2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-23 04:54:01 +08:00
linux-next/arch/x86/include/asm/cmpxchg_32.h
Arjan van de Ven 79e1dd05d1 x86: Provide an alternative() based cmpxchg64()
cmpxchg64() today generates, to quote Linus, "barf bag" code.

cmpxchg64() is about to get used in the scheduler to fix a bug there,
but it's a prerequisite that cmpxchg64() first be made non-sucking.

This patch turns cmpxchg64() into an efficient implementation that
uses the alternative() mechanism to just use the raw instruction on
all modern systems.

Note: the fallback is NOT smp safe, just like the current fallback
is not SMP safe. (Interested parties with i486 based SMP systems
are welcome to submit fix patches for that.)

Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
[ fixed asm constraint bug ]
Fixed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20090930170754.0886ff2e@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-30 22:55:59 +02:00

349 lines
9.3 KiB
C

#ifndef _ASM_X86_CMPXCHG_32_H
#define _ASM_X86_CMPXCHG_32_H
#include <linux/bitops.h> /* for LOCK_PREFIX */
/*
* Note: if you use set64_bit(), __cmpxchg64(), or their variants, you
* you need to test for the feature in boot_cpu_data.
*/
#define xchg(ptr, v) \
((__typeof__(*(ptr)))__xchg((unsigned long)(v), (ptr), sizeof(*(ptr))))
struct __xchg_dummy {
unsigned long a[100];
};
#define __xg(x) ((struct __xchg_dummy *)(x))
/*
* The semantics of XCHGCMP8B are a bit strange, this is why
* there is a loop and the loading of %%eax and %%edx has to
* be inside. This inlines well in most cases, the cached
* cost is around ~38 cycles. (in the future we might want
* to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
* might have an implicit FPU-save as a cost, so it's not
* clear which path to go.)
*
* cmpxchg8b must be used with the lock prefix here to allow
* the instruction to be executed atomically, see page 3-102
* of the instruction set reference 24319102.pdf. We need
* the reader side to see the coherent 64bit value.
*/
static inline void __set_64bit(unsigned long long *ptr,
unsigned int low, unsigned int high)
{
asm volatile("\n1:\t"
"movl (%0), %%eax\n\t"
"movl 4(%0), %%edx\n\t"
LOCK_PREFIX "cmpxchg8b (%0)\n\t"
"jnz 1b"
: /* no outputs */
: "D"(ptr),
"b"(low),
"c"(high)
: "ax", "dx", "memory");
}
static inline void __set_64bit_constant(unsigned long long *ptr,
unsigned long long value)
{
__set_64bit(ptr, (unsigned int)value, (unsigned int)(value >> 32));
}
#define ll_low(x) *(((unsigned int *)&(x)) + 0)
#define ll_high(x) *(((unsigned int *)&(x)) + 1)
static inline void __set_64bit_var(unsigned long long *ptr,
unsigned long long value)
{
__set_64bit(ptr, ll_low(value), ll_high(value));
}
#define set_64bit(ptr, value) \
(__builtin_constant_p((value)) \
? __set_64bit_constant((ptr), (value)) \
: __set_64bit_var((ptr), (value)))
#define _set_64bit(ptr, value) \
(__builtin_constant_p(value) \
? __set_64bit(ptr, (unsigned int)(value), \
(unsigned int)((value) >> 32)) \
: __set_64bit(ptr, ll_low((value)), ll_high((value))))
/*
* Note: no "lock" prefix even on SMP: xchg always implies lock anyway
* Note 2: xchg has side effect, so that attribute volatile is necessary,
* but generally the primitive is invalid, *ptr is output argument. --ANK
*/
static inline unsigned long __xchg(unsigned long x, volatile void *ptr,
int size)
{
switch (size) {
case 1:
asm volatile("xchgb %b0,%1"
: "=q" (x)
: "m" (*__xg(ptr)), "0" (x)
: "memory");
break;
case 2:
asm volatile("xchgw %w0,%1"
: "=r" (x)
: "m" (*__xg(ptr)), "0" (x)
: "memory");
break;
case 4:
asm volatile("xchgl %0,%1"
: "=r" (x)
: "m" (*__xg(ptr)), "0" (x)
: "memory");
break;
}
return x;
}
/*
* Atomic compare and exchange. Compare OLD with MEM, if identical,
* store NEW in MEM. Return the initial value in MEM. Success is
* indicated by comparing RETURN with OLD.
*/
#ifdef CONFIG_X86_CMPXCHG
#define __HAVE_ARCH_CMPXCHG 1
#define cmpxchg(ptr, o, n) \
((__typeof__(*(ptr)))__cmpxchg((ptr), (unsigned long)(o), \
(unsigned long)(n), \
sizeof(*(ptr))))
#define sync_cmpxchg(ptr, o, n) \
((__typeof__(*(ptr)))__sync_cmpxchg((ptr), (unsigned long)(o), \
(unsigned long)(n), \
sizeof(*(ptr))))
#define cmpxchg_local(ptr, o, n) \
((__typeof__(*(ptr)))__cmpxchg_local((ptr), (unsigned long)(o), \
(unsigned long)(n), \
sizeof(*(ptr))))
#endif
#ifdef CONFIG_X86_CMPXCHG64
#define cmpxchg64(ptr, o, n) \
((__typeof__(*(ptr)))__cmpxchg64((ptr), (unsigned long long)(o), \
(unsigned long long)(n)))
#define cmpxchg64_local(ptr, o, n) \
((__typeof__(*(ptr)))__cmpxchg64_local((ptr), (unsigned long long)(o), \
(unsigned long long)(n)))
#endif
static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
unsigned long new, int size)
{
unsigned long prev;
switch (size) {
case 1:
asm volatile(LOCK_PREFIX "cmpxchgb %b1,%2"
: "=a"(prev)
: "q"(new), "m"(*__xg(ptr)), "0"(old)
: "memory");
return prev;
case 2:
asm volatile(LOCK_PREFIX "cmpxchgw %w1,%2"
: "=a"(prev)
: "r"(new), "m"(*__xg(ptr)), "0"(old)
: "memory");
return prev;
case 4:
asm volatile(LOCK_PREFIX "cmpxchgl %1,%2"
: "=a"(prev)
: "r"(new), "m"(*__xg(ptr)), "0"(old)
: "memory");
return prev;
}
return old;
}
/*
* Always use locked operations when touching memory shared with a
* hypervisor, since the system may be SMP even if the guest kernel
* isn't.
*/
static inline unsigned long __sync_cmpxchg(volatile void *ptr,
unsigned long old,
unsigned long new, int size)
{
unsigned long prev;
switch (size) {
case 1:
asm volatile("lock; cmpxchgb %b1,%2"
: "=a"(prev)
: "q"(new), "m"(*__xg(ptr)), "0"(old)
: "memory");
return prev;
case 2:
asm volatile("lock; cmpxchgw %w1,%2"
: "=a"(prev)
: "r"(new), "m"(*__xg(ptr)), "0"(old)
: "memory");
return prev;
case 4:
asm volatile("lock; cmpxchgl %1,%2"
: "=a"(prev)
: "r"(new), "m"(*__xg(ptr)), "0"(old)
: "memory");
return prev;
}
return old;
}
static inline unsigned long __cmpxchg_local(volatile void *ptr,
unsigned long old,
unsigned long new, int size)
{
unsigned long prev;
switch (size) {
case 1:
asm volatile("cmpxchgb %b1,%2"
: "=a"(prev)
: "q"(new), "m"(*__xg(ptr)), "0"(old)
: "memory");
return prev;
case 2:
asm volatile("cmpxchgw %w1,%2"
: "=a"(prev)
: "r"(new), "m"(*__xg(ptr)), "0"(old)
: "memory");
return prev;
case 4:
asm volatile("cmpxchgl %1,%2"
: "=a"(prev)
: "r"(new), "m"(*__xg(ptr)), "0"(old)
: "memory");
return prev;
}
return old;
}
static inline unsigned long long __cmpxchg64(volatile void *ptr,
unsigned long long old,
unsigned long long new)
{
unsigned long long prev;
asm volatile(LOCK_PREFIX "cmpxchg8b %3"
: "=A"(prev)
: "b"((unsigned long)new),
"c"((unsigned long)(new >> 32)),
"m"(*__xg(ptr)),
"0"(old)
: "memory");
return prev;
}
static inline unsigned long long __cmpxchg64_local(volatile void *ptr,
unsigned long long old,
unsigned long long new)
{
unsigned long long prev;
asm volatile("cmpxchg8b %3"
: "=A"(prev)
: "b"((unsigned long)new),
"c"((unsigned long)(new >> 32)),
"m"(*__xg(ptr)),
"0"(old)
: "memory");
return prev;
}
#ifndef CONFIG_X86_CMPXCHG
/*
* Building a kernel capable running on 80386. It may be necessary to
* simulate the cmpxchg on the 80386 CPU. For that purpose we define
* a function for each of the sizes we support.
*/
extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8);
extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16);
extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32);
static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old,
unsigned long new, int size)
{
switch (size) {
case 1:
return cmpxchg_386_u8(ptr, old, new);
case 2:
return cmpxchg_386_u16(ptr, old, new);
case 4:
return cmpxchg_386_u32(ptr, old, new);
}
return old;
}
#define cmpxchg(ptr, o, n) \
({ \
__typeof__(*(ptr)) __ret; \
if (likely(boot_cpu_data.x86 > 3)) \
__ret = (__typeof__(*(ptr)))__cmpxchg((ptr), \
(unsigned long)(o), (unsigned long)(n), \
sizeof(*(ptr))); \
else \
__ret = (__typeof__(*(ptr)))cmpxchg_386((ptr), \
(unsigned long)(o), (unsigned long)(n), \
sizeof(*(ptr))); \
__ret; \
})
#define cmpxchg_local(ptr, o, n) \
({ \
__typeof__(*(ptr)) __ret; \
if (likely(boot_cpu_data.x86 > 3)) \
__ret = (__typeof__(*(ptr)))__cmpxchg_local((ptr), \
(unsigned long)(o), (unsigned long)(n), \
sizeof(*(ptr))); \
else \
__ret = (__typeof__(*(ptr)))cmpxchg_386((ptr), \
(unsigned long)(o), (unsigned long)(n), \
sizeof(*(ptr))); \
__ret; \
})
#endif
#ifndef CONFIG_X86_CMPXCHG64
/*
* Building a kernel capable running on 80386 and 80486. It may be necessary
* to simulate the cmpxchg8b on the 80386 and 80486 CPU.
*/
extern unsigned long long cmpxchg_486_u64(volatile void *, u64, u64);
#define cmpxchg64(ptr, o, n) \
({ \
__typeof__(*(ptr)) __ret; \
__typeof__(*(ptr)) __old = (o); \
__typeof__(*(ptr)) __new = (n); \
alternative_io("call cmpxchg8b_emu", \
"lock; cmpxchg8b (%%esi)" , \
X86_FEATURE_CX8, \
"=A" (__ret), \
"S" ((ptr)), "0" (__old), \
"b" ((unsigned int)__new), \
"c" ((unsigned int)(__new>>32)) \
: "memory"); \
__ret; })
#define cmpxchg64_local(ptr, o, n) \
({ \
__typeof__(*(ptr)) __ret; \
if (likely(boot_cpu_data.x86 > 4)) \
__ret = (__typeof__(*(ptr)))__cmpxchg64_local((ptr), \
(unsigned long long)(o), \
(unsigned long long)(n)); \
else \
__ret = (__typeof__(*(ptr)))cmpxchg_486_u64((ptr), \
(unsigned long long)(o), \
(unsigned long long)(n)); \
__ret; \
})
#endif
#endif /* _ASM_X86_CMPXCHG_32_H */