f4b41f062c net: remove noblock parameter from skb_recv_datagram()
skb_recv_datagram() has two parameters 'flags' and 'noblock' that are
merged inside skb_recv_datagram() by 'flags | (noblock ? MSG_DONTWAIT : 0)'

As 'flags' may contain MSG_DONTWAIT as value most callers split the 'flags'
into 'flags' and 'noblock' with finally obsolete bit operations like this:

skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &rc);

And this is not even done consistently with the 'flags' parameter.

This patch removes the obsolete and costly splitting into two parameters
and only performs bit operations when really needed on the caller side.

One missing conversion thankfully reported by kernel test robot. I missed
to enable kunit tests to build the mctp code.

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-04-06 13:45:26 +01:00

2335 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* IUCV protocol stack for Linux on zSeries
*
* Copyright IBM Corp. 2006, 2009
*
* Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
* Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
* PM functions:
* Ursula Braun <ursula.braun@de.ibm.com>
*/
#define KMSG_COMPONENT "af_iucv"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/filter.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/limits.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/security.h>
#include <net/sock.h>
#include <asm/ebcdic.h>
#include <asm/cpcmd.h>
#include <linux/kmod.h>
#include <net/iucv/af_iucv.h>
#define VERSION "1.2"
static char iucv_userid[80];
static struct proto iucv_proto = {
.name = "AF_IUCV",
.owner = THIS_MODULE,
.obj_size = sizeof(struct iucv_sock),
};
static struct iucv_interface *pr_iucv;
static struct iucv_handler af_iucv_handler;
/* special AF_IUCV IPRM messages */
static const u8 iprm_shutdown[8] =
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
#define TRGCLS_SIZE sizeof_field(struct iucv_message, class)
#define __iucv_sock_wait(sk, condition, timeo, ret) \
do { \
DEFINE_WAIT(__wait); \
long __timeo = timeo; \
ret = 0; \
prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
while (!(condition)) { \
if (!__timeo) { \
ret = -EAGAIN; \
break; \
} \
if (signal_pending(current)) { \
ret = sock_intr_errno(__timeo); \
break; \
} \
release_sock(sk); \
__timeo = schedule_timeout(__timeo); \
lock_sock(sk); \
ret = sock_error(sk); \
if (ret) \
break; \
} \
finish_wait(sk_sleep(sk), &__wait); \
} while (0)
#define iucv_sock_wait(sk, condition, timeo) \
({ \
int __ret = 0; \
if (!(condition)) \
__iucv_sock_wait(sk, condition, timeo, __ret); \
__ret; \
})
static struct sock *iucv_accept_dequeue(struct sock *parent,
struct socket *newsock);
static void iucv_sock_kill(struct sock *sk);
static void iucv_sock_close(struct sock *sk);
static void afiucv_hs_callback_txnotify(struct sock *sk, enum iucv_tx_notify);
static struct iucv_sock_list iucv_sk_list = {
.lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
.autobind_name = ATOMIC_INIT(0)
};
static inline void high_nmcpy(unsigned char *dst, char *src)
{
memcpy(dst, src, 8);
}
static inline void low_nmcpy(unsigned char *dst, char *src)
{
memcpy(&dst[8], src, 8);
}
/**
* iucv_msg_length() - Returns the length of an iucv message.
* @msg: Pointer to struct iucv_message, MUST NOT be NULL
*
* The function returns the length of the specified iucv message @msg of data
* stored in a buffer and of data stored in the parameter list (PRMDATA).
*
* For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
* data:
* PRMDATA[0..6] socket data (max 7 bytes);
* PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
*
* The socket data length is computed by subtracting the socket data length
* value from 0xFF.
* If the socket data len is greater 7, then PRMDATA can be used for special
* notifications (see iucv_sock_shutdown); and further,
* if the socket data len is > 7, the function returns 8.
*
* Use this function to allocate socket buffers to store iucv message data.
*/
static inline size_t iucv_msg_length(struct iucv_message *msg)
{
size_t datalen;
if (msg->flags & IUCV_IPRMDATA) {
datalen = 0xff - msg->rmmsg[7];
return (datalen < 8) ? datalen : 8;
}
return msg->length;
}
/**
* iucv_sock_in_state() - check for specific states
* @sk: sock structure
* @state: first iucv sk state
* @state2: second iucv sk state
*
* Returns true if the socket in either in the first or second state.
*/
static int iucv_sock_in_state(struct sock *sk, int state, int state2)
{
return (sk->sk_state == state || sk->sk_state == state2);
}
/**
* iucv_below_msglim() - function to check if messages can be sent
* @sk: sock structure
*
* Returns true if the send queue length is lower than the message limit.
* Always returns true if the socket is not connected (no iucv path for
* checking the message limit).
*/
static inline int iucv_below_msglim(struct sock *sk)
{
struct iucv_sock *iucv = iucv_sk(sk);
if (sk->sk_state != IUCV_CONNECTED)
return 1;
if (iucv->transport == AF_IUCV_TRANS_IUCV)
return (atomic_read(&iucv->skbs_in_xmit) < iucv->path->msglim);
else
return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
(atomic_read(&iucv->pendings) <= 0));
}
/*
* iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
*/
static void iucv_sock_wake_msglim(struct sock *sk)
{
struct socket_wq *wq;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_all(&wq->wait);
sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
rcu_read_unlock();
}
/*
* afiucv_hs_send() - send a message through HiperSockets transport
*/
static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
struct sk_buff *skb, u8 flags)
{
struct iucv_sock *iucv = iucv_sk(sock);
struct af_iucv_trans_hdr *phs_hdr;
int err, confirm_recv = 0;
phs_hdr = skb_push(skb, sizeof(*phs_hdr));
memset(phs_hdr, 0, sizeof(*phs_hdr));
skb_reset_network_header(skb);
phs_hdr->magic = ETH_P_AF_IUCV;
phs_hdr->version = 1;
phs_hdr->flags = flags;
if (flags == AF_IUCV_FLAG_SYN)
phs_hdr->window = iucv->msglimit;
else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
confirm_recv = atomic_read(&iucv->msg_recv);
phs_hdr->window = confirm_recv;
if (confirm_recv)
phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
}
memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
if (imsg)
memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
skb->dev = iucv->hs_dev;
if (!skb->dev) {
err = -ENODEV;
goto err_free;
}
dev_hard_header(skb, skb->dev, ETH_P_AF_IUCV, NULL, NULL, skb->len);
if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev)) {
err = -ENETDOWN;
goto err_free;
}
if (skb->len > skb->dev->mtu) {
if (sock->sk_type == SOCK_SEQPACKET) {
err = -EMSGSIZE;
goto err_free;
}
err = pskb_trim(skb, skb->dev->mtu);
if (err)
goto err_free;
}
skb->protocol = cpu_to_be16(ETH_P_AF_IUCV);
atomic_inc(&iucv->skbs_in_xmit);
err = dev_queue_xmit(skb);
if (net_xmit_eval(err)) {
atomic_dec(&iucv->skbs_in_xmit);
} else {
atomic_sub(confirm_recv, &iucv->msg_recv);
WARN_ON(atomic_read(&iucv->msg_recv) < 0);
}
return net_xmit_eval(err);
err_free:
kfree_skb(skb);
return err;
}
static struct sock *__iucv_get_sock_by_name(char *nm)
{
struct sock *sk;
sk_for_each(sk, &iucv_sk_list.head)
if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
return sk;
return NULL;
}
static void iucv_sock_destruct(struct sock *sk)
{
skb_queue_purge(&sk->sk_receive_queue);
skb_queue_purge(&sk->sk_error_queue);
sk_mem_reclaim(sk);
if (!sock_flag(sk, SOCK_DEAD)) {
pr_err("Attempt to release alive iucv socket %p\n", sk);
return;
}
WARN_ON(atomic_read(&sk->sk_rmem_alloc));
WARN_ON(refcount_read(&sk->sk_wmem_alloc));
WARN_ON(sk->sk_wmem_queued);
WARN_ON(sk->sk_forward_alloc);
}
/* Cleanup Listen */
static void iucv_sock_cleanup_listen(struct sock *parent)
{
struct sock *sk;
/* Close non-accepted connections */
while ((sk = iucv_accept_dequeue(parent, NULL))) {
iucv_sock_close(sk);
iucv_sock_kill(sk);
}
parent->sk_state = IUCV_CLOSED;
}
static void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
{
write_lock_bh(&l->lock);
sk_add_node(sk, &l->head);
write_unlock_bh(&l->lock);
}
static void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
{
write_lock_bh(&l->lock);
sk_del_node_init(sk);
write_unlock_bh(&l->lock);
}
/* Kill socket (only if zapped and orphaned) */
static void iucv_sock_kill(struct sock *sk)
{
if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
return;
iucv_sock_unlink(&iucv_sk_list, sk);
sock_set_flag(sk, SOCK_DEAD);
sock_put(sk);
}
/* Terminate an IUCV path */
static void iucv_sever_path(struct sock *sk, int with_user_data)
{
unsigned char user_data[16];
struct iucv_sock *iucv = iucv_sk(sk);
struct iucv_path *path = iucv->path;
if (iucv->path) {
iucv->path = NULL;
if (with_user_data) {
low_nmcpy(user_data, iucv->src_name);
high_nmcpy(user_data, iucv->dst_name);
ASCEBC(user_data, sizeof(user_data));
pr_iucv->path_sever(path, user_data);
} else
pr_iucv->path_sever(path, NULL);
iucv_path_free(path);
}
}
/* Send controlling flags through an IUCV socket for HIPER transport */
static int iucv_send_ctrl(struct sock *sk, u8 flags)
{
struct iucv_sock *iucv = iucv_sk(sk);
int err = 0;
int blen;
struct sk_buff *skb;
u8 shutdown = 0;
blen = sizeof(struct af_iucv_trans_hdr) +
LL_RESERVED_SPACE(iucv->hs_dev);
if (sk->sk_shutdown & SEND_SHUTDOWN) {
/* controlling flags should be sent anyway */
shutdown = sk->sk_shutdown;
sk->sk_shutdown &= RCV_SHUTDOWN;
}
skb = sock_alloc_send_skb(sk, blen, 1, &err);
if (skb) {
skb_reserve(skb, blen);
err = afiucv_hs_send(NULL, sk, skb, flags);
}
if (shutdown)
sk->sk_shutdown = shutdown;
return err;
}
/* Close an IUCV socket */
static void iucv_sock_close(struct sock *sk)
{
struct iucv_sock *iucv = iucv_sk(sk);
unsigned long timeo;
int err = 0;
lock_sock(sk);
switch (sk->sk_state) {
case IUCV_LISTEN:
iucv_sock_cleanup_listen(sk);
break;
case IUCV_CONNECTED:
if (iucv->transport == AF_IUCV_TRANS_HIPER) {
err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
}
fallthrough;
case IUCV_DISCONN:
sk->sk_state = IUCV_CLOSING;
sk->sk_state_change(sk);
if (!err && atomic_read(&iucv->skbs_in_xmit) > 0) {
if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
timeo = sk->sk_lingertime;
else
timeo = IUCV_DISCONN_TIMEOUT;
iucv_sock_wait(sk,
iucv_sock_in_state(sk, IUCV_CLOSED, 0),
timeo);
}
fallthrough;
case IUCV_CLOSING:
sk->sk_state = IUCV_CLOSED;
sk->sk_state_change(sk);
sk->sk_err = ECONNRESET;
sk->sk_state_change(sk);
skb_queue_purge(&iucv->send_skb_q);
skb_queue_purge(&iucv->backlog_skb_q);
fallthrough;
default:
iucv_sever_path(sk, 1);
}
if (iucv->hs_dev) {
dev_put(iucv->hs_dev);
iucv->hs_dev = NULL;
sk->sk_bound_dev_if = 0;
}
/* mark socket for deletion by iucv_sock_kill() */
sock_set_flag(sk, SOCK_ZAPPED);
release_sock(sk);
}
static void iucv_sock_init(struct sock *sk, struct sock *parent)
{
if (parent) {
sk->sk_type = parent->sk_type;
security_sk_clone(parent, sk);
}
}
static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio, int kern)
{
struct sock *sk;
struct iucv_sock *iucv;
sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto, kern);
if (!sk)
return NULL;
iucv = iucv_sk(sk);
sock_init_data(sock, sk);
INIT_LIST_HEAD(&iucv->accept_q);
spin_lock_init(&iucv->accept_q_lock);
skb_queue_head_init(&iucv->send_skb_q);
INIT_LIST_HEAD(&iucv->message_q.list);
spin_lock_init(&iucv->message_q.lock);
skb_queue_head_init(&iucv->backlog_skb_q);
iucv->send_tag = 0;
atomic_set(&iucv->pendings, 0);
iucv->flags = 0;
iucv->msglimit = 0;
atomic_set(&iucv->skbs_in_xmit, 0);
atomic_set(&iucv->msg_sent, 0);
atomic_set(&iucv->msg_recv, 0);
iucv->path = NULL;
iucv->sk_txnotify = afiucv_hs_callback_txnotify;
memset(&iucv->init, 0, sizeof(iucv->init));
if (pr_iucv)
iucv->transport = AF_IUCV_TRANS_IUCV;
else
iucv->transport = AF_IUCV_TRANS_HIPER;
sk->sk_destruct = iucv_sock_destruct;
sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
sock_reset_flag(sk, SOCK_ZAPPED);
sk->sk_protocol = proto;
sk->sk_state = IUCV_OPEN;
iucv_sock_link(&iucv_sk_list, sk);
return sk;
}
static void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
{
unsigned long flags;
struct iucv_sock *par = iucv_sk(parent);
sock_hold(sk);
spin_lock_irqsave(&par->accept_q_lock, flags);
list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
spin_unlock_irqrestore(&par->accept_q_lock, flags);
iucv_sk(sk)->parent = parent;
sk_acceptq_added(parent);
}
static void iucv_accept_unlink(struct sock *sk)
{
unsigned long flags;
struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
spin_lock_irqsave(&par->accept_q_lock, flags);
list_del_init(&iucv_sk(sk)->accept_q);
spin_unlock_irqrestore(&par->accept_q_lock, flags);
sk_acceptq_removed(iucv_sk(sk)->parent);
iucv_sk(sk)->parent = NULL;
sock_put(sk);
}
static struct sock *iucv_accept_dequeue(struct sock *parent,
struct socket *newsock)
{
struct iucv_sock *isk, *n;
struct sock *sk;
list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
sk = (struct sock *) isk;
lock_sock(sk);
if (sk->sk_state == IUCV_CLOSED) {
iucv_accept_unlink(sk);
release_sock(sk);
continue;
}
if (sk->sk_state == IUCV_CONNECTED ||
sk->sk_state == IUCV_DISCONN ||
!newsock) {
iucv_accept_unlink(sk);
if (newsock)
sock_graft(sk, newsock);
release_sock(sk);
return sk;
}
release_sock(sk);
}
return NULL;
}
static void __iucv_auto_name(struct iucv_sock *iucv)
{
char name[12];
sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
while (__iucv_get_sock_by_name(name)) {
sprintf(name, "%08x",
atomic_inc_return(&iucv_sk_list.autobind_name));
}
memcpy(iucv->src_name, name, 8);
}
/* Bind an unbound socket */
static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
int addr_len)
{
DECLARE_SOCKADDR(struct sockaddr_iucv *, sa, addr);
char uid[sizeof(sa->siucv_user_id)];
struct sock *sk = sock->sk;
struct iucv_sock *iucv;
int err = 0;
struct net_device *dev;
/* Verify the input sockaddr */
if (addr_len < sizeof(struct sockaddr_iucv) ||
addr->sa_family != AF_IUCV)
return -EINVAL;
lock_sock(sk);
if (sk->sk_state != IUCV_OPEN) {
err = -EBADFD;
goto done;
}
write_lock_bh(&iucv_sk_list.lock);
iucv = iucv_sk(sk);
if (__iucv_get_sock_by_name(sa->siucv_name)) {
err = -EADDRINUSE;
goto done_unlock;
}
if (iucv->path)
goto done_unlock;
/* Bind the socket */
if (pr_iucv)
if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
goto vm_bind; /* VM IUCV transport */
/* try hiper transport */
memcpy(uid, sa->siucv_user_id, sizeof(uid));
ASCEBC(uid, 8);
rcu_read_lock();
for_each_netdev_rcu(&init_net, dev) {
if (!memcmp(dev->perm_addr, uid, 8)) {
memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
/* Check for uninitialized siucv_name */
if (strncmp(sa->siucv_name, " ", 8) == 0)
__iucv_auto_name(iucv);
else
memcpy(iucv->src_name, sa->siucv_name, 8);
sk->sk_bound_dev_if = dev->ifindex;
iucv->hs_dev = dev;
dev_hold(dev);
sk->sk_state = IUCV_BOUND;
iucv->transport = AF_IUCV_TRANS_HIPER;
if (!iucv->msglimit)
iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
rcu_read_unlock();
goto done_unlock;
}
}
rcu_read_unlock();
vm_bind:
if (pr_iucv) {
/* use local userid for backward compat */
memcpy(iucv->src_name, sa->siucv_name, 8);
memcpy(iucv->src_user_id, iucv_userid, 8);
sk->sk_state = IUCV_BOUND;
iucv->transport = AF_IUCV_TRANS_IUCV;
sk->sk_allocation |= GFP_DMA;
if (!iucv->msglimit)
iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
goto done_unlock;
}
/* found no dev to bind */
err = -ENODEV;
done_unlock:
/* Release the socket list lock */
write_unlock_bh(&iucv_sk_list.lock);
done:
release_sock(sk);
return err;
}
/* Automatically bind an unbound socket */
static int iucv_sock_autobind(struct sock *sk)
{
struct iucv_sock *iucv = iucv_sk(sk);
int err = 0;
if (unlikely(!pr_iucv))
return -EPROTO;
memcpy(iucv->src_user_id, iucv_userid, 8);
iucv->transport = AF_IUCV_TRANS_IUCV;
sk->sk_allocation |= GFP_DMA;
write_lock_bh(&iucv_sk_list.lock);
__iucv_auto_name(iucv);
write_unlock_bh(&iucv_sk_list.lock);
if (!iucv->msglimit)
iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
return err;
}
static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
{
DECLARE_SOCKADDR(struct sockaddr_iucv *, sa, addr);
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
unsigned char user_data[16];
int err;
high_nmcpy(user_data, sa->siucv_name);
low_nmcpy(user_data, iucv->src_name);
ASCEBC(user_data, sizeof(user_data));
/* Create path. */
iucv->path = iucv_path_alloc(iucv->msglimit,
IUCV_IPRMDATA, GFP_KERNEL);
if (!iucv->path) {
err = -ENOMEM;
goto done;
}
err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
sa->siucv_user_id, NULL, user_data,
sk);
if (err) {
iucv_path_free(iucv->path);
iucv->path = NULL;
switch (err) {
case 0x0b: /* Target communicator is not logged on */
err = -ENETUNREACH;
break;
case 0x0d: /* Max connections for this guest exceeded */
case 0x0e: /* Max connections for target guest exceeded */
err = -EAGAIN;
break;
case 0x0f: /* Missing IUCV authorization */
err = -EACCES;
break;
default:
err = -ECONNREFUSED;
break;
}
}
done:
return err;
}
/* Connect an unconnected socket */
static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
int alen, int flags)
{
DECLARE_SOCKADDR(struct sockaddr_iucv *, sa, addr);
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
int err;
if (alen < sizeof(struct sockaddr_iucv) || addr->sa_family != AF_IUCV)
return -EINVAL;
if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
return -EBADFD;
if (sk->sk_state == IUCV_OPEN &&
iucv->transport == AF_IUCV_TRANS_HIPER)
return -EBADFD; /* explicit bind required */
if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
return -EINVAL;
if (sk->sk_state == IUCV_OPEN) {
err = iucv_sock_autobind(sk);
if (unlikely(err))
return err;
}
lock_sock(sk);
/* Set the destination information */
memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
memcpy(iucv->dst_name, sa->siucv_name, 8);
if (iucv->transport == AF_IUCV_TRANS_HIPER)
err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN);
else
err = afiucv_path_connect(sock, addr);
if (err)
goto done;
if (sk->sk_state != IUCV_CONNECTED)
err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
IUCV_DISCONN),
sock_sndtimeo(sk, flags & O_NONBLOCK));
if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
err = -ECONNREFUSED;
if (err && iucv->transport == AF_IUCV_TRANS_IUCV)
iucv_sever_path(sk, 0);
done:
release_sock(sk);
return err;
}
/* Move a socket into listening state. */
static int iucv_sock_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
int err;
lock_sock(sk);
err = -EINVAL;
if (sk->sk_state != IUCV_BOUND)
goto done;
if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
goto done;
sk->sk_max_ack_backlog = backlog;
sk->sk_ack_backlog = 0;
sk->sk_state = IUCV_LISTEN;
err = 0;
done:
release_sock(sk);
return err;
}
/* Accept a pending connection */
static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
int flags, bool kern)
{
DECLARE_WAITQUEUE(wait, current);
struct sock *sk = sock->sk, *nsk;
long timeo;
int err = 0;
lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
if (sk->sk_state != IUCV_LISTEN) {
err = -EBADFD;
goto done;
}
timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
/* Wait for an incoming connection */
add_wait_queue_exclusive(sk_sleep(sk), &wait);
while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
set_current_state(TASK_INTERRUPTIBLE);
if (!timeo) {
err = -EAGAIN;
break;
}
release_sock(sk);
timeo = schedule_timeout(timeo);
lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
if (sk->sk_state != IUCV_LISTEN) {
err = -EBADFD;
break;
}
if (signal_pending(current)) {
err = sock_intr_errno(timeo);
break;
}
}
set_current_state(TASK_RUNNING);
remove_wait_queue(sk_sleep(sk), &wait);
if (err)
goto done;
newsock->state = SS_CONNECTED;
done:
release_sock(sk);
return err;
}
static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
int peer)
{
DECLARE_SOCKADDR(struct sockaddr_iucv *, siucv, addr);
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
addr->sa_family = AF_IUCV;
if (peer) {
memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
memcpy(siucv->siucv_name, iucv->dst_name, 8);
} else {
memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
memcpy(siucv->siucv_name, iucv->src_name, 8);
}
memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
return sizeof(struct sockaddr_iucv);
}
/**
* iucv_send_iprm() - Send socket data in parameter list of an iucv message.
* @path: IUCV path
* @msg: Pointer to a struct iucv_message
* @skb: The socket data to send, skb->len MUST BE <= 7
*
* Send the socket data in the parameter list in the iucv message
* (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
* list and the socket data len at index 7 (last byte).
* See also iucv_msg_length().
*
* Returns the error code from the iucv_message_send() call.
*/
static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
struct sk_buff *skb)
{
u8 prmdata[8];
memcpy(prmdata, (void *) skb->data, skb->len);
prmdata[7] = 0xff - (u8) skb->len;
return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
(void *) prmdata, 8);
}
static int iucv_sock_sendmsg(struct socket *sock, struct msghdr *msg,
size_t len)
{
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
size_t headroom = 0;
size_t linear;
struct sk_buff *skb;
struct iucv_message txmsg = {0};
struct cmsghdr *cmsg;
int cmsg_done;
long timeo;
char user_id[9];
char appl_id[9];
int err;
int noblock = msg->msg_flags & MSG_DONTWAIT;
err = sock_error(sk);
if (err)
return err;
if (msg->msg_flags & MSG_OOB)
return -EOPNOTSUPP;
/* SOCK_SEQPACKET: we do not support segmented records */
if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
return -EOPNOTSUPP;
lock_sock(sk);
if (sk->sk_shutdown & SEND_SHUTDOWN) {
err = -EPIPE;
goto out;
}
/* Return if the socket is not in connected state */
if (sk->sk_state != IUCV_CONNECTED) {
err = -ENOTCONN;
goto out;
}
/* initialize defaults */
cmsg_done = 0; /* check for duplicate headers */
/* iterate over control messages */
for_each_cmsghdr(cmsg, msg) {
if (!CMSG_OK(msg, cmsg)) {
err = -EINVAL;
goto out;
}
if (cmsg->cmsg_level != SOL_IUCV)
continue;
if (cmsg->cmsg_type & cmsg_done) {
err = -EINVAL;
goto out;
}
cmsg_done |= cmsg->cmsg_type;
switch (cmsg->cmsg_type) {
case SCM_IUCV_TRGCLS:
if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
err = -EINVAL;
goto out;
}
/* set iucv message target class */
memcpy(&txmsg.class,
(void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
break;
default:
err = -EINVAL;
goto out;
}
}
/* allocate one skb for each iucv message:
* this is fine for SOCK_SEQPACKET (unless we want to support
* segmented records using the MSG_EOR flag), but
* for SOCK_STREAM we might want to improve it in future */
if (iucv->transport == AF_IUCV_TRANS_HIPER) {
headroom = sizeof(struct af_iucv_trans_hdr) +
LL_RESERVED_SPACE(iucv->hs_dev);
linear = min(len, PAGE_SIZE - headroom);
} else {
if (len < PAGE_SIZE) {
linear = len;
} else {
/* In nonlinear "classic" iucv skb,
* reserve space for iucv_array
*/
headroom = sizeof(struct iucv_array) *
(MAX_SKB_FRAGS + 1);
linear = PAGE_SIZE - headroom;
}
}
skb = sock_alloc_send_pskb(sk, headroom + linear, len - linear,
noblock, &err, 0);
if (!skb)
goto out;
if (headroom)
skb_reserve(skb, headroom);
skb_put(skb, linear);
skb->len = len;
skb->data_len = len - linear;
err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
if (err)
goto fail;
/* wait if outstanding messages for iucv path has reached */
timeo = sock_sndtimeo(sk, noblock);
err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
if (err)
goto fail;
/* return -ECONNRESET if the socket is no longer connected */
if (sk->sk_state != IUCV_CONNECTED) {
err = -ECONNRESET;
goto fail;
}
/* increment and save iucv message tag for msg_completion cbk */
txmsg.tag = iucv->send_tag++;
IUCV_SKB_CB(skb)->tag = txmsg.tag;
if (iucv->transport == AF_IUCV_TRANS_HIPER) {
atomic_inc(&iucv->msg_sent);
err = afiucv_hs_send(&txmsg, sk, skb, 0);
if (err) {
atomic_dec(&iucv->msg_sent);
goto out;
}
} else { /* Classic VM IUCV transport */
skb_queue_tail(&iucv->send_skb_q, skb);
atomic_inc(&iucv->skbs_in_xmit);
if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags) &&
skb->len <= 7) {
err = iucv_send_iprm(iucv->path, &txmsg, skb);
/* on success: there is no message_complete callback */
/* for an IPRMDATA msg; remove skb from send queue */
if (err == 0) {
atomic_dec(&iucv->skbs_in_xmit);
skb_unlink(skb, &iucv->send_skb_q);
consume_skb(skb);
}
/* this error should never happen since the */
/* IUCV_IPRMDATA path flag is set... sever path */
if (err == 0x15) {
pr_iucv->path_sever(iucv->path, NULL);
atomic_dec(&iucv->skbs_in_xmit);
skb_unlink(skb, &iucv->send_skb_q);
err = -EPIPE;
goto fail;
}
} else if (skb_is_nonlinear(skb)) {
struct iucv_array *iba = (struct iucv_array *)skb->head;
int i;
/* skip iucv_array lying in the headroom */
iba[0].address = (u32)(addr_t)skb->data;
iba[0].length = (u32)skb_headlen(skb);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
iba[i + 1].address =
(u32)(addr_t)skb_frag_address(frag);
iba[i + 1].length = (u32)skb_frag_size(frag);
}
err = pr_iucv->message_send(iucv->path, &txmsg,
IUCV_IPBUFLST, 0,
(void *)iba, skb->len);
} else { /* non-IPRM Linear skb */
err = pr_iucv->message_send(iucv->path, &txmsg,
0, 0, (void *)skb->data, skb->len);
}
if (err) {
if (err == 3) {
user_id[8] = 0;
memcpy(user_id, iucv->dst_user_id, 8);
appl_id[8] = 0;
memcpy(appl_id, iucv->dst_name, 8);
pr_err(
"Application %s on z/VM guest %s exceeds message limit\n",
appl_id, user_id);
err = -EAGAIN;
} else {
err = -EPIPE;
}
atomic_dec(&iucv->skbs_in_xmit);
skb_unlink(skb, &iucv->send_skb_q);
goto fail;
}
}
release_sock(sk);
return len;
fail:
kfree_skb(skb);
out:
release_sock(sk);
return err;
}
static struct sk_buff *alloc_iucv_recv_skb(unsigned long len)
{
size_t headroom, linear;
struct sk_buff *skb;
int err;
if (len < PAGE_SIZE) {
headroom = 0;
linear = len;
} else {
headroom = sizeof(struct iucv_array) * (MAX_SKB_FRAGS + 1);
linear = PAGE_SIZE - headroom;
}
skb = alloc_skb_with_frags(headroom + linear, len - linear,
0, &err, GFP_ATOMIC | GFP_DMA);
WARN_ONCE(!skb,
"alloc of recv iucv skb len=%lu failed with errcode=%d\n",
len, err);
if (skb) {
if (headroom)
skb_reserve(skb, headroom);
skb_put(skb, linear);
skb->len = len;
skb->data_len = len - linear;
}
return skb;
}
/* iucv_process_message() - Receive a single outstanding IUCV message
*
* Locking: must be called with message_q.lock held
*/
static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
struct iucv_path *path,
struct iucv_message *msg)
{
int rc;
unsigned int len;
len = iucv_msg_length(msg);
/* store msg target class in the second 4 bytes of skb ctrl buffer */
/* Note: the first 4 bytes are reserved for msg tag */
IUCV_SKB_CB(skb)->class = msg->class;
/* check for special IPRM messages (e.g. iucv_sock_shutdown) */
if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
skb->data = NULL;
skb->len = 0;
}
} else {
if (skb_is_nonlinear(skb)) {
struct iucv_array *iba = (struct iucv_array *)skb->head;
int i;
iba[0].address = (u32)(addr_t)skb->data;
iba[0].length = (u32)skb_headlen(skb);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
iba[i + 1].address =
(u32)(addr_t)skb_frag_address(frag);
iba[i + 1].length = (u32)skb_frag_size(frag);
}
rc = pr_iucv->message_receive(path, msg,
IUCV_IPBUFLST,
(void *)iba, len, NULL);
} else {
rc = pr_iucv->message_receive(path, msg,
msg->flags & IUCV_IPRMDATA,
skb->data, len, NULL);
}
if (rc) {
kfree_skb(skb);
return;
}
WARN_ON_ONCE(skb->len != len);
}
IUCV_SKB_CB(skb)->offset = 0;
if (sk_filter(sk, skb)) {
atomic_inc(&sk->sk_drops); /* skb rejected by filter */
kfree_skb(skb);
return;
}
if (__sock_queue_rcv_skb(sk, skb)) /* handle rcv queue full */
skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
}
/* iucv_process_message_q() - Process outstanding IUCV messages
*
* Locking: must be called with message_q.lock held
*/
static void iucv_process_message_q(struct sock *sk)
{
struct iucv_sock *iucv = iucv_sk(sk);
struct sk_buff *skb;
struct sock_msg_q *p, *n;
list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
skb = alloc_iucv_recv_skb(iucv_msg_length(&p->msg));
if (!skb)
break;
iucv_process_message(sk, skb, p->path, &p->msg);
list_del(&p->list);
kfree(p);
if (!skb_queue_empty(&iucv->backlog_skb_q))
break;
}
}
static int iucv_sock_recvmsg(struct socket *sock, struct msghdr *msg,
size_t len, int flags)
{
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
unsigned int copied, rlen;
struct sk_buff *skb, *rskb, *cskb;
int err = 0;
u32 offset;
if ((sk->sk_state == IUCV_DISCONN) &&
skb_queue_empty(&iucv->backlog_skb_q) &&
skb_queue_empty(&sk->sk_receive_queue) &&
list_empty(&iucv->message_q.list))
return 0;
if (flags & (MSG_OOB))
return -EOPNOTSUPP;
/* receive/dequeue next skb:
* the function understands MSG_PEEK and, thus, does not dequeue skb */
skb = skb_recv_datagram(sk, flags, &err);
if (!skb) {
if (sk->sk_shutdown & RCV_SHUTDOWN)
return 0;
return err;
}
offset = IUCV_SKB_CB(skb)->offset;
rlen = skb->len - offset; /* real length of skb */
copied = min_t(unsigned int, rlen, len);
if (!rlen)
sk->sk_shutdown = sk->sk_shutdown | RCV_SHUTDOWN;
cskb = skb;
if (skb_copy_datagram_msg(cskb, offset, msg, copied)) {
if (!(flags & MSG_PEEK))
skb_queue_head(&sk->sk_receive_queue, skb);
return -EFAULT;
}
/* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
if (sk->sk_type == SOCK_SEQPACKET) {
if (copied < rlen)
msg->msg_flags |= MSG_TRUNC;
/* each iucv message contains a complete record */
msg->msg_flags |= MSG_EOR;
}
/* create control message to store iucv msg target class:
* get the trgcls from the control buffer of the skb due to
* fragmentation of original iucv message. */
err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
sizeof(IUCV_SKB_CB(skb)->class),
(void *)&IUCV_SKB_CB(skb)->class);
if (err) {
if (!(flags & MSG_PEEK))
skb_queue_head(&sk->sk_receive_queue, skb);
return err;
}
/* Mark read part of skb as used */
if (!(flags & MSG_PEEK)) {
/* SOCK_STREAM: re-queue skb if it contains unreceived data */
if (sk->sk_type == SOCK_STREAM) {
if (copied < rlen) {
IUCV_SKB_CB(skb)->offset = offset + copied;
skb_queue_head(&sk->sk_receive_queue, skb);
goto done;
}
}
consume_skb(skb);
if (iucv->transport == AF_IUCV_TRANS_HIPER) {
atomic_inc(&iucv->msg_recv);
if (atomic_read(&iucv->msg_recv) > iucv->msglimit) {
WARN_ON(1);
iucv_sock_close(sk);
return -EFAULT;
}
}
/* Queue backlog skbs */
spin_lock_bh(&iucv->message_q.lock);
rskb = skb_dequeue(&iucv->backlog_skb_q);
while (rskb) {
IUCV_SKB_CB(rskb)->offset = 0;
if (__sock_queue_rcv_skb(sk, rskb)) {
/* handle rcv queue full */
skb_queue_head(&iucv->backlog_skb_q,
rskb);
break;
}
rskb = skb_dequeue(&iucv->backlog_skb_q);
}
if (skb_queue_empty(&iucv->backlog_skb_q)) {
if (!list_empty(&iucv->message_q.list))
iucv_process_message_q(sk);
if (atomic_read(&iucv->msg_recv) >=
iucv->msglimit / 2) {
err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN);
if (err) {
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
}
}
}
spin_unlock_bh(&iucv->message_q.lock);
}
done:
/* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
copied = rlen;
return copied;
}
static inline __poll_t iucv_accept_poll(struct sock *parent)
{
struct iucv_sock *isk, *n;
struct sock *sk;
list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
sk = (struct sock *) isk;
if (sk->sk_state == IUCV_CONNECTED)
return EPOLLIN | EPOLLRDNORM;
}
return 0;
}
static __poll_t iucv_sock_poll(struct file *file, struct socket *sock,
poll_table *wait)
{
struct sock *sk = sock->sk;
__poll_t mask = 0;
sock_poll_wait(file, sock, wait);
if (sk->sk_state == IUCV_LISTEN)
return iucv_accept_poll(sk);
if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
mask |= EPOLLERR |
(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
if (sk->sk_shutdown & RCV_SHUTDOWN)
mask |= EPOLLRDHUP;
if (sk->sk_shutdown == SHUTDOWN_MASK)
mask |= EPOLLHUP;
if (!skb_queue_empty(&sk->sk_receive_queue) ||
(sk->sk_shutdown & RCV_SHUTDOWN))
mask |= EPOLLIN | EPOLLRDNORM;
if (sk->sk_state == IUCV_CLOSED)
mask |= EPOLLHUP;
if (sk->sk_state == IUCV_DISCONN)
mask |= EPOLLIN;
if (sock_writeable(sk) && iucv_below_msglim(sk))
mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
else
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
return mask;
}
static int iucv_sock_shutdown(struct socket *sock, int how)
{
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
struct iucv_message txmsg;
int err = 0;
how++;
if ((how & ~SHUTDOWN_MASK) || !how)
return -EINVAL;
lock_sock(sk);
switch (sk->sk_state) {
case IUCV_LISTEN:
case IUCV_DISCONN:
case IUCV_CLOSING:
case IUCV_CLOSED:
err = -ENOTCONN;
goto fail;
default:
break;
}
if ((how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) &&
sk->sk_state == IUCV_CONNECTED) {
if (iucv->transport == AF_IUCV_TRANS_IUCV) {
txmsg.class = 0;
txmsg.tag = 0;
err = pr_iucv->message_send(iucv->path, &txmsg,
IUCV_IPRMDATA, 0, (void *) iprm_shutdown, 8);
if (err) {
switch (err) {
case 1:
err = -ENOTCONN;
break;
case 2:
err = -ECONNRESET;
break;
default:
err = -ENOTCONN;
break;
}
}
} else
iucv_send_ctrl(sk, AF_IUCV_FLAG_SHT);
}
sk->sk_shutdown |= how;
if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
if ((iucv->transport == AF_IUCV_TRANS_IUCV) &&
iucv->path) {
err = pr_iucv->path_quiesce(iucv->path, NULL);
if (err)
err = -ENOTCONN;
/* skb_queue_purge(&sk->sk_receive_queue); */
}
skb_queue_purge(&sk->sk_receive_queue);
}
/* Wake up anyone sleeping in poll */
sk->sk_state_change(sk);
fail:
release_sock(sk);
return err;
}
static int iucv_sock_release(struct socket *sock)
{
struct sock *sk = sock->sk;
int err = 0;
if (!sk)
return 0;
iucv_sock_close(sk);
sock_orphan(sk);
iucv_sock_kill(sk);
return err;
}
/* getsockopt and setsockopt */
static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
int val;
int rc;
if (level != SOL_IUCV)
return -ENOPROTOOPT;
if (optlen < sizeof(int))
return -EINVAL;
if (copy_from_sockptr(&val, optval, sizeof(int)))
return -EFAULT;
rc = 0;
lock_sock(sk);
switch (optname) {
case SO_IPRMDATA_MSG:
if (val)
iucv->flags |= IUCV_IPRMDATA;
else
iucv->flags &= ~IUCV_IPRMDATA;
break;
case SO_MSGLIMIT:
switch (sk->sk_state) {
case IUCV_OPEN:
case IUCV_BOUND:
if (val < 1 || val > U16_MAX)
rc = -EINVAL;
else
iucv->msglimit = val;
break;
default:
rc = -EINVAL;
break;
}
break;
default:
rc = -ENOPROTOOPT;
break;
}
release_sock(sk);
return rc;
}
static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct iucv_sock *iucv = iucv_sk(sk);
unsigned int val;
int len;
if (level != SOL_IUCV)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
len = min_t(unsigned int, len, sizeof(int));
switch (optname) {
case SO_IPRMDATA_MSG:
val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
break;
case SO_MSGLIMIT:
lock_sock(sk);
val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
: iucv->msglimit; /* default */
release_sock(sk);
break;
case SO_MSGSIZE:
if (sk->sk_state == IUCV_OPEN)
return -EBADFD;
val = (iucv->hs_dev) ? iucv->hs_dev->mtu -
sizeof(struct af_iucv_trans_hdr) - ETH_HLEN :
0x7fffffff;
break;
default:
return -ENOPROTOOPT;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/* Callback wrappers - called from iucv base support */
static int iucv_callback_connreq(struct iucv_path *path,
u8 ipvmid[8], u8 ipuser[16])
{
unsigned char user_data[16];
unsigned char nuser_data[16];
unsigned char src_name[8];
struct sock *sk, *nsk;
struct iucv_sock *iucv, *niucv;
int err;
memcpy(src_name, ipuser, 8);
EBCASC(src_name, 8);
/* Find out if this path belongs to af_iucv. */
read_lock(&iucv_sk_list.lock);
iucv = NULL;
sk = NULL;
sk_for_each(sk, &iucv_sk_list.head)
if (sk->sk_state == IUCV_LISTEN &&
!memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
/*
* Found a listening socket with
* src_name == ipuser[0-7].
*/
iucv = iucv_sk(sk);
break;
}
read_unlock(&iucv_sk_list.lock);
if (!iucv)
/* No socket found, not one of our paths. */
return -EINVAL;
bh_lock_sock(sk);
/* Check if parent socket is listening */
low_nmcpy(user_data, iucv->src_name);
high_nmcpy(user_data, iucv->dst_name);
ASCEBC(user_data, sizeof(user_data));
if (sk->sk_state != IUCV_LISTEN) {
err = pr_iucv->path_sever(path, user_data);
iucv_path_free(path);
goto fail;
}
/* Check for backlog size */
if (sk_acceptq_is_full(sk)) {
err = pr_iucv->path_sever(path, user_data);
iucv_path_free(path);
goto fail;
}
/* Create the new socket */
nsk = iucv_sock_alloc(NULL, sk->sk_protocol, GFP_ATOMIC, 0);
if (!nsk) {
err = pr_iucv->path_sever(path, user_data);
iucv_path_free(path);
goto fail;
}
niucv = iucv_sk(nsk);
iucv_sock_init(nsk, sk);
niucv->transport = AF_IUCV_TRANS_IUCV;
nsk->sk_allocation |= GFP_DMA;
/* Set the new iucv_sock */
memcpy(niucv->dst_name, ipuser + 8, 8);
EBCASC(niucv->dst_name, 8);
memcpy(niucv->dst_user_id, ipvmid, 8);
memcpy(niucv->src_name, iucv->src_name, 8);
memcpy(niucv->src_user_id, iucv->src_user_id, 8);
niucv->path = path;
/* Call iucv_accept */
high_nmcpy(nuser_data, ipuser + 8);
memcpy(nuser_data + 8, niucv->src_name, 8);
ASCEBC(nuser_data + 8, 8);
/* set message limit for path based on msglimit of accepting socket */
niucv->msglimit = iucv->msglimit;
path->msglim = iucv->msglimit;
err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
if (err) {
iucv_sever_path(nsk, 1);
iucv_sock_kill(nsk);
goto fail;
}
iucv_accept_enqueue(sk, nsk);
/* Wake up accept */
nsk->sk_state = IUCV_CONNECTED;
sk->sk_data_ready(sk);
err = 0;
fail:
bh_unlock_sock(sk);
return 0;
}
static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
{
struct sock *sk = path->private;
sk->sk_state = IUCV_CONNECTED;
sk->sk_state_change(sk);
}
static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
{
struct sock *sk = path->private;
struct iucv_sock *iucv = iucv_sk(sk);
struct sk_buff *skb;
struct sock_msg_q *save_msg;
int len;
if (sk->sk_shutdown & RCV_SHUTDOWN) {
pr_iucv->message_reject(path, msg);
return;
}
spin_lock(&iucv->message_q.lock);
if (!list_empty(&iucv->message_q.list) ||
!skb_queue_empty(&iucv->backlog_skb_q))
goto save_message;
len = atomic_read(&sk->sk_rmem_alloc);
len += SKB_TRUESIZE(iucv_msg_length(msg));
if (len > sk->sk_rcvbuf)
goto save_message;
skb = alloc_iucv_recv_skb(iucv_msg_length(msg));
if (!skb)
goto save_message;
iucv_process_message(sk, skb, path, msg);
goto out_unlock;
save_message:
save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
if (!save_msg)
goto out_unlock;
save_msg->path = path;
save_msg->msg = *msg;
list_add_tail(&save_msg->list, &iucv->message_q.list);
out_unlock:
spin_unlock(&iucv->message_q.lock);
}
static void iucv_callback_txdone(struct iucv_path *path,
struct iucv_message *msg)
{
struct sock *sk = path->private;
struct sk_buff *this = NULL;
struct sk_buff_head *list;
struct sk_buff *list_skb;
struct iucv_sock *iucv;
unsigned long flags;
iucv = iucv_sk(sk);
list = &iucv->send_skb_q;
bh_lock_sock(sk);
spin_lock_irqsave(&list->lock, flags);
skb_queue_walk(list, list_skb) {
if (msg->tag == IUCV_SKB_CB(list_skb)->tag) {
this = list_skb;
break;
}
}
if (this) {
atomic_dec(&iucv->skbs_in_xmit);
__skb_unlink(this, list);
}
spin_unlock_irqrestore(&list->lock, flags);
if (this) {
consume_skb(this);
/* wake up any process waiting for sending */
iucv_sock_wake_msglim(sk);
}
if (sk->sk_state == IUCV_CLOSING) {
if (atomic_read(&iucv->skbs_in_xmit) == 0) {
sk->sk_state = IUCV_CLOSED;
sk->sk_state_change(sk);
}
}
bh_unlock_sock(sk);
}
static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
{
struct sock *sk = path->private;
if (sk->sk_state == IUCV_CLOSED)
return;
bh_lock_sock(sk);
iucv_sever_path(sk, 1);
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
bh_unlock_sock(sk);
}
/* called if the other communication side shuts down its RECV direction;
* in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
*/
static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
{
struct sock *sk = path->private;
bh_lock_sock(sk);
if (sk->sk_state != IUCV_CLOSED) {
sk->sk_shutdown |= SEND_SHUTDOWN;
sk->sk_state_change(sk);
}
bh_unlock_sock(sk);
}
static struct iucv_handler af_iucv_handler = {
.path_pending = iucv_callback_connreq,
.path_complete = iucv_callback_connack,
.path_severed = iucv_callback_connrej,
.message_pending = iucv_callback_rx,
.message_complete = iucv_callback_txdone,
.path_quiesced = iucv_callback_shutdown,
};
/***************** HiperSockets transport callbacks ********************/
static void afiucv_swap_src_dest(struct sk_buff *skb)
{
struct af_iucv_trans_hdr *trans_hdr = iucv_trans_hdr(skb);
char tmpID[8];
char tmpName[8];
ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
memcpy(tmpID, trans_hdr->srcUserID, 8);
memcpy(tmpName, trans_hdr->srcAppName, 8);
memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
memcpy(trans_hdr->destUserID, tmpID, 8);
memcpy(trans_hdr->destAppName, tmpName, 8);
skb_push(skb, ETH_HLEN);
memset(skb->data, 0, ETH_HLEN);
}
/*
* afiucv_hs_callback_syn - react on received SYN
*/
static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
{
struct af_iucv_trans_hdr *trans_hdr = iucv_trans_hdr(skb);
struct sock *nsk;
struct iucv_sock *iucv, *niucv;
int err;
iucv = iucv_sk(sk);
if (!iucv) {
/* no sock - connection refused */
afiucv_swap_src_dest(skb);
trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
err = dev_queue_xmit(skb);
goto out;
}
nsk = iucv_sock_alloc(NULL, sk->sk_protocol, GFP_ATOMIC, 0);
bh_lock_sock(sk);
if ((sk->sk_state != IUCV_LISTEN) ||
sk_acceptq_is_full(sk) ||
!nsk) {
/* error on server socket - connection refused */
afiucv_swap_src_dest(skb);
trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
err = dev_queue_xmit(skb);
iucv_sock_kill(nsk);
bh_unlock_sock(sk);
goto out;
}
niucv = iucv_sk(nsk);
iucv_sock_init(nsk, sk);
niucv->transport = AF_IUCV_TRANS_HIPER;
niucv->msglimit = iucv->msglimit;
if (!trans_hdr->window)
niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
else
niucv->msglimit_peer = trans_hdr->window;
memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
memcpy(niucv->src_name, iucv->src_name, 8);
memcpy(niucv->src_user_id, iucv->src_user_id, 8);
nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
niucv->hs_dev = iucv->hs_dev;
dev_hold(niucv->hs_dev);
afiucv_swap_src_dest(skb);
trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
trans_hdr->window = niucv->msglimit;
/* if receiver acks the xmit connection is established */
err = dev_queue_xmit(skb);
if (!err) {
iucv_accept_enqueue(sk, nsk);
nsk->sk_state = IUCV_CONNECTED;
sk->sk_data_ready(sk);
} else
iucv_sock_kill(nsk);
bh_unlock_sock(sk);
out:
return NET_RX_SUCCESS;
}
/*
* afiucv_hs_callback_synack() - react on received SYN-ACK
*/
static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
{
struct iucv_sock *iucv = iucv_sk(sk);
if (!iucv || sk->sk_state != IUCV_BOUND) {
kfree_skb(skb);
return NET_RX_SUCCESS;
}
bh_lock_sock(sk);
iucv->msglimit_peer = iucv_trans_hdr(skb)->window;
sk->sk_state = IUCV_CONNECTED;
sk->sk_state_change(sk);
bh_unlock_sock(sk);
consume_skb(skb);
return NET_RX_SUCCESS;
}
/*
* afiucv_hs_callback_synfin() - react on received SYN_FIN
*/
static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
{
struct iucv_sock *iucv = iucv_sk(sk);
if (!iucv || sk->sk_state != IUCV_BOUND) {
kfree_skb(skb);
return NET_RX_SUCCESS;
}
bh_lock_sock(sk);
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
bh_unlock_sock(sk);
consume_skb(skb);
return NET_RX_SUCCESS;
}
/*
* afiucv_hs_callback_fin() - react on received FIN
*/
static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
{
struct iucv_sock *iucv = iucv_sk(sk);
/* other end of connection closed */
if (!iucv) {
kfree_skb(skb);
return NET_RX_SUCCESS;
}
bh_lock_sock(sk);
if (sk->sk_state == IUCV_CONNECTED) {
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
}
bh_unlock_sock(sk);
consume_skb(skb);
return NET_RX_SUCCESS;
}
/*
* afiucv_hs_callback_win() - react on received WIN
*/
static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
{
struct iucv_sock *iucv = iucv_sk(sk);
if (!iucv)
return NET_RX_SUCCESS;
if (sk->sk_state != IUCV_CONNECTED)
return NET_RX_SUCCESS;
atomic_sub(iucv_trans_hdr(skb)->window, &iucv->msg_sent);
iucv_sock_wake_msglim(sk);
return NET_RX_SUCCESS;
}
/*
* afiucv_hs_callback_rx() - react on received data
*/
static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
{
struct iucv_sock *iucv = iucv_sk(sk);
if (!iucv) {
kfree_skb(skb);
return NET_RX_SUCCESS;
}
if (sk->sk_state != IUCV_CONNECTED) {
kfree_skb(skb);
return NET_RX_SUCCESS;
}
if (sk->sk_shutdown & RCV_SHUTDOWN) {
kfree_skb(skb);
return NET_RX_SUCCESS;
}
/* write stuff from iucv_msg to skb cb */
skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
skb_reset_transport_header(skb);
skb_reset_network_header(skb);
IUCV_SKB_CB(skb)->offset = 0;
if (sk_filter(sk, skb)) {
atomic_inc(&sk->sk_drops); /* skb rejected by filter */
kfree_skb(skb);
return NET_RX_SUCCESS;
}
spin_lock(&iucv->message_q.lock);
if (skb_queue_empty(&iucv->backlog_skb_q)) {
if (__sock_queue_rcv_skb(sk, skb))
/* handle rcv queue full */
skb_queue_tail(&iucv->backlog_skb_q, skb);
} else
skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
spin_unlock(&iucv->message_q.lock);
return NET_RX_SUCCESS;
}
/*
* afiucv_hs_rcv() - base function for arriving data through HiperSockets
* transport
* called from netif RX softirq
*/
static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)
{
struct sock *sk;
struct iucv_sock *iucv;
struct af_iucv_trans_hdr *trans_hdr;
int err = NET_RX_SUCCESS;
char nullstring[8];
if (!pskb_may_pull(skb, sizeof(*trans_hdr))) {
kfree_skb(skb);
return NET_RX_SUCCESS;
}
trans_hdr = iucv_trans_hdr(skb);
EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
memset(nullstring, 0, sizeof(nullstring));
iucv = NULL;
sk = NULL;
read_lock(&iucv_sk_list.lock);
sk_for_each(sk, &iucv_sk_list.head) {
if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
if ((!memcmp(&iucv_sk(sk)->src_name,
trans_hdr->destAppName, 8)) &&
(!memcmp(&iucv_sk(sk)->src_user_id,
trans_hdr->destUserID, 8)) &&
(!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
(!memcmp(&iucv_sk(sk)->dst_user_id,
nullstring, 8))) {
iucv = iucv_sk(sk);
break;
}
} else {
if ((!memcmp(&iucv_sk(sk)->src_name,
trans_hdr->destAppName, 8)) &&
(!memcmp(&iucv_sk(sk)->src_user_id,
trans_hdr->destUserID, 8)) &&
(!memcmp(&iucv_sk(sk)->dst_name,
trans_hdr->srcAppName, 8)) &&
(!memcmp(&iucv_sk(sk)->dst_user_id,
trans_hdr->srcUserID, 8))) {
iucv = iucv_sk(sk);
break;
}
}
}
read_unlock(&iucv_sk_list.lock);
if (!iucv)
sk = NULL;
/* no sock
how should we send with no sock
1) send without sock no send rc checking?
2) introduce default sock to handle this cases
SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
data -> send FIN
SYN|ACK, SYN|FIN, FIN -> no action? */
switch (trans_hdr->flags) {
case AF_IUCV_FLAG_SYN:
/* connect request */
err = afiucv_hs_callback_syn(sk, skb);
break;
case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
/* connect request confirmed */
err = afiucv_hs_callback_synack(sk, skb);
break;
case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
/* connect request refused */
err = afiucv_hs_callback_synfin(sk, skb);
break;
case (AF_IUCV_FLAG_FIN):
/* close request */
err = afiucv_hs_callback_fin(sk, skb);
break;
case (AF_IUCV_FLAG_WIN):
err = afiucv_hs_callback_win(sk, skb);
if (skb->len == sizeof(struct af_iucv_trans_hdr)) {
consume_skb(skb);
break;
}
fallthrough; /* and receive non-zero length data */
case (AF_IUCV_FLAG_SHT):
/* shutdown request */
fallthrough; /* and receive zero length data */
case 0:
/* plain data frame */
IUCV_SKB_CB(skb)->class = trans_hdr->iucv_hdr.class;
err = afiucv_hs_callback_rx(sk, skb);
break;
default:
kfree_skb(skb);
}
return err;
}
/*
* afiucv_hs_callback_txnotify() - handle send notifications from HiperSockets
* transport
*/
static void afiucv_hs_callback_txnotify(struct sock *sk, enum iucv_tx_notify n)
{
struct iucv_sock *iucv = iucv_sk(sk);
if (sock_flag(sk, SOCK_ZAPPED))
return;
switch (n) {
case TX_NOTIFY_OK:
atomic_dec(&iucv->skbs_in_xmit);
iucv_sock_wake_msglim(sk);
break;
case TX_NOTIFY_PENDING:
atomic_inc(&iucv->pendings);
break;
case TX_NOTIFY_DELAYED_OK:
atomic_dec(&iucv->skbs_in_xmit);
if (atomic_dec_return(&iucv->pendings) <= 0)
iucv_sock_wake_msglim(sk);
break;
default:
atomic_dec(&iucv->skbs_in_xmit);
if (sk->sk_state == IUCV_CONNECTED) {
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
}
}
if (sk->sk_state == IUCV_CLOSING) {
if (atomic_read(&iucv->skbs_in_xmit) == 0) {
sk->sk_state = IUCV_CLOSED;
sk->sk_state_change(sk);
}
}
}
/*
* afiucv_netdev_event: handle netdev notifier chain events
*/
static int afiucv_netdev_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
struct sock *sk;
struct iucv_sock *iucv;
switch (event) {
case NETDEV_REBOOT:
case NETDEV_GOING_DOWN:
sk_for_each(sk, &iucv_sk_list.head) {
iucv = iucv_sk(sk);
if ((iucv->hs_dev == event_dev) &&
(sk->sk_state == IUCV_CONNECTED)) {
if (event == NETDEV_GOING_DOWN)
iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
sk->sk_state = IUCV_DISCONN;
sk->sk_state_change(sk);
}
}
break;
case NETDEV_DOWN:
case NETDEV_UNREGISTER:
default:
break;
}
return NOTIFY_DONE;
}
static struct notifier_block afiucv_netdev_notifier = {
.notifier_call = afiucv_netdev_event,
};
static const struct proto_ops iucv_sock_ops = {
.family = PF_IUCV,
.owner = THIS_MODULE,
.release = iucv_sock_release,
.bind = iucv_sock_bind,
.connect = iucv_sock_connect,
.listen = iucv_sock_listen,
.accept = iucv_sock_accept,
.getname = iucv_sock_getname,
.sendmsg = iucv_sock_sendmsg,
.recvmsg = iucv_sock_recvmsg,
.poll = iucv_sock_poll,
.ioctl = sock_no_ioctl,
.mmap = sock_no_mmap,
.socketpair = sock_no_socketpair,
.shutdown = iucv_sock_shutdown,
.setsockopt = iucv_sock_setsockopt,
.getsockopt = iucv_sock_getsockopt,
};
static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct sock *sk;
if (protocol && protocol != PF_IUCV)
return -EPROTONOSUPPORT;
sock->state = SS_UNCONNECTED;
switch (sock->type) {
case SOCK_STREAM:
case SOCK_SEQPACKET:
/* currently, proto ops can handle both sk types */
sock->ops = &iucv_sock_ops;
break;
default:
return -ESOCKTNOSUPPORT;
}
sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL, kern);
if (!sk)
return -ENOMEM;
iucv_sock_init(sk, NULL);
return 0;
}
static const struct net_proto_family iucv_sock_family_ops = {
.family = AF_IUCV,
.owner = THIS_MODULE,
.create = iucv_sock_create,
};
static struct packet_type iucv_packet_type = {
.type = cpu_to_be16(ETH_P_AF_IUCV),
.func = afiucv_hs_rcv,
};
static int __init afiucv_init(void)
{
int err;
if (MACHINE_IS_VM && IS_ENABLED(CONFIG_IUCV)) {
cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
if (unlikely(err)) {
WARN_ON(err);
err = -EPROTONOSUPPORT;
goto out;
}
pr_iucv = &iucv_if;
} else {
memset(&iucv_userid, 0, sizeof(iucv_userid));
pr_iucv = NULL;
}
err = proto_register(&iucv_proto, 0);
if (err)
goto out;
err = sock_register(&iucv_sock_family_ops);
if (err)
goto out_proto;
if (pr_iucv) {
err = pr_iucv->iucv_register(&af_iucv_handler, 0);
if (err)
goto out_sock;
}
err = register_netdevice_notifier(&afiucv_netdev_notifier);
if (err)
goto out_notifier;
dev_add_pack(&iucv_packet_type);
return 0;
out_notifier:
if (pr_iucv)
pr_iucv->iucv_unregister(&af_iucv_handler, 0);
out_sock:
sock_unregister(PF_IUCV);
out_proto:
proto_unregister(&iucv_proto);
out:
return err;
}
static void __exit afiucv_exit(void)
{
if (pr_iucv)
pr_iucv->iucv_unregister(&af_iucv_handler, 0);
unregister_netdevice_notifier(&afiucv_netdev_notifier);
dev_remove_pack(&iucv_packet_type);
sock_unregister(PF_IUCV);
proto_unregister(&iucv_proto);
}
module_init(afiucv_init);
module_exit(afiucv_exit);
MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
MODULE_ALIAS_NETPROTO(PF_IUCV);