mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-19 19:14:01 +08:00
ba67823163
NMI interrupts mask ALL interrupts before calling the handler, so we need to unmask NMIs according to the value handle_nmi() returns. If it returns zero, the NMIs should be re-enabled; if it returns a non-zero error, the NMIs should be disabled. Signed-off-by: Zhigang Lu <zlu@tilera.com> Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
1574 lines
42 KiB
ArmAsm
1574 lines
42 KiB
ArmAsm
/*
|
|
* Copyright 2011 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* Linux interrupt vectors.
|
|
*/
|
|
|
|
#include <linux/linkage.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/init.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/thread_info.h>
|
|
#include <asm/irqflags.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/types.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/signal.h>
|
|
#include <hv/hypervisor.h>
|
|
#include <arch/abi.h>
|
|
#include <arch/interrupts.h>
|
|
#include <arch/spr_def.h>
|
|
|
|
#define PTREGS_PTR(reg, ptreg) addli reg, sp, C_ABI_SAVE_AREA_SIZE + (ptreg)
|
|
|
|
#define PTREGS_OFFSET_SYSCALL PTREGS_OFFSET_REG(TREG_SYSCALL_NR)
|
|
|
|
#if CONFIG_KERNEL_PL == 1 || CONFIG_KERNEL_PL == 2
|
|
/*
|
|
* Set "result" non-zero if ex1 holds the PL of the kernel
|
|
* (with or without ICS being set). Note this works only
|
|
* because we never find the PL at level 3.
|
|
*/
|
|
# define IS_KERNEL_EX1(result, ex1) andi result, ex1, CONFIG_KERNEL_PL
|
|
#else
|
|
# error Recode IS_KERNEL_EX1 for CONFIG_KERNEL_PL
|
|
#endif
|
|
|
|
.macro push_reg reg, ptr=sp, delta=-8
|
|
{
|
|
st \ptr, \reg
|
|
addli \ptr, \ptr, \delta
|
|
}
|
|
.endm
|
|
|
|
.macro pop_reg reg, ptr=sp, delta=8
|
|
{
|
|
ld \reg, \ptr
|
|
addli \ptr, \ptr, \delta
|
|
}
|
|
.endm
|
|
|
|
.macro pop_reg_zero reg, zreg, ptr=sp, delta=8
|
|
{
|
|
move \zreg, zero
|
|
ld \reg, \ptr
|
|
addi \ptr, \ptr, \delta
|
|
}
|
|
.endm
|
|
|
|
.macro push_extra_callee_saves reg
|
|
PTREGS_PTR(\reg, PTREGS_OFFSET_REG(51))
|
|
push_reg r51, \reg
|
|
push_reg r50, \reg
|
|
push_reg r49, \reg
|
|
push_reg r48, \reg
|
|
push_reg r47, \reg
|
|
push_reg r46, \reg
|
|
push_reg r45, \reg
|
|
push_reg r44, \reg
|
|
push_reg r43, \reg
|
|
push_reg r42, \reg
|
|
push_reg r41, \reg
|
|
push_reg r40, \reg
|
|
push_reg r39, \reg
|
|
push_reg r38, \reg
|
|
push_reg r37, \reg
|
|
push_reg r36, \reg
|
|
push_reg r35, \reg
|
|
push_reg r34, \reg, PTREGS_OFFSET_BASE - PTREGS_OFFSET_REG(34)
|
|
.endm
|
|
|
|
.macro panic str
|
|
.pushsection .rodata, "a"
|
|
1:
|
|
.asciz "\str"
|
|
.popsection
|
|
{
|
|
moveli r0, hw2_last(1b)
|
|
}
|
|
{
|
|
shl16insli r0, r0, hw1(1b)
|
|
}
|
|
{
|
|
shl16insli r0, r0, hw0(1b)
|
|
jal panic
|
|
}
|
|
.endm
|
|
|
|
/*
|
|
* Unalign data exception fast handling: In order to handle
|
|
* unaligned data access, a fast JIT version is generated and stored
|
|
* in a specific area in user space. We first need to do a quick poke
|
|
* to see if the JIT is available. We use certain bits in the fault
|
|
* PC (3 to 9 is used for 16KB page size) as index to address the JIT
|
|
* code area. The first 64bit word is the fault PC, and the 2nd one is
|
|
* the fault bundle itself. If these 2 words both match, then we
|
|
* directly "iret" to JIT code. If not, a slow path is invoked to
|
|
* generate new JIT code. Note: the current JIT code WILL be
|
|
* overwritten if it existed. So, ideally we can handle 128 unalign
|
|
* fixups via JIT. For lookup efficiency and to effectively support
|
|
* tight loops with multiple unaligned reference, a simple
|
|
* direct-mapped cache is used.
|
|
*
|
|
* SPR_EX_CONTEXT_K_0 is modified to return to JIT code.
|
|
* SPR_EX_CONTEXT_K_1 has ICS set.
|
|
* SPR_EX_CONTEXT_0_0 is setup to user program's next PC.
|
|
* SPR_EX_CONTEXT_0_1 = 0.
|
|
*/
|
|
.macro int_hand_unalign_fast vecnum, vecname
|
|
.org (\vecnum << 8)
|
|
intvec_\vecname:
|
|
/* Put r3 in SPR_SYSTEM_SAVE_K_1. */
|
|
mtspr SPR_SYSTEM_SAVE_K_1, r3
|
|
|
|
mfspr r3, SPR_EX_CONTEXT_K_1
|
|
/*
|
|
* Examine if exception comes from user without ICS set.
|
|
* If not, just go directly to the slow path.
|
|
*/
|
|
bnez r3, hand_unalign_slow_nonuser
|
|
|
|
mfspr r3, SPR_SYSTEM_SAVE_K_0
|
|
|
|
/* Get &thread_info->unalign_jit_tmp[0] in r3. */
|
|
bfexts r3, r3, 0, CPU_SHIFT-1
|
|
mm r3, zero, LOG2_THREAD_SIZE, 63
|
|
addli r3, r3, THREAD_INFO_UNALIGN_JIT_TMP_OFFSET
|
|
|
|
/*
|
|
* Save r0, r1, r2 into thread_info array r3 points to
|
|
* from low to high memory in order.
|
|
*/
|
|
st_add r3, r0, 8
|
|
st_add r3, r1, 8
|
|
{
|
|
st_add r3, r2, 8
|
|
andi r2, sp, 7
|
|
}
|
|
|
|
/* Save stored r3 value so we can revert it on a page fault. */
|
|
mfspr r1, SPR_SYSTEM_SAVE_K_1
|
|
st r3, r1
|
|
|
|
{
|
|
/* Generate a SIGBUS if sp is not 8-byte aligned. */
|
|
bnez r2, hand_unalign_slow_badsp
|
|
}
|
|
|
|
/*
|
|
* Get the thread_info in r0; load r1 with pc. Set the low bit of sp
|
|
* as an indicator to the page fault code in case we fault.
|
|
*/
|
|
{
|
|
ori sp, sp, 1
|
|
mfspr r1, SPR_EX_CONTEXT_K_0
|
|
}
|
|
|
|
/* Add the jit_info offset in thread_info; extract r1 [3:9] into r2. */
|
|
{
|
|
addli r0, r3, THREAD_INFO_UNALIGN_JIT_BASE_OFFSET - \
|
|
(THREAD_INFO_UNALIGN_JIT_TMP_OFFSET + (3 * 8))
|
|
bfextu r2, r1, 3, (2 + PAGE_SHIFT - UNALIGN_JIT_SHIFT)
|
|
}
|
|
|
|
/* Load the jit_info; multiply r2 by 128. */
|
|
{
|
|
ld r0, r0
|
|
shli r2, r2, UNALIGN_JIT_SHIFT
|
|
}
|
|
|
|
/*
|
|
* If r0 is NULL, the JIT page is not mapped, so go to slow path;
|
|
* add offset r2 to r0 at the same time.
|
|
*/
|
|
{
|
|
beqz r0, hand_unalign_slow
|
|
add r2, r0, r2
|
|
}
|
|
|
|
/*
|
|
* We are loading from userspace (both the JIT info PC and
|
|
* instruction word, and the instruction word we executed)
|
|
* and since either could fault while holding the interrupt
|
|
* critical section, we must tag this region and check it in
|
|
* do_page_fault() to handle it properly.
|
|
*/
|
|
ENTRY(__start_unalign_asm_code)
|
|
|
|
/* Load first word of JIT in r0 and increment r2 by 8. */
|
|
ld_add r0, r2, 8
|
|
|
|
/*
|
|
* Compare the PC with the 1st word in JIT; load the fault bundle
|
|
* into r1.
|
|
*/
|
|
{
|
|
cmpeq r0, r0, r1
|
|
ld r1, r1
|
|
}
|
|
|
|
/* Go to slow path if PC doesn't match. */
|
|
beqz r0, hand_unalign_slow
|
|
|
|
/*
|
|
* Load the 2nd word of JIT, which is supposed to be the fault
|
|
* bundle for a cache hit. Increment r2; after this bundle r2 will
|
|
* point to the potential start of the JIT code we want to run.
|
|
*/
|
|
ld_add r0, r2, 8
|
|
|
|
/* No further accesses to userspace are done after this point. */
|
|
ENTRY(__end_unalign_asm_code)
|
|
|
|
/* Compare the real bundle with what is saved in the JIT area. */
|
|
{
|
|
cmpeq r0, r1, r0
|
|
mtspr SPR_EX_CONTEXT_0_1, zero
|
|
}
|
|
|
|
/* Go to slow path if the fault bundle does not match. */
|
|
beqz r0, hand_unalign_slow
|
|
|
|
/*
|
|
* A cache hit is found.
|
|
* r2 points to start of JIT code (3rd word).
|
|
* r0 is the fault pc.
|
|
* r1 is the fault bundle.
|
|
* Reset the low bit of sp.
|
|
*/
|
|
{
|
|
mfspr r0, SPR_EX_CONTEXT_K_0
|
|
andi sp, sp, ~1
|
|
}
|
|
|
|
/* Write r2 into EX_CONTEXT_K_0 and increment PC. */
|
|
{
|
|
mtspr SPR_EX_CONTEXT_K_0, r2
|
|
addi r0, r0, 8
|
|
}
|
|
|
|
/*
|
|
* Set ICS on kernel EX_CONTEXT_K_1 in order to "iret" to
|
|
* user with ICS set. This way, if the JIT fixup causes another
|
|
* unalign exception (which shouldn't be possible) the user
|
|
* process will be terminated with SIGBUS. Also, our fixup will
|
|
* run without interleaving with external interrupts.
|
|
* Each fixup is at most 14 bundles, so it won't hold ICS for long.
|
|
*/
|
|
{
|
|
movei r1, PL_ICS_EX1(USER_PL, 1)
|
|
mtspr SPR_EX_CONTEXT_0_0, r0
|
|
}
|
|
|
|
{
|
|
mtspr SPR_EX_CONTEXT_K_1, r1
|
|
addi r3, r3, -(3 * 8)
|
|
}
|
|
|
|
/* Restore r0..r3. */
|
|
ld_add r0, r3, 8
|
|
ld_add r1, r3, 8
|
|
ld_add r2, r3, 8
|
|
ld r3, r3
|
|
|
|
iret
|
|
ENDPROC(intvec_\vecname)
|
|
.endm
|
|
|
|
#ifdef __COLLECT_LINKER_FEEDBACK__
|
|
.pushsection .text.intvec_feedback,"ax"
|
|
intvec_feedback:
|
|
.popsection
|
|
#endif
|
|
|
|
/*
|
|
* Default interrupt handler.
|
|
*
|
|
* vecnum is where we'll put this code.
|
|
* c_routine is the C routine we'll call.
|
|
*
|
|
* The C routine is passed two arguments:
|
|
* - A pointer to the pt_regs state.
|
|
* - The interrupt vector number.
|
|
*
|
|
* The "processing" argument specifies the code for processing
|
|
* the interrupt. Defaults to "handle_interrupt".
|
|
*/
|
|
.macro __int_hand vecnum, vecname, c_routine,processing=handle_interrupt
|
|
intvec_\vecname:
|
|
/* Temporarily save a register so we have somewhere to work. */
|
|
|
|
mtspr SPR_SYSTEM_SAVE_K_1, r0
|
|
mfspr r0, SPR_EX_CONTEXT_K_1
|
|
|
|
/*
|
|
* The unalign data fastpath code sets the low bit in sp to
|
|
* force us to reset it here on fault.
|
|
*/
|
|
{
|
|
blbs sp, 2f
|
|
IS_KERNEL_EX1(r0, r0)
|
|
}
|
|
|
|
.ifc \vecnum, INT_DOUBLE_FAULT
|
|
/*
|
|
* For double-faults from user-space, fall through to the normal
|
|
* register save and stack setup path. Otherwise, it's the
|
|
* hypervisor giving us one last chance to dump diagnostics, and we
|
|
* branch to the kernel_double_fault routine to do so.
|
|
*/
|
|
beqz r0, 1f
|
|
j _kernel_double_fault
|
|
1:
|
|
.else
|
|
/*
|
|
* If we're coming from user-space, then set sp to the top of
|
|
* the kernel stack. Otherwise, assume sp is already valid.
|
|
*/
|
|
{
|
|
bnez r0, 0f
|
|
move r0, sp
|
|
}
|
|
.endif
|
|
|
|
.ifc \c_routine, do_page_fault
|
|
/*
|
|
* The page_fault handler may be downcalled directly by the
|
|
* hypervisor even when Linux is running and has ICS set.
|
|
*
|
|
* In this case the contents of EX_CONTEXT_K_1 reflect the
|
|
* previous fault and can't be relied on to choose whether or
|
|
* not to reinitialize the stack pointer. So we add a test
|
|
* to see whether SYSTEM_SAVE_K_2 has the high bit set,
|
|
* and if so we don't reinitialize sp, since we must be coming
|
|
* from Linux. (In fact the precise case is !(val & ~1),
|
|
* but any Linux PC has to have the high bit set.)
|
|
*
|
|
* Note that the hypervisor *always* sets SYSTEM_SAVE_K_2 for
|
|
* any path that turns into a downcall to one of our TLB handlers.
|
|
*
|
|
* FIXME: if we end up never using this path, perhaps we should
|
|
* prevent the hypervisor from generating downcalls in this case.
|
|
* The advantage of getting a downcall is we can panic in Linux.
|
|
*/
|
|
mfspr r0, SPR_SYSTEM_SAVE_K_2
|
|
{
|
|
bltz r0, 0f /* high bit in S_S_1_2 is for a PC to use */
|
|
move r0, sp
|
|
}
|
|
.endif
|
|
|
|
2:
|
|
/*
|
|
* SYSTEM_SAVE_K_0 holds the cpu number in the high bits, and
|
|
* the current stack top in the lower bits. So we recover
|
|
* our starting stack value by sign-extending the low bits, then
|
|
* point sp at the top aligned address on the actual stack page.
|
|
*/
|
|
mfspr r0, SPR_SYSTEM_SAVE_K_0
|
|
bfexts r0, r0, 0, CPU_SHIFT-1
|
|
|
|
0:
|
|
/*
|
|
* Align the stack mod 64 so we can properly predict what
|
|
* cache lines we need to write-hint to reduce memory fetch
|
|
* latency as we enter the kernel. The layout of memory is
|
|
* as follows, with cache line 0 at the lowest VA, and cache
|
|
* line 8 just below the r0 value this "andi" computes.
|
|
* Note that we never write to cache line 8, and we skip
|
|
* cache lines 1-3 for syscalls.
|
|
*
|
|
* cache line 8: ptregs padding (two words)
|
|
* cache line 7: sp, lr, pc, ex1, faultnum, orig_r0, flags, cmpexch
|
|
* cache line 6: r46...r53 (tp)
|
|
* cache line 5: r38...r45
|
|
* cache line 4: r30...r37
|
|
* cache line 3: r22...r29
|
|
* cache line 2: r14...r21
|
|
* cache line 1: r6...r13
|
|
* cache line 0: 2 x frame, r0..r5
|
|
*/
|
|
#if STACK_TOP_DELTA != 64
|
|
#error STACK_TOP_DELTA must be 64 for assumptions here and in task_pt_regs()
|
|
#endif
|
|
andi r0, r0, -64
|
|
|
|
/*
|
|
* Push the first four registers on the stack, so that we can set
|
|
* them to vector-unique values before we jump to the common code.
|
|
*
|
|
* Registers are pushed on the stack as a struct pt_regs,
|
|
* with the sp initially just above the struct, and when we're
|
|
* done, sp points to the base of the struct, minus
|
|
* C_ABI_SAVE_AREA_SIZE, so we can directly jal to C code.
|
|
*
|
|
* This routine saves just the first four registers, plus the
|
|
* stack context so we can do proper backtracing right away,
|
|
* and defers to handle_interrupt to save the rest.
|
|
* The backtracer needs pc, ex1, lr, sp, r52, and faultnum,
|
|
* and needs sp set to its final location at the bottom of
|
|
* the stack frame.
|
|
*/
|
|
addli r0, r0, PTREGS_OFFSET_LR - (PTREGS_SIZE + KSTK_PTREGS_GAP)
|
|
wh64 r0 /* cache line 7 */
|
|
{
|
|
st r0, lr
|
|
addli r0, r0, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
|
|
}
|
|
{
|
|
st r0, sp
|
|
addli sp, r0, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_SP
|
|
}
|
|
wh64 sp /* cache line 6 */
|
|
{
|
|
st sp, r52
|
|
addli sp, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(52)
|
|
}
|
|
wh64 sp /* cache line 0 */
|
|
{
|
|
st sp, r1
|
|
addli sp, sp, PTREGS_OFFSET_REG(2) - PTREGS_OFFSET_REG(1)
|
|
}
|
|
{
|
|
st sp, r2
|
|
addli sp, sp, PTREGS_OFFSET_REG(3) - PTREGS_OFFSET_REG(2)
|
|
}
|
|
{
|
|
st sp, r3
|
|
addli sp, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(3)
|
|
}
|
|
mfspr r0, SPR_EX_CONTEXT_K_0
|
|
.ifc \processing,handle_syscall
|
|
/*
|
|
* Bump the saved PC by one bundle so that when we return, we won't
|
|
* execute the same swint instruction again. We need to do this while
|
|
* we're in the critical section.
|
|
*/
|
|
addi r0, r0, 8
|
|
.endif
|
|
{
|
|
st sp, r0
|
|
addli sp, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
|
|
}
|
|
mfspr r0, SPR_EX_CONTEXT_K_1
|
|
{
|
|
st sp, r0
|
|
addi sp, sp, PTREGS_OFFSET_FAULTNUM - PTREGS_OFFSET_EX1
|
|
/*
|
|
* Use r0 for syscalls so it's a temporary; use r1 for interrupts
|
|
* so that it gets passed through unchanged to the handler routine.
|
|
* Note that the .if conditional confusingly spans bundles.
|
|
*/
|
|
.ifc \processing,handle_syscall
|
|
movei r0, \vecnum
|
|
}
|
|
{
|
|
st sp, r0
|
|
.else
|
|
movei r1, \vecnum
|
|
}
|
|
{
|
|
st sp, r1
|
|
.endif
|
|
addli sp, sp, PTREGS_OFFSET_REG(0) - PTREGS_OFFSET_FAULTNUM
|
|
}
|
|
mfspr r0, SPR_SYSTEM_SAVE_K_1 /* Original r0 */
|
|
{
|
|
st sp, r0
|
|
addi sp, sp, -PTREGS_OFFSET_REG(0) - 8
|
|
}
|
|
{
|
|
st sp, zero /* write zero into "Next SP" frame pointer */
|
|
addi sp, sp, -8 /* leave SP pointing at bottom of frame */
|
|
}
|
|
.ifc \processing,handle_syscall
|
|
j handle_syscall
|
|
.else
|
|
/* Capture per-interrupt SPR context to registers. */
|
|
.ifc \c_routine, do_page_fault
|
|
mfspr r2, SPR_SYSTEM_SAVE_K_3 /* address of page fault */
|
|
mfspr r3, SPR_SYSTEM_SAVE_K_2 /* info about page fault */
|
|
.else
|
|
.ifc \vecnum, INT_ILL_TRANS
|
|
mfspr r2, ILL_VA_PC
|
|
.else
|
|
.ifc \vecnum, INT_DOUBLE_FAULT
|
|
mfspr r2, SPR_SYSTEM_SAVE_K_2 /* double fault info from HV */
|
|
.else
|
|
.ifc \c_routine, do_trap
|
|
mfspr r2, GPV_REASON
|
|
.else
|
|
.ifc \c_routine, handle_perf_interrupt
|
|
mfspr r2, PERF_COUNT_STS
|
|
.else
|
|
.ifc \c_routine, handle_perf_interrupt
|
|
mfspr r2, AUX_PERF_COUNT_STS
|
|
.endif
|
|
.endif
|
|
.endif
|
|
.endif
|
|
.endif
|
|
.endif
|
|
/* Put function pointer in r0 */
|
|
moveli r0, hw2_last(\c_routine)
|
|
shl16insli r0, r0, hw1(\c_routine)
|
|
{
|
|
shl16insli r0, r0, hw0(\c_routine)
|
|
j \processing
|
|
}
|
|
.endif
|
|
ENDPROC(intvec_\vecname)
|
|
|
|
#ifdef __COLLECT_LINKER_FEEDBACK__
|
|
.pushsection .text.intvec_feedback,"ax"
|
|
.org (\vecnum << 5)
|
|
FEEDBACK_ENTER_EXPLICIT(intvec_\vecname, .intrpt, 1 << 8)
|
|
jrp lr
|
|
.popsection
|
|
#endif
|
|
|
|
.endm
|
|
|
|
|
|
/*
|
|
* Save the rest of the registers that we didn't save in the actual
|
|
* vector itself. We can't use r0-r10 inclusive here.
|
|
*/
|
|
.macro finish_interrupt_save, function
|
|
|
|
/* If it's a syscall, save a proper orig_r0, otherwise just zero. */
|
|
PTREGS_PTR(r52, PTREGS_OFFSET_ORIG_R0)
|
|
{
|
|
.ifc \function,handle_syscall
|
|
st r52, r0
|
|
.else
|
|
st r52, zero
|
|
.endif
|
|
PTREGS_PTR(r52, PTREGS_OFFSET_TP)
|
|
}
|
|
st r52, tp
|
|
{
|
|
mfspr tp, CMPEXCH_VALUE
|
|
PTREGS_PTR(r52, PTREGS_OFFSET_CMPEXCH)
|
|
}
|
|
|
|
/*
|
|
* For ordinary syscalls, we save neither caller- nor callee-
|
|
* save registers, since the syscall invoker doesn't expect the
|
|
* caller-saves to be saved, and the called kernel functions will
|
|
* take care of saving the callee-saves for us.
|
|
*
|
|
* For interrupts we save just the caller-save registers. Saving
|
|
* them is required (since the "caller" can't save them). Again,
|
|
* the called kernel functions will restore the callee-save
|
|
* registers for us appropriately.
|
|
*
|
|
* On return, we normally restore nothing special for syscalls,
|
|
* and just the caller-save registers for interrupts.
|
|
*
|
|
* However, there are some important caveats to all this:
|
|
*
|
|
* - We always save a few callee-save registers to give us
|
|
* some scratchpad registers to carry across function calls.
|
|
*
|
|
* - fork/vfork/etc require us to save all the callee-save
|
|
* registers, which we do in PTREGS_SYSCALL_ALL_REGS, below.
|
|
*
|
|
* - We always save r0..r5 and r10 for syscalls, since we need
|
|
* to reload them a bit later for the actual kernel call, and
|
|
* since we might need them for -ERESTARTNOINTR, etc.
|
|
*
|
|
* - Before invoking a signal handler, we save the unsaved
|
|
* callee-save registers so they are visible to the
|
|
* signal handler or any ptracer.
|
|
*
|
|
* - If the unsaved callee-save registers are modified, we set
|
|
* a bit in pt_regs so we know to reload them from pt_regs
|
|
* and not just rely on the kernel function unwinding.
|
|
* (Done for ptrace register writes and SA_SIGINFO handler.)
|
|
*/
|
|
{
|
|
st r52, tp
|
|
PTREGS_PTR(r52, PTREGS_OFFSET_REG(33))
|
|
}
|
|
wh64 r52 /* cache line 4 */
|
|
push_reg r33, r52
|
|
push_reg r32, r52
|
|
push_reg r31, r52
|
|
.ifc \function,handle_syscall
|
|
push_reg r30, r52, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(30)
|
|
push_reg TREG_SYSCALL_NR_NAME, r52, \
|
|
PTREGS_OFFSET_REG(5) - PTREGS_OFFSET_SYSCALL
|
|
.else
|
|
|
|
push_reg r30, r52, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(30)
|
|
wh64 r52 /* cache line 3 */
|
|
push_reg r29, r52
|
|
push_reg r28, r52
|
|
push_reg r27, r52
|
|
push_reg r26, r52
|
|
push_reg r25, r52
|
|
push_reg r24, r52
|
|
push_reg r23, r52
|
|
push_reg r22, r52
|
|
wh64 r52 /* cache line 2 */
|
|
push_reg r21, r52
|
|
push_reg r20, r52
|
|
push_reg r19, r52
|
|
push_reg r18, r52
|
|
push_reg r17, r52
|
|
push_reg r16, r52
|
|
push_reg r15, r52
|
|
push_reg r14, r52
|
|
wh64 r52 /* cache line 1 */
|
|
push_reg r13, r52
|
|
push_reg r12, r52
|
|
push_reg r11, r52
|
|
push_reg r10, r52
|
|
push_reg r9, r52
|
|
push_reg r8, r52
|
|
push_reg r7, r52
|
|
push_reg r6, r52
|
|
|
|
.endif
|
|
|
|
push_reg r5, r52
|
|
st r52, r4
|
|
|
|
/*
|
|
* If we will be returning to the kernel, we will need to
|
|
* reset the interrupt masks to the state they had before.
|
|
* Set DISABLE_IRQ in flags iff we came from kernel pl with
|
|
* irqs disabled.
|
|
*/
|
|
mfspr r32, SPR_EX_CONTEXT_K_1
|
|
{
|
|
IS_KERNEL_EX1(r22, r22)
|
|
PTREGS_PTR(r21, PTREGS_OFFSET_FLAGS)
|
|
}
|
|
beqzt r32, 1f /* zero if from user space */
|
|
IRQS_DISABLED(r32) /* zero if irqs enabled */
|
|
#if PT_FLAGS_DISABLE_IRQ != 1
|
|
# error Value of IRQS_DISABLED used to set PT_FLAGS_DISABLE_IRQ; fix
|
|
#endif
|
|
1:
|
|
.ifnc \function,handle_syscall
|
|
/* Record the fact that we saved the caller-save registers above. */
|
|
ori r32, r32, PT_FLAGS_CALLER_SAVES
|
|
.endif
|
|
st r21, r32
|
|
|
|
/*
|
|
* we've captured enough state to the stack (including in
|
|
* particular our EX_CONTEXT state) that we can now release
|
|
* the interrupt critical section and replace it with our
|
|
* standard "interrupts disabled" mask value. This allows
|
|
* synchronous interrupts (and profile interrupts) to punch
|
|
* through from this point onwards.
|
|
*
|
|
* It's important that no code before this point touch memory
|
|
* other than our own stack (to keep the invariant that this
|
|
* is all that gets touched under ICS), and that no code after
|
|
* this point reference any interrupt-specific SPR, in particular
|
|
* the EX_CONTEXT_K_ values.
|
|
*/
|
|
.ifc \function,handle_nmi
|
|
IRQ_DISABLE_ALL(r20)
|
|
.else
|
|
IRQ_DISABLE(r20, r21)
|
|
.endif
|
|
mtspr INTERRUPT_CRITICAL_SECTION, zero
|
|
|
|
/* Load tp with our per-cpu offset. */
|
|
#ifdef CONFIG_SMP
|
|
{
|
|
mfspr r20, SPR_SYSTEM_SAVE_K_0
|
|
moveli r21, hw2_last(__per_cpu_offset)
|
|
}
|
|
{
|
|
shl16insli r21, r21, hw1(__per_cpu_offset)
|
|
bfextu r20, r20, CPU_SHIFT, 63
|
|
}
|
|
shl16insli r21, r21, hw0(__per_cpu_offset)
|
|
shl3add r20, r20, r21
|
|
ld tp, r20
|
|
#else
|
|
move tp, zero
|
|
#endif
|
|
|
|
#ifdef __COLLECT_LINKER_FEEDBACK__
|
|
/*
|
|
* Notify the feedback routines that we were in the
|
|
* appropriate fixed interrupt vector area. Note that we
|
|
* still have ICS set at this point, so we can't invoke any
|
|
* atomic operations or we will panic. The feedback
|
|
* routines internally preserve r0..r10 and r30 up.
|
|
*/
|
|
.ifnc \function,handle_syscall
|
|
shli r20, r1, 5
|
|
.else
|
|
moveli r20, INT_SWINT_1 << 5
|
|
.endif
|
|
moveli r21, hw2_last(intvec_feedback)
|
|
shl16insli r21, r21, hw1(intvec_feedback)
|
|
shl16insli r21, r21, hw0(intvec_feedback)
|
|
add r20, r20, r21
|
|
jalr r20
|
|
|
|
/* And now notify the feedback routines that we are here. */
|
|
FEEDBACK_ENTER(\function)
|
|
#endif
|
|
|
|
/*
|
|
* Prepare the first 256 stack bytes to be rapidly accessible
|
|
* without having to fetch the background data.
|
|
*/
|
|
addi r52, sp, -64
|
|
{
|
|
wh64 r52
|
|
addi r52, r52, -64
|
|
}
|
|
{
|
|
wh64 r52
|
|
addi r52, r52, -64
|
|
}
|
|
{
|
|
wh64 r52
|
|
addi r52, r52, -64
|
|
}
|
|
wh64 r52
|
|
|
|
#ifdef CONFIG_TRACE_IRQFLAGS
|
|
.ifnc \function,handle_nmi
|
|
/*
|
|
* We finally have enough state set up to notify the irq
|
|
* tracing code that irqs were disabled on entry to the handler.
|
|
* The TRACE_IRQS_OFF call clobbers registers r0-r29.
|
|
* For syscalls, we already have the register state saved away
|
|
* on the stack, so we don't bother to do any register saves here,
|
|
* and later we pop the registers back off the kernel stack.
|
|
* For interrupt handlers, save r0-r3 in callee-saved registers.
|
|
*/
|
|
.ifnc \function,handle_syscall
|
|
{ move r30, r0; move r31, r1 }
|
|
{ move r32, r2; move r33, r3 }
|
|
.endif
|
|
TRACE_IRQS_OFF
|
|
.ifnc \function,handle_syscall
|
|
{ move r0, r30; move r1, r31 }
|
|
{ move r2, r32; move r3, r33 }
|
|
.endif
|
|
.endif
|
|
#endif
|
|
|
|
.endm
|
|
|
|
/*
|
|
* Redispatch a downcall.
|
|
*/
|
|
.macro dc_dispatch vecnum, vecname
|
|
.org (\vecnum << 8)
|
|
intvec_\vecname:
|
|
j _hv_downcall_dispatch
|
|
ENDPROC(intvec_\vecname)
|
|
.endm
|
|
|
|
/*
|
|
* Common code for most interrupts. The C function we're eventually
|
|
* going to is in r0, and the faultnum is in r1; the original
|
|
* values for those registers are on the stack.
|
|
*/
|
|
.pushsection .text.handle_interrupt,"ax"
|
|
handle_interrupt:
|
|
finish_interrupt_save handle_interrupt
|
|
|
|
/* Jump to the C routine; it should enable irqs as soon as possible. */
|
|
{
|
|
jalr r0
|
|
PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
|
|
}
|
|
FEEDBACK_REENTER(handle_interrupt)
|
|
{
|
|
movei r30, 0 /* not an NMI */
|
|
j interrupt_return
|
|
}
|
|
STD_ENDPROC(handle_interrupt)
|
|
|
|
/*
|
|
* This routine takes a boolean in r30 indicating if this is an NMI.
|
|
* If so, we also expect a boolean in r31 indicating whether to
|
|
* re-enable the oprofile interrupts.
|
|
*
|
|
* Note that .Lresume_userspace is jumped to directly in several
|
|
* places, and we need to make sure r30 is set correctly in those
|
|
* callers as well.
|
|
*/
|
|
STD_ENTRY(interrupt_return)
|
|
/* If we're resuming to kernel space, don't check thread flags. */
|
|
{
|
|
bnez r30, .Lrestore_all /* NMIs don't special-case user-space */
|
|
PTREGS_PTR(r29, PTREGS_OFFSET_EX1)
|
|
}
|
|
ld r29, r29
|
|
IS_KERNEL_EX1(r29, r29)
|
|
{
|
|
beqzt r29, .Lresume_userspace
|
|
move r29, sp
|
|
}
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
/* Returning to kernel space. Check if we need preemption. */
|
|
EXTRACT_THREAD_INFO(r29)
|
|
addli r28, r29, THREAD_INFO_FLAGS_OFFSET
|
|
{
|
|
ld r28, r28
|
|
addli r29, r29, THREAD_INFO_PREEMPT_COUNT_OFFSET
|
|
}
|
|
{
|
|
andi r28, r28, _TIF_NEED_RESCHED
|
|
ld4s r29, r29
|
|
}
|
|
beqzt r28, 1f
|
|
bnez r29, 1f
|
|
/* Disable interrupts explicitly for preemption. */
|
|
IRQ_DISABLE(r20,r21)
|
|
TRACE_IRQS_OFF
|
|
jal preempt_schedule_irq
|
|
FEEDBACK_REENTER(interrupt_return)
|
|
1:
|
|
#endif
|
|
|
|
/* If we're resuming to _cpu_idle_nap, bump PC forward by 8. */
|
|
{
|
|
moveli r27, hw2_last(_cpu_idle_nap)
|
|
PTREGS_PTR(r29, PTREGS_OFFSET_PC)
|
|
}
|
|
{
|
|
ld r28, r29
|
|
shl16insli r27, r27, hw1(_cpu_idle_nap)
|
|
}
|
|
{
|
|
shl16insli r27, r27, hw0(_cpu_idle_nap)
|
|
}
|
|
{
|
|
cmpeq r27, r27, r28
|
|
}
|
|
{
|
|
blbc r27, .Lrestore_all
|
|
addi r28, r28, 8
|
|
}
|
|
st r29, r28
|
|
j .Lrestore_all
|
|
|
|
.Lresume_userspace:
|
|
FEEDBACK_REENTER(interrupt_return)
|
|
|
|
/*
|
|
* Use r33 to hold whether we have already loaded the callee-saves
|
|
* into ptregs. We don't want to do it twice in this loop, since
|
|
* then we'd clobber whatever changes are made by ptrace, etc.
|
|
*/
|
|
{
|
|
movei r33, 0
|
|
move r32, sp
|
|
}
|
|
|
|
/* Get base of stack in r32. */
|
|
EXTRACT_THREAD_INFO(r32)
|
|
|
|
.Lretry_work_pending:
|
|
/*
|
|
* Disable interrupts so as to make sure we don't
|
|
* miss an interrupt that sets any of the thread flags (like
|
|
* need_resched or sigpending) between sampling and the iret.
|
|
* Routines like schedule() or do_signal() may re-enable
|
|
* interrupts before returning.
|
|
*/
|
|
IRQ_DISABLE(r20, r21)
|
|
TRACE_IRQS_OFF /* Note: clobbers registers r0-r29 */
|
|
|
|
|
|
/* Check to see if there is any work to do before returning to user. */
|
|
{
|
|
addi r29, r32, THREAD_INFO_FLAGS_OFFSET
|
|
moveli r1, hw1_last(_TIF_ALLWORK_MASK)
|
|
}
|
|
{
|
|
ld r29, r29
|
|
shl16insli r1, r1, hw0(_TIF_ALLWORK_MASK)
|
|
}
|
|
and r1, r29, r1
|
|
beqzt r1, .Lrestore_all
|
|
|
|
/*
|
|
* Make sure we have all the registers saved for signal
|
|
* handling or notify-resume. Call out to C code to figure out
|
|
* exactly what we need to do for each flag bit, then if
|
|
* necessary, reload the flags and recheck.
|
|
*/
|
|
{
|
|
PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
|
|
bnez r33, 1f
|
|
}
|
|
push_extra_callee_saves r0
|
|
movei r33, 1
|
|
1: jal do_work_pending
|
|
bnez r0, .Lretry_work_pending
|
|
|
|
/*
|
|
* In the NMI case we
|
|
* omit the call to single_process_check_nohz, which normally checks
|
|
* to see if we should start or stop the scheduler tick, because
|
|
* we can't call arbitrary Linux code from an NMI context.
|
|
* We always call the homecache TLB deferral code to re-trigger
|
|
* the deferral mechanism.
|
|
*
|
|
* The other chunk of responsibility this code has is to reset the
|
|
* interrupt masks appropriately to reset irqs and NMIs. We have
|
|
* to call TRACE_IRQS_OFF and TRACE_IRQS_ON to support all the
|
|
* lockdep-type stuff, but we can't set ICS until afterwards, since
|
|
* ICS can only be used in very tight chunks of code to avoid
|
|
* tripping over various assertions that it is off.
|
|
*/
|
|
.Lrestore_all:
|
|
PTREGS_PTR(r0, PTREGS_OFFSET_EX1)
|
|
{
|
|
ld r0, r0
|
|
PTREGS_PTR(r32, PTREGS_OFFSET_FLAGS)
|
|
}
|
|
{
|
|
IS_KERNEL_EX1(r0, r0)
|
|
ld r32, r32
|
|
}
|
|
bnez r0, 1f
|
|
j 2f
|
|
#if PT_FLAGS_DISABLE_IRQ != 1
|
|
# error Assuming PT_FLAGS_DISABLE_IRQ == 1 so we can use blbct below
|
|
#endif
|
|
1: blbct r32, 2f
|
|
IRQ_DISABLE(r20,r21)
|
|
TRACE_IRQS_OFF
|
|
movei r0, 1
|
|
mtspr INTERRUPT_CRITICAL_SECTION, r0
|
|
beqzt r30, .Lrestore_regs
|
|
j 3f
|
|
2: TRACE_IRQS_ON
|
|
IRQ_ENABLE_LOAD(r20, r21)
|
|
movei r0, 1
|
|
mtspr INTERRUPT_CRITICAL_SECTION, r0
|
|
IRQ_ENABLE_APPLY(r20, r21)
|
|
beqzt r30, .Lrestore_regs
|
|
3:
|
|
|
|
#if INT_PERF_COUNT + 1 != INT_AUX_PERF_COUNT
|
|
# error Bad interrupt assumption
|
|
#endif
|
|
{
|
|
movei r0, 3 /* two adjacent bits for the PERF_COUNT mask */
|
|
beqz r31, .Lrestore_regs
|
|
}
|
|
shli r0, r0, INT_PERF_COUNT
|
|
mtspr SPR_INTERRUPT_MASK_RESET_K, r0
|
|
|
|
/*
|
|
* We now commit to returning from this interrupt, since we will be
|
|
* doing things like setting EX_CONTEXT SPRs and unwinding the stack
|
|
* frame. No calls should be made to any other code after this point.
|
|
* This code should only be entered with ICS set.
|
|
* r32 must still be set to ptregs.flags.
|
|
* We launch loads to each cache line separately first, so we can
|
|
* get some parallelism out of the memory subsystem.
|
|
* We start zeroing caller-saved registers throughout, since
|
|
* that will save some cycles if this turns out to be a syscall.
|
|
*/
|
|
.Lrestore_regs:
|
|
|
|
/*
|
|
* Rotate so we have one high bit and one low bit to test.
|
|
* - low bit says whether to restore all the callee-saved registers,
|
|
* or just r30-r33, and r52 up.
|
|
* - high bit (i.e. sign bit) says whether to restore all the
|
|
* caller-saved registers, or just r0.
|
|
*/
|
|
#if PT_FLAGS_CALLER_SAVES != 2 || PT_FLAGS_RESTORE_REGS != 4
|
|
# error Rotate trick does not work :-)
|
|
#endif
|
|
{
|
|
rotli r20, r32, 62
|
|
PTREGS_PTR(sp, PTREGS_OFFSET_REG(0))
|
|
}
|
|
|
|
/*
|
|
* Load cache lines 0, 4, 6 and 7, in that order, then use
|
|
* the last loaded value, which makes it likely that the other
|
|
* cache lines have also loaded, at which point we should be
|
|
* able to safely read all the remaining words on those cache
|
|
* lines without waiting for the memory subsystem.
|
|
*/
|
|
pop_reg r0, sp, PTREGS_OFFSET_REG(30) - PTREGS_OFFSET_REG(0)
|
|
pop_reg r30, sp, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_REG(30)
|
|
pop_reg_zero r52, r3, sp, PTREGS_OFFSET_CMPEXCH - PTREGS_OFFSET_REG(52)
|
|
pop_reg_zero r21, r27, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_CMPEXCH
|
|
pop_reg_zero lr, r2, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_EX1
|
|
{
|
|
mtspr CMPEXCH_VALUE, r21
|
|
move r4, zero
|
|
}
|
|
pop_reg r21, sp, PTREGS_OFFSET_REG(31) - PTREGS_OFFSET_PC
|
|
{
|
|
mtspr SPR_EX_CONTEXT_K_1, lr
|
|
IS_KERNEL_EX1(lr, lr)
|
|
}
|
|
{
|
|
mtspr SPR_EX_CONTEXT_K_0, r21
|
|
move r5, zero
|
|
}
|
|
|
|
/* Restore callee-saveds that we actually use. */
|
|
pop_reg_zero r31, r6
|
|
pop_reg_zero r32, r7
|
|
pop_reg_zero r33, r8, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(33)
|
|
|
|
/*
|
|
* If we modified other callee-saveds, restore them now.
|
|
* This is rare, but could be via ptrace or signal handler.
|
|
*/
|
|
{
|
|
move r9, zero
|
|
blbs r20, .Lrestore_callees
|
|
}
|
|
.Lcontinue_restore_regs:
|
|
|
|
/* Check if we're returning from a syscall. */
|
|
{
|
|
move r10, zero
|
|
bltzt r20, 1f /* no, so go restore callee-save registers */
|
|
}
|
|
|
|
/*
|
|
* Check if we're returning to userspace.
|
|
* Note that if we're not, we don't worry about zeroing everything.
|
|
*/
|
|
{
|
|
addli sp, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(29)
|
|
bnez lr, .Lkernel_return
|
|
}
|
|
|
|
/*
|
|
* On return from syscall, we've restored r0 from pt_regs, but we
|
|
* clear the remainder of the caller-saved registers. We could
|
|
* restore the syscall arguments, but there's not much point,
|
|
* and it ensures user programs aren't trying to use the
|
|
* caller-saves if we clear them, as well as avoiding leaking
|
|
* kernel pointers into userspace.
|
|
*/
|
|
pop_reg_zero lr, r11, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
|
|
pop_reg_zero tp, r12, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
|
|
{
|
|
ld sp, sp
|
|
move r13, zero
|
|
move r14, zero
|
|
}
|
|
{ move r15, zero; move r16, zero }
|
|
{ move r17, zero; move r18, zero }
|
|
{ move r19, zero; move r20, zero }
|
|
{ move r21, zero; move r22, zero }
|
|
{ move r23, zero; move r24, zero }
|
|
{ move r25, zero; move r26, zero }
|
|
|
|
/* Set r1 to errno if we are returning an error, otherwise zero. */
|
|
{
|
|
moveli r29, 4096
|
|
sub r1, zero, r0
|
|
}
|
|
{
|
|
move r28, zero
|
|
cmpltu r29, r1, r29
|
|
}
|
|
{
|
|
mnz r1, r29, r1
|
|
move r29, zero
|
|
}
|
|
iret
|
|
|
|
/*
|
|
* Not a syscall, so restore caller-saved registers.
|
|
* First kick off loads for cache lines 1-3, which we're touching
|
|
* for the first time here.
|
|
*/
|
|
.align 64
|
|
1: pop_reg r29, sp, PTREGS_OFFSET_REG(21) - PTREGS_OFFSET_REG(29)
|
|
pop_reg r21, sp, PTREGS_OFFSET_REG(13) - PTREGS_OFFSET_REG(21)
|
|
pop_reg r13, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(13)
|
|
pop_reg r1
|
|
pop_reg r2
|
|
pop_reg r3
|
|
pop_reg r4
|
|
pop_reg r5
|
|
pop_reg r6
|
|
pop_reg r7
|
|
pop_reg r8
|
|
pop_reg r9
|
|
pop_reg r10
|
|
pop_reg r11
|
|
pop_reg r12, sp, 16
|
|
/* r13 already restored above */
|
|
pop_reg r14
|
|
pop_reg r15
|
|
pop_reg r16
|
|
pop_reg r17
|
|
pop_reg r18
|
|
pop_reg r19
|
|
pop_reg r20, sp, 16
|
|
/* r21 already restored above */
|
|
pop_reg r22
|
|
pop_reg r23
|
|
pop_reg r24
|
|
pop_reg r25
|
|
pop_reg r26
|
|
pop_reg r27
|
|
pop_reg r28, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(28)
|
|
/* r29 already restored above */
|
|
bnez lr, .Lkernel_return
|
|
pop_reg lr, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
|
|
pop_reg tp, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
|
|
ld sp, sp
|
|
iret
|
|
|
|
/*
|
|
* We can't restore tp when in kernel mode, since a thread might
|
|
* have migrated from another cpu and brought a stale tp value.
|
|
*/
|
|
.Lkernel_return:
|
|
pop_reg lr, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
|
|
ld sp, sp
|
|
iret
|
|
|
|
/* Restore callee-saved registers from r34 to r51. */
|
|
.Lrestore_callees:
|
|
addli sp, sp, PTREGS_OFFSET_REG(34) - PTREGS_OFFSET_REG(29)
|
|
pop_reg r34
|
|
pop_reg r35
|
|
pop_reg r36
|
|
pop_reg r37
|
|
pop_reg r38
|
|
pop_reg r39
|
|
pop_reg r40
|
|
pop_reg r41
|
|
pop_reg r42
|
|
pop_reg r43
|
|
pop_reg r44
|
|
pop_reg r45
|
|
pop_reg r46
|
|
pop_reg r47
|
|
pop_reg r48
|
|
pop_reg r49
|
|
pop_reg r50
|
|
pop_reg r51, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(51)
|
|
j .Lcontinue_restore_regs
|
|
STD_ENDPROC(interrupt_return)
|
|
|
|
/*
|
|
* "NMI" interrupts mask ALL interrupts before calling the
|
|
* handler, and don't check thread flags, etc., on the way
|
|
* back out. In general, the only things we do here for NMIs
|
|
* are register save/restore and dataplane kernel-TLB management.
|
|
* We don't (for example) deal with start/stop of the sched tick.
|
|
*/
|
|
.pushsection .text.handle_nmi,"ax"
|
|
handle_nmi:
|
|
finish_interrupt_save handle_nmi
|
|
{
|
|
jalr r0
|
|
PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
|
|
}
|
|
FEEDBACK_REENTER(handle_nmi)
|
|
{
|
|
movei r30, 1
|
|
cmpeq r31, r0, zero
|
|
}
|
|
j interrupt_return
|
|
STD_ENDPROC(handle_nmi)
|
|
|
|
/*
|
|
* Parallel code for syscalls to handle_interrupt.
|
|
*/
|
|
.pushsection .text.handle_syscall,"ax"
|
|
handle_syscall:
|
|
finish_interrupt_save handle_syscall
|
|
|
|
/* Enable irqs. */
|
|
TRACE_IRQS_ON
|
|
IRQ_ENABLE(r20, r21)
|
|
|
|
/* Bump the counter for syscalls made on this tile. */
|
|
moveli r20, hw2_last(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
|
|
shl16insli r20, r20, hw1(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
|
|
shl16insli r20, r20, hw0(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
|
|
add r20, r20, tp
|
|
ld4s r21, r20
|
|
{
|
|
addi r21, r21, 1
|
|
move r31, sp
|
|
}
|
|
{
|
|
st4 r20, r21
|
|
EXTRACT_THREAD_INFO(r31)
|
|
}
|
|
|
|
/* Trace syscalls, if requested. */
|
|
addi r31, r31, THREAD_INFO_FLAGS_OFFSET
|
|
{
|
|
ld r30, r31
|
|
moveli r32, _TIF_SYSCALL_ENTRY_WORK
|
|
}
|
|
and r30, r30, r32
|
|
{
|
|
addi r30, r31, THREAD_INFO_STATUS_OFFSET - THREAD_INFO_FLAGS_OFFSET
|
|
beqzt r30, .Lrestore_syscall_regs
|
|
}
|
|
{
|
|
PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
|
|
jal do_syscall_trace_enter
|
|
}
|
|
FEEDBACK_REENTER(handle_syscall)
|
|
|
|
/*
|
|
* We always reload our registers from the stack at this
|
|
* point. They might be valid, if we didn't build with
|
|
* TRACE_IRQFLAGS, and this isn't a dataplane tile, and we're not
|
|
* doing syscall tracing, but there are enough cases now that it
|
|
* seems simplest just to do the reload unconditionally.
|
|
*/
|
|
.Lrestore_syscall_regs:
|
|
{
|
|
ld r30, r30
|
|
PTREGS_PTR(r11, PTREGS_OFFSET_REG(0))
|
|
}
|
|
pop_reg r0, r11
|
|
pop_reg r1, r11
|
|
pop_reg r2, r11
|
|
pop_reg r3, r11
|
|
pop_reg r4, r11
|
|
pop_reg r5, r11, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(5)
|
|
{
|
|
ld TREG_SYSCALL_NR_NAME, r11
|
|
moveli r21, __NR_syscalls
|
|
}
|
|
|
|
/* Ensure that the syscall number is within the legal range. */
|
|
{
|
|
moveli r20, hw2(sys_call_table)
|
|
#ifdef CONFIG_COMPAT
|
|
blbs r30, .Lcompat_syscall
|
|
#endif
|
|
}
|
|
{
|
|
cmpltu r21, TREG_SYSCALL_NR_NAME, r21
|
|
shl16insli r20, r20, hw1(sys_call_table)
|
|
}
|
|
{
|
|
blbc r21, .Linvalid_syscall
|
|
shl16insli r20, r20, hw0(sys_call_table)
|
|
}
|
|
.Lload_syscall_pointer:
|
|
shl3add r20, TREG_SYSCALL_NR_NAME, r20
|
|
ld r20, r20
|
|
|
|
/* Jump to syscall handler. */
|
|
jalr r20
|
|
.Lhandle_syscall_link: /* value of "lr" after "jalr r20" above */
|
|
|
|
/*
|
|
* Write our r0 onto the stack so it gets restored instead
|
|
* of whatever the user had there before.
|
|
* In compat mode, sign-extend r0 before storing it.
|
|
*/
|
|
{
|
|
PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
|
|
blbct r30, 1f
|
|
}
|
|
addxi r0, r0, 0
|
|
1: st r29, r0
|
|
|
|
.Lsyscall_sigreturn_skip:
|
|
FEEDBACK_REENTER(handle_syscall)
|
|
|
|
/* Do syscall trace again, if requested. */
|
|
{
|
|
ld r30, r31
|
|
moveli r32, _TIF_SYSCALL_EXIT_WORK
|
|
}
|
|
and r0, r30, r32
|
|
{
|
|
andi r0, r30, _TIF_SINGLESTEP
|
|
beqzt r0, 1f
|
|
}
|
|
{
|
|
PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
|
|
jal do_syscall_trace_exit
|
|
}
|
|
FEEDBACK_REENTER(handle_syscall)
|
|
andi r0, r30, _TIF_SINGLESTEP
|
|
|
|
1: beqzt r0, 2f
|
|
|
|
/* Single stepping -- notify ptrace. */
|
|
{
|
|
movei r0, SIGTRAP
|
|
jal ptrace_notify
|
|
}
|
|
FEEDBACK_REENTER(handle_syscall)
|
|
|
|
2: {
|
|
movei r30, 0 /* not an NMI */
|
|
j .Lresume_userspace /* jump into middle of interrupt_return */
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
.Lcompat_syscall:
|
|
/*
|
|
* Load the base of the compat syscall table in r20, and
|
|
* range-check the syscall number (duplicated from 64-bit path).
|
|
* Sign-extend all the user's passed arguments to make them consistent.
|
|
* Also save the original "r(n)" values away in "r(11+n)" in
|
|
* case the syscall table entry wants to validate them.
|
|
*/
|
|
moveli r20, hw2(compat_sys_call_table)
|
|
{
|
|
cmpltu r21, TREG_SYSCALL_NR_NAME, r21
|
|
shl16insli r20, r20, hw1(compat_sys_call_table)
|
|
}
|
|
{
|
|
blbc r21, .Linvalid_syscall
|
|
shl16insli r20, r20, hw0(compat_sys_call_table)
|
|
}
|
|
{ move r11, r0; addxi r0, r0, 0 }
|
|
{ move r12, r1; addxi r1, r1, 0 }
|
|
{ move r13, r2; addxi r2, r2, 0 }
|
|
{ move r14, r3; addxi r3, r3, 0 }
|
|
{ move r15, r4; addxi r4, r4, 0 }
|
|
{ move r16, r5; addxi r5, r5, 0 }
|
|
j .Lload_syscall_pointer
|
|
#endif
|
|
|
|
.Linvalid_syscall:
|
|
/* Report an invalid syscall back to the user program */
|
|
{
|
|
PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
|
|
movei r28, -ENOSYS
|
|
}
|
|
st r29, r28
|
|
{
|
|
movei r30, 0 /* not an NMI */
|
|
j .Lresume_userspace /* jump into middle of interrupt_return */
|
|
}
|
|
STD_ENDPROC(handle_syscall)
|
|
|
|
/* Return the address for oprofile to suppress in backtraces. */
|
|
STD_ENTRY_SECTION(handle_syscall_link_address, .text.handle_syscall)
|
|
lnk r0
|
|
{
|
|
addli r0, r0, .Lhandle_syscall_link - .
|
|
jrp lr
|
|
}
|
|
STD_ENDPROC(handle_syscall_link_address)
|
|
|
|
STD_ENTRY(ret_from_fork)
|
|
jal sim_notify_fork
|
|
jal schedule_tail
|
|
FEEDBACK_REENTER(ret_from_fork)
|
|
{
|
|
movei r30, 0 /* not an NMI */
|
|
j .Lresume_userspace /* jump into middle of interrupt_return */
|
|
}
|
|
STD_ENDPROC(ret_from_fork)
|
|
|
|
STD_ENTRY(ret_from_kernel_thread)
|
|
jal sim_notify_fork
|
|
jal schedule_tail
|
|
FEEDBACK_REENTER(ret_from_fork)
|
|
{
|
|
move r0, r31
|
|
jalr r30
|
|
}
|
|
FEEDBACK_REENTER(ret_from_kernel_thread)
|
|
{
|
|
movei r30, 0 /* not an NMI */
|
|
j .Lresume_userspace /* jump into middle of interrupt_return */
|
|
}
|
|
STD_ENDPROC(ret_from_kernel_thread)
|
|
|
|
/* Various stub interrupt handlers and syscall handlers */
|
|
|
|
STD_ENTRY_LOCAL(_kernel_double_fault)
|
|
mfspr r1, SPR_EX_CONTEXT_K_0
|
|
move r2, lr
|
|
move r3, sp
|
|
move r4, r52
|
|
addi sp, sp, -C_ABI_SAVE_AREA_SIZE
|
|
j kernel_double_fault
|
|
STD_ENDPROC(_kernel_double_fault)
|
|
|
|
STD_ENTRY_LOCAL(bad_intr)
|
|
mfspr r2, SPR_EX_CONTEXT_K_0
|
|
panic "Unhandled interrupt %#x: PC %#lx"
|
|
STD_ENDPROC(bad_intr)
|
|
|
|
/*
|
|
* Special-case sigreturn to not write r0 to the stack on return.
|
|
* This is technically more efficient, but it also avoids difficulties
|
|
* in the 64-bit OS when handling 32-bit compat code, since we must not
|
|
* sign-extend r0 for the sigreturn return-value case.
|
|
*/
|
|
#define PTREGS_SYSCALL_SIGRETURN(x, reg) \
|
|
STD_ENTRY(_##x); \
|
|
addli lr, lr, .Lsyscall_sigreturn_skip - .Lhandle_syscall_link; \
|
|
{ \
|
|
PTREGS_PTR(reg, PTREGS_OFFSET_BASE); \
|
|
j x \
|
|
}; \
|
|
STD_ENDPROC(_##x)
|
|
|
|
PTREGS_SYSCALL_SIGRETURN(sys_rt_sigreturn, r0)
|
|
#ifdef CONFIG_COMPAT
|
|
PTREGS_SYSCALL_SIGRETURN(compat_sys_rt_sigreturn, r0)
|
|
#endif
|
|
|
|
/* Save additional callee-saves to pt_regs and jump to standard function. */
|
|
STD_ENTRY(_sys_clone)
|
|
push_extra_callee_saves r4
|
|
j sys_clone
|
|
STD_ENDPROC(_sys_clone)
|
|
|
|
/*
|
|
* Recover r3, r2, r1 and r0 here saved by unalign fast vector.
|
|
* The vector area limit is 32 bundles, so we handle the reload here.
|
|
* r0, r1, r2 are in thread_info from low to high memory in order.
|
|
* r3 points to location the original r3 was saved.
|
|
* We put this code in the __HEAD section so it can be reached
|
|
* via a conditional branch from the fast path.
|
|
*/
|
|
__HEAD
|
|
hand_unalign_slow:
|
|
andi sp, sp, ~1
|
|
hand_unalign_slow_badsp:
|
|
addi r3, r3, -(3 * 8)
|
|
ld_add r0, r3, 8
|
|
ld_add r1, r3, 8
|
|
ld r2, r3
|
|
hand_unalign_slow_nonuser:
|
|
mfspr r3, SPR_SYSTEM_SAVE_K_1
|
|
__int_hand INT_UNALIGN_DATA, UNALIGN_DATA_SLOW, int_unalign
|
|
|
|
/* The unaligned data support needs to read all the registers. */
|
|
int_unalign:
|
|
push_extra_callee_saves r0
|
|
j do_unaligned
|
|
ENDPROC(hand_unalign_slow)
|
|
|
|
/* Fill the return address stack with nonzero entries. */
|
|
STD_ENTRY(fill_ra_stack)
|
|
{
|
|
move r0, lr
|
|
jal 1f
|
|
}
|
|
1: jal 2f
|
|
2: jal 3f
|
|
3: jal 4f
|
|
4: jrp r0
|
|
STD_ENDPROC(fill_ra_stack)
|
|
|
|
.macro int_hand vecnum, vecname, c_routine, processing=handle_interrupt
|
|
.org (\vecnum << 8)
|
|
__int_hand \vecnum, \vecname, \c_routine, \processing
|
|
.endm
|
|
|
|
/* Include .intrpt array of interrupt vectors */
|
|
.section ".intrpt", "ax"
|
|
.global intrpt_start
|
|
intrpt_start:
|
|
|
|
#ifndef CONFIG_USE_PMC
|
|
#define handle_perf_interrupt bad_intr
|
|
#endif
|
|
|
|
#ifndef CONFIG_HARDWALL
|
|
#define do_hardwall_trap bad_intr
|
|
#endif
|
|
|
|
int_hand INT_MEM_ERROR, MEM_ERROR, do_trap
|
|
int_hand INT_SINGLE_STEP_3, SINGLE_STEP_3, bad_intr
|
|
#if CONFIG_KERNEL_PL == 2
|
|
int_hand INT_SINGLE_STEP_2, SINGLE_STEP_2, gx_singlestep_handle
|
|
int_hand INT_SINGLE_STEP_1, SINGLE_STEP_1, bad_intr
|
|
#else
|
|
int_hand INT_SINGLE_STEP_2, SINGLE_STEP_2, bad_intr
|
|
int_hand INT_SINGLE_STEP_1, SINGLE_STEP_1, gx_singlestep_handle
|
|
#endif
|
|
int_hand INT_SINGLE_STEP_0, SINGLE_STEP_0, bad_intr
|
|
int_hand INT_IDN_COMPLETE, IDN_COMPLETE, bad_intr
|
|
int_hand INT_UDN_COMPLETE, UDN_COMPLETE, bad_intr
|
|
int_hand INT_ITLB_MISS, ITLB_MISS, do_page_fault
|
|
int_hand INT_ILL, ILL, do_trap
|
|
int_hand INT_GPV, GPV, do_trap
|
|
int_hand INT_IDN_ACCESS, IDN_ACCESS, do_trap
|
|
int_hand INT_UDN_ACCESS, UDN_ACCESS, do_trap
|
|
int_hand INT_SWINT_3, SWINT_3, do_trap
|
|
int_hand INT_SWINT_2, SWINT_2, do_trap
|
|
int_hand INT_SWINT_1, SWINT_1, SYSCALL, handle_syscall
|
|
int_hand INT_SWINT_0, SWINT_0, do_trap
|
|
int_hand INT_ILL_TRANS, ILL_TRANS, do_trap
|
|
int_hand_unalign_fast INT_UNALIGN_DATA, UNALIGN_DATA
|
|
int_hand INT_DTLB_MISS, DTLB_MISS, do_page_fault
|
|
int_hand INT_DTLB_ACCESS, DTLB_ACCESS, do_page_fault
|
|
int_hand INT_IDN_FIREWALL, IDN_FIREWALL, do_hardwall_trap
|
|
int_hand INT_UDN_FIREWALL, UDN_FIREWALL, do_hardwall_trap
|
|
int_hand INT_TILE_TIMER, TILE_TIMER, do_timer_interrupt
|
|
int_hand INT_IDN_TIMER, IDN_TIMER, bad_intr
|
|
int_hand INT_UDN_TIMER, UDN_TIMER, bad_intr
|
|
int_hand INT_IDN_AVAIL, IDN_AVAIL, bad_intr
|
|
int_hand INT_UDN_AVAIL, UDN_AVAIL, bad_intr
|
|
int_hand INT_IPI_3, IPI_3, bad_intr
|
|
#if CONFIG_KERNEL_PL == 2
|
|
int_hand INT_IPI_2, IPI_2, tile_dev_intr
|
|
int_hand INT_IPI_1, IPI_1, bad_intr
|
|
#else
|
|
int_hand INT_IPI_2, IPI_2, bad_intr
|
|
int_hand INT_IPI_1, IPI_1, tile_dev_intr
|
|
#endif
|
|
int_hand INT_IPI_0, IPI_0, bad_intr
|
|
int_hand INT_PERF_COUNT, PERF_COUNT, \
|
|
handle_perf_interrupt, handle_nmi
|
|
int_hand INT_AUX_PERF_COUNT, AUX_PERF_COUNT, \
|
|
handle_perf_interrupt, handle_nmi
|
|
int_hand INT_INTCTRL_3, INTCTRL_3, bad_intr
|
|
#if CONFIG_KERNEL_PL == 2
|
|
dc_dispatch INT_INTCTRL_2, INTCTRL_2
|
|
int_hand INT_INTCTRL_1, INTCTRL_1, bad_intr
|
|
#else
|
|
int_hand INT_INTCTRL_2, INTCTRL_2, bad_intr
|
|
dc_dispatch INT_INTCTRL_1, INTCTRL_1
|
|
#endif
|
|
int_hand INT_INTCTRL_0, INTCTRL_0, bad_intr
|
|
int_hand INT_MESSAGE_RCV_DWNCL, MESSAGE_RCV_DWNCL, \
|
|
hv_message_intr
|
|
int_hand INT_DEV_INTR_DWNCL, DEV_INTR_DWNCL, bad_intr
|
|
int_hand INT_I_ASID, I_ASID, bad_intr
|
|
int_hand INT_D_ASID, D_ASID, bad_intr
|
|
int_hand INT_DOUBLE_FAULT, DOUBLE_FAULT, do_trap
|
|
|
|
/* Synthetic interrupt delivered only by the simulator */
|
|
int_hand INT_BREAKPOINT, BREAKPOINT, do_breakpoint
|