2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 07:34:08 +08:00
linux-next/drivers/md/raid10.c
Jesper Juhl 990a8baf56 [PATCH] md: remove unneeded NULL checks before kfree
This patch removes some unneeded checks of pointers being NULL before
calling kfree() on them.  kfree() handles NULL pointers just fine, checking
first is pointless.

Signed-off-by: Jesper Juhl <juhl-lkml@dif.dk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21 19:07:48 -07:00

1792 lines
47 KiB
C

/*
* raid10.c : Multiple Devices driver for Linux
*
* Copyright (C) 2000-2004 Neil Brown
*
* RAID-10 support for md.
*
* Base on code in raid1.c. See raid1.c for futher copyright information.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* You should have received a copy of the GNU General Public License
* (for example /usr/src/linux/COPYING); if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/raid/raid10.h>
/*
* RAID10 provides a combination of RAID0 and RAID1 functionality.
* The layout of data is defined by
* chunk_size
* raid_disks
* near_copies (stored in low byte of layout)
* far_copies (stored in second byte of layout)
*
* The data to be stored is divided into chunks using chunksize.
* Each device is divided into far_copies sections.
* In each section, chunks are laid out in a style similar to raid0, but
* near_copies copies of each chunk is stored (each on a different drive).
* The starting device for each section is offset near_copies from the starting
* device of the previous section.
* Thus there are (near_copies*far_copies) of each chunk, and each is on a different
* drive.
* near_copies and far_copies must be at least one, and their product is at most
* raid_disks.
*/
/*
* Number of guaranteed r10bios in case of extreme VM load:
*/
#define NR_RAID10_BIOS 256
static void unplug_slaves(mddev_t *mddev);
static void * r10bio_pool_alloc(unsigned int __nocast gfp_flags, void *data)
{
conf_t *conf = data;
r10bio_t *r10_bio;
int size = offsetof(struct r10bio_s, devs[conf->copies]);
/* allocate a r10bio with room for raid_disks entries in the bios array */
r10_bio = kmalloc(size, gfp_flags);
if (r10_bio)
memset(r10_bio, 0, size);
else
unplug_slaves(conf->mddev);
return r10_bio;
}
static void r10bio_pool_free(void *r10_bio, void *data)
{
kfree(r10_bio);
}
#define RESYNC_BLOCK_SIZE (64*1024)
//#define RESYNC_BLOCK_SIZE PAGE_SIZE
#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
#define RESYNC_WINDOW (2048*1024)
/*
* When performing a resync, we need to read and compare, so
* we need as many pages are there are copies.
* When performing a recovery, we need 2 bios, one for read,
* one for write (we recover only one drive per r10buf)
*
*/
static void * r10buf_pool_alloc(unsigned int __nocast gfp_flags, void *data)
{
conf_t *conf = data;
struct page *page;
r10bio_t *r10_bio;
struct bio *bio;
int i, j;
int nalloc;
r10_bio = r10bio_pool_alloc(gfp_flags, conf);
if (!r10_bio) {
unplug_slaves(conf->mddev);
return NULL;
}
if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
nalloc = conf->copies; /* resync */
else
nalloc = 2; /* recovery */
/*
* Allocate bios.
*/
for (j = nalloc ; j-- ; ) {
bio = bio_alloc(gfp_flags, RESYNC_PAGES);
if (!bio)
goto out_free_bio;
r10_bio->devs[j].bio = bio;
}
/*
* Allocate RESYNC_PAGES data pages and attach them
* where needed.
*/
for (j = 0 ; j < nalloc; j++) {
bio = r10_bio->devs[j].bio;
for (i = 0; i < RESYNC_PAGES; i++) {
page = alloc_page(gfp_flags);
if (unlikely(!page))
goto out_free_pages;
bio->bi_io_vec[i].bv_page = page;
}
}
return r10_bio;
out_free_pages:
for ( ; i > 0 ; i--)
__free_page(bio->bi_io_vec[i-1].bv_page);
while (j--)
for (i = 0; i < RESYNC_PAGES ; i++)
__free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
j = -1;
out_free_bio:
while ( ++j < nalloc )
bio_put(r10_bio->devs[j].bio);
r10bio_pool_free(r10_bio, conf);
return NULL;
}
static void r10buf_pool_free(void *__r10_bio, void *data)
{
int i;
conf_t *conf = data;
r10bio_t *r10bio = __r10_bio;
int j;
for (j=0; j < conf->copies; j++) {
struct bio *bio = r10bio->devs[j].bio;
if (bio) {
for (i = 0; i < RESYNC_PAGES; i++) {
__free_page(bio->bi_io_vec[i].bv_page);
bio->bi_io_vec[i].bv_page = NULL;
}
bio_put(bio);
}
}
r10bio_pool_free(r10bio, conf);
}
static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
{
int i;
for (i = 0; i < conf->copies; i++) {
struct bio **bio = & r10_bio->devs[i].bio;
if (*bio)
bio_put(*bio);
*bio = NULL;
}
}
static inline void free_r10bio(r10bio_t *r10_bio)
{
unsigned long flags;
conf_t *conf = mddev_to_conf(r10_bio->mddev);
/*
* Wake up any possible resync thread that waits for the device
* to go idle.
*/
spin_lock_irqsave(&conf->resync_lock, flags);
if (!--conf->nr_pending) {
wake_up(&conf->wait_idle);
wake_up(&conf->wait_resume);
}
spin_unlock_irqrestore(&conf->resync_lock, flags);
put_all_bios(conf, r10_bio);
mempool_free(r10_bio, conf->r10bio_pool);
}
static inline void put_buf(r10bio_t *r10_bio)
{
conf_t *conf = mddev_to_conf(r10_bio->mddev);
unsigned long flags;
mempool_free(r10_bio, conf->r10buf_pool);
spin_lock_irqsave(&conf->resync_lock, flags);
if (!conf->barrier)
BUG();
--conf->barrier;
wake_up(&conf->wait_resume);
wake_up(&conf->wait_idle);
if (!--conf->nr_pending) {
wake_up(&conf->wait_idle);
wake_up(&conf->wait_resume);
}
spin_unlock_irqrestore(&conf->resync_lock, flags);
}
static void reschedule_retry(r10bio_t *r10_bio)
{
unsigned long flags;
mddev_t *mddev = r10_bio->mddev;
conf_t *conf = mddev_to_conf(mddev);
spin_lock_irqsave(&conf->device_lock, flags);
list_add(&r10_bio->retry_list, &conf->retry_list);
spin_unlock_irqrestore(&conf->device_lock, flags);
md_wakeup_thread(mddev->thread);
}
/*
* raid_end_bio_io() is called when we have finished servicing a mirrored
* operation and are ready to return a success/failure code to the buffer
* cache layer.
*/
static void raid_end_bio_io(r10bio_t *r10_bio)
{
struct bio *bio = r10_bio->master_bio;
bio_endio(bio, bio->bi_size,
test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
free_r10bio(r10_bio);
}
/*
* Update disk head position estimator based on IRQ completion info.
*/
static inline void update_head_pos(int slot, r10bio_t *r10_bio)
{
conf_t *conf = mddev_to_conf(r10_bio->mddev);
conf->mirrors[r10_bio->devs[slot].devnum].head_position =
r10_bio->devs[slot].addr + (r10_bio->sectors);
}
static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
{
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
int slot, dev;
conf_t *conf = mddev_to_conf(r10_bio->mddev);
if (bio->bi_size)
return 1;
slot = r10_bio->read_slot;
dev = r10_bio->devs[slot].devnum;
/*
* this branch is our 'one mirror IO has finished' event handler:
*/
if (!uptodate)
md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
else
/*
* Set R10BIO_Uptodate in our master bio, so that
* we will return a good error code to the higher
* levels even if IO on some other mirrored buffer fails.
*
* The 'master' represents the composite IO operation to
* user-side. So if something waits for IO, then it will
* wait for the 'master' bio.
*/
set_bit(R10BIO_Uptodate, &r10_bio->state);
update_head_pos(slot, r10_bio);
/*
* we have only one bio on the read side
*/
if (uptodate)
raid_end_bio_io(r10_bio);
else {
/*
* oops, read error:
*/
char b[BDEVNAME_SIZE];
if (printk_ratelimit())
printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
reschedule_retry(r10_bio);
}
rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
return 0;
}
static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
{
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
int slot, dev;
conf_t *conf = mddev_to_conf(r10_bio->mddev);
if (bio->bi_size)
return 1;
for (slot = 0; slot < conf->copies; slot++)
if (r10_bio->devs[slot].bio == bio)
break;
dev = r10_bio->devs[slot].devnum;
/*
* this branch is our 'one mirror IO has finished' event handler:
*/
if (!uptodate)
md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
else
/*
* Set R10BIO_Uptodate in our master bio, so that
* we will return a good error code for to the higher
* levels even if IO on some other mirrored buffer fails.
*
* The 'master' represents the composite IO operation to
* user-side. So if something waits for IO, then it will
* wait for the 'master' bio.
*/
set_bit(R10BIO_Uptodate, &r10_bio->state);
update_head_pos(slot, r10_bio);
/*
*
* Let's see if all mirrored write operations have finished
* already.
*/
if (atomic_dec_and_test(&r10_bio->remaining)) {
md_write_end(r10_bio->mddev);
raid_end_bio_io(r10_bio);
}
rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
return 0;
}
/*
* RAID10 layout manager
* Aswell as the chunksize and raid_disks count, there are two
* parameters: near_copies and far_copies.
* near_copies * far_copies must be <= raid_disks.
* Normally one of these will be 1.
* If both are 1, we get raid0.
* If near_copies == raid_disks, we get raid1.
*
* Chunks are layed out in raid0 style with near_copies copies of the
* first chunk, followed by near_copies copies of the next chunk and
* so on.
* If far_copies > 1, then after 1/far_copies of the array has been assigned
* as described above, we start again with a device offset of near_copies.
* So we effectively have another copy of the whole array further down all
* the drives, but with blocks on different drives.
* With this layout, and block is never stored twice on the one device.
*
* raid10_find_phys finds the sector offset of a given virtual sector
* on each device that it is on. If a block isn't on a device,
* that entry in the array is set to MaxSector.
*
* raid10_find_virt does the reverse mapping, from a device and a
* sector offset to a virtual address
*/
static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
{
int n,f;
sector_t sector;
sector_t chunk;
sector_t stripe;
int dev;
int slot = 0;
/* now calculate first sector/dev */
chunk = r10bio->sector >> conf->chunk_shift;
sector = r10bio->sector & conf->chunk_mask;
chunk *= conf->near_copies;
stripe = chunk;
dev = sector_div(stripe, conf->raid_disks);
sector += stripe << conf->chunk_shift;
/* and calculate all the others */
for (n=0; n < conf->near_copies; n++) {
int d = dev;
sector_t s = sector;
r10bio->devs[slot].addr = sector;
r10bio->devs[slot].devnum = d;
slot++;
for (f = 1; f < conf->far_copies; f++) {
d += conf->near_copies;
if (d >= conf->raid_disks)
d -= conf->raid_disks;
s += conf->stride;
r10bio->devs[slot].devnum = d;
r10bio->devs[slot].addr = s;
slot++;
}
dev++;
if (dev >= conf->raid_disks) {
dev = 0;
sector += (conf->chunk_mask + 1);
}
}
BUG_ON(slot != conf->copies);
}
static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
{
sector_t offset, chunk, vchunk;
while (sector > conf->stride) {
sector -= conf->stride;
if (dev < conf->near_copies)
dev += conf->raid_disks - conf->near_copies;
else
dev -= conf->near_copies;
}
offset = sector & conf->chunk_mask;
chunk = sector >> conf->chunk_shift;
vchunk = chunk * conf->raid_disks + dev;
sector_div(vchunk, conf->near_copies);
return (vchunk << conf->chunk_shift) + offset;
}
/**
* raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
* @q: request queue
* @bio: the buffer head that's been built up so far
* @biovec: the request that could be merged to it.
*
* Return amount of bytes we can accept at this offset
* If near_copies == raid_disk, there are no striping issues,
* but in that case, the function isn't called at all.
*/
static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
struct bio_vec *bio_vec)
{
mddev_t *mddev = q->queuedata;
sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
int max;
unsigned int chunk_sectors = mddev->chunk_size >> 9;
unsigned int bio_sectors = bio->bi_size >> 9;
max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
if (max < 0) max = 0; /* bio_add cannot handle a negative return */
if (max <= bio_vec->bv_len && bio_sectors == 0)
return bio_vec->bv_len;
else
return max;
}
/*
* This routine returns the disk from which the requested read should
* be done. There is a per-array 'next expected sequential IO' sector
* number - if this matches on the next IO then we use the last disk.
* There is also a per-disk 'last know head position' sector that is
* maintained from IRQ contexts, both the normal and the resync IO
* completion handlers update this position correctly. If there is no
* perfect sequential match then we pick the disk whose head is closest.
*
* If there are 2 mirrors in the same 2 devices, performance degrades
* because position is mirror, not device based.
*
* The rdev for the device selected will have nr_pending incremented.
*/
/*
* FIXME: possibly should rethink readbalancing and do it differently
* depending on near_copies / far_copies geometry.
*/
static int read_balance(conf_t *conf, r10bio_t *r10_bio)
{
const unsigned long this_sector = r10_bio->sector;
int disk, slot, nslot;
const int sectors = r10_bio->sectors;
sector_t new_distance, current_distance;
raid10_find_phys(conf, r10_bio);
rcu_read_lock();
/*
* Check if we can balance. We can balance on the whole
* device if no resync is going on, or below the resync window.
* We take the first readable disk when above the resync window.
*/
if (conf->mddev->recovery_cp < MaxSector
&& (this_sector + sectors >= conf->next_resync)) {
/* make sure that disk is operational */
slot = 0;
disk = r10_bio->devs[slot].devnum;
while (!conf->mirrors[disk].rdev ||
!conf->mirrors[disk].rdev->in_sync) {
slot++;
if (slot == conf->copies) {
slot = 0;
disk = -1;
break;
}
disk = r10_bio->devs[slot].devnum;
}
goto rb_out;
}
/* make sure the disk is operational */
slot = 0;
disk = r10_bio->devs[slot].devnum;
while (!conf->mirrors[disk].rdev ||
!conf->mirrors[disk].rdev->in_sync) {
slot ++;
if (slot == conf->copies) {
disk = -1;
goto rb_out;
}
disk = r10_bio->devs[slot].devnum;
}
current_distance = abs(this_sector - conf->mirrors[disk].head_position);
/* Find the disk whose head is closest */
for (nslot = slot; nslot < conf->copies; nslot++) {
int ndisk = r10_bio->devs[nslot].devnum;
if (!conf->mirrors[ndisk].rdev ||
!conf->mirrors[ndisk].rdev->in_sync)
continue;
if (!atomic_read(&conf->mirrors[ndisk].rdev->nr_pending)) {
disk = ndisk;
slot = nslot;
break;
}
new_distance = abs(r10_bio->devs[nslot].addr -
conf->mirrors[ndisk].head_position);
if (new_distance < current_distance) {
current_distance = new_distance;
disk = ndisk;
slot = nslot;
}
}
rb_out:
r10_bio->read_slot = slot;
/* conf->next_seq_sect = this_sector + sectors;*/
if (disk >= 0 && conf->mirrors[disk].rdev)
atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
rcu_read_unlock();
return disk;
}
static void unplug_slaves(mddev_t *mddev)
{
conf_t *conf = mddev_to_conf(mddev);
int i;
rcu_read_lock();
for (i=0; i<mddev->raid_disks; i++) {
mdk_rdev_t *rdev = conf->mirrors[i].rdev;
if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
if (r_queue->unplug_fn)
r_queue->unplug_fn(r_queue);
rdev_dec_pending(rdev, mddev);
rcu_read_lock();
}
}
rcu_read_unlock();
}
static void raid10_unplug(request_queue_t *q)
{
unplug_slaves(q->queuedata);
}
static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
sector_t *error_sector)
{
mddev_t *mddev = q->queuedata;
conf_t *conf = mddev_to_conf(mddev);
int i, ret = 0;
rcu_read_lock();
for (i=0; i<mddev->raid_disks && ret == 0; i++) {
mdk_rdev_t *rdev = conf->mirrors[i].rdev;
if (rdev && !rdev->faulty) {
struct block_device *bdev = rdev->bdev;
request_queue_t *r_queue = bdev_get_queue(bdev);
if (!r_queue->issue_flush_fn)
ret = -EOPNOTSUPP;
else {
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
error_sector);
rdev_dec_pending(rdev, mddev);
rcu_read_lock();
}
}
}
rcu_read_unlock();
return ret;
}
/*
* Throttle resync depth, so that we can both get proper overlapping of
* requests, but are still able to handle normal requests quickly.
*/
#define RESYNC_DEPTH 32
static void device_barrier(conf_t *conf, sector_t sect)
{
spin_lock_irq(&conf->resync_lock);
wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
conf->resync_lock, unplug_slaves(conf->mddev));
if (!conf->barrier++) {
wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
conf->resync_lock, unplug_slaves(conf->mddev));
if (conf->nr_pending)
BUG();
}
wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
conf->resync_lock, unplug_slaves(conf->mddev));
conf->next_resync = sect;
spin_unlock_irq(&conf->resync_lock);
}
static int make_request(request_queue_t *q, struct bio * bio)
{
mddev_t *mddev = q->queuedata;
conf_t *conf = mddev_to_conf(mddev);
mirror_info_t *mirror;
r10bio_t *r10_bio;
struct bio *read_bio;
int i;
int chunk_sects = conf->chunk_mask + 1;
/* If this request crosses a chunk boundary, we need to
* split it. This will only happen for 1 PAGE (or less) requests.
*/
if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
> chunk_sects &&
conf->near_copies < conf->raid_disks)) {
struct bio_pair *bp;
/* Sanity check -- queue functions should prevent this happening */
if (bio->bi_vcnt != 1 ||
bio->bi_idx != 0)
goto bad_map;
/* This is a one page bio that upper layers
* refuse to split for us, so we need to split it.
*/
bp = bio_split(bio, bio_split_pool,
chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
if (make_request(q, &bp->bio1))
generic_make_request(&bp->bio1);
if (make_request(q, &bp->bio2))
generic_make_request(&bp->bio2);
bio_pair_release(bp);
return 0;
bad_map:
printk("raid10_make_request bug: can't convert block across chunks"
" or bigger than %dk %llu %d\n", chunk_sects/2,
(unsigned long long)bio->bi_sector, bio->bi_size >> 10);
bio_io_error(bio, bio->bi_size);
return 0;
}
md_write_start(mddev, bio);
/*
* Register the new request and wait if the reconstruction
* thread has put up a bar for new requests.
* Continue immediately if no resync is active currently.
*/
spin_lock_irq(&conf->resync_lock);
wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
conf->nr_pending++;
spin_unlock_irq(&conf->resync_lock);
if (bio_data_dir(bio)==WRITE) {
disk_stat_inc(mddev->gendisk, writes);
disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
} else {
disk_stat_inc(mddev->gendisk, reads);
disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
}
r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
r10_bio->master_bio = bio;
r10_bio->sectors = bio->bi_size >> 9;
r10_bio->mddev = mddev;
r10_bio->sector = bio->bi_sector;
if (bio_data_dir(bio) == READ) {
/*
* read balancing logic:
*/
int disk = read_balance(conf, r10_bio);
int slot = r10_bio->read_slot;
if (disk < 0) {
raid_end_bio_io(r10_bio);
return 0;
}
mirror = conf->mirrors + disk;
read_bio = bio_clone(bio, GFP_NOIO);
r10_bio->devs[slot].bio = read_bio;
read_bio->bi_sector = r10_bio->devs[slot].addr +
mirror->rdev->data_offset;
read_bio->bi_bdev = mirror->rdev->bdev;
read_bio->bi_end_io = raid10_end_read_request;
read_bio->bi_rw = READ;
read_bio->bi_private = r10_bio;
generic_make_request(read_bio);
return 0;
}
/*
* WRITE:
*/
/* first select target devices under spinlock and
* inc refcount on their rdev. Record them by setting
* bios[x] to bio
*/
raid10_find_phys(conf, r10_bio);
rcu_read_lock();
for (i = 0; i < conf->copies; i++) {
int d = r10_bio->devs[i].devnum;
if (conf->mirrors[d].rdev &&
!conf->mirrors[d].rdev->faulty) {
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
r10_bio->devs[i].bio = bio;
} else
r10_bio->devs[i].bio = NULL;
}
rcu_read_unlock();
atomic_set(&r10_bio->remaining, 1);
for (i = 0; i < conf->copies; i++) {
struct bio *mbio;
int d = r10_bio->devs[i].devnum;
if (!r10_bio->devs[i].bio)
continue;
mbio = bio_clone(bio, GFP_NOIO);
r10_bio->devs[i].bio = mbio;
mbio->bi_sector = r10_bio->devs[i].addr+
conf->mirrors[d].rdev->data_offset;
mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
mbio->bi_end_io = raid10_end_write_request;
mbio->bi_rw = WRITE;
mbio->bi_private = r10_bio;
atomic_inc(&r10_bio->remaining);
generic_make_request(mbio);
}
if (atomic_dec_and_test(&r10_bio->remaining)) {
md_write_end(mddev);
raid_end_bio_io(r10_bio);
}
return 0;
}
static void status(struct seq_file *seq, mddev_t *mddev)
{
conf_t *conf = mddev_to_conf(mddev);
int i;
if (conf->near_copies < conf->raid_disks)
seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
if (conf->near_copies > 1)
seq_printf(seq, " %d near-copies", conf->near_copies);
if (conf->far_copies > 1)
seq_printf(seq, " %d far-copies", conf->far_copies);
seq_printf(seq, " [%d/%d] [", conf->raid_disks,
conf->working_disks);
for (i = 0; i < conf->raid_disks; i++)
seq_printf(seq, "%s",
conf->mirrors[i].rdev &&
conf->mirrors[i].rdev->in_sync ? "U" : "_");
seq_printf(seq, "]");
}
static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
char b[BDEVNAME_SIZE];
conf_t *conf = mddev_to_conf(mddev);
/*
* If it is not operational, then we have already marked it as dead
* else if it is the last working disks, ignore the error, let the
* next level up know.
* else mark the drive as failed
*/
if (rdev->in_sync
&& conf->working_disks == 1)
/*
* Don't fail the drive, just return an IO error.
* The test should really be more sophisticated than
* "working_disks == 1", but it isn't critical, and
* can wait until we do more sophisticated "is the drive
* really dead" tests...
*/
return;
if (rdev->in_sync) {
mddev->degraded++;
conf->working_disks--;
/*
* if recovery is running, make sure it aborts.
*/
set_bit(MD_RECOVERY_ERR, &mddev->recovery);
}
rdev->in_sync = 0;
rdev->faulty = 1;
mddev->sb_dirty = 1;
printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
" Operation continuing on %d devices\n",
bdevname(rdev->bdev,b), conf->working_disks);
}
static void print_conf(conf_t *conf)
{
int i;
mirror_info_t *tmp;
printk("RAID10 conf printout:\n");
if (!conf) {
printk("(!conf)\n");
return;
}
printk(" --- wd:%d rd:%d\n", conf->working_disks,
conf->raid_disks);
for (i = 0; i < conf->raid_disks; i++) {
char b[BDEVNAME_SIZE];
tmp = conf->mirrors + i;
if (tmp->rdev)
printk(" disk %d, wo:%d, o:%d, dev:%s\n",
i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
bdevname(tmp->rdev->bdev,b));
}
}
static void close_sync(conf_t *conf)
{
spin_lock_irq(&conf->resync_lock);
wait_event_lock_irq(conf->wait_resume, !conf->barrier,
conf->resync_lock, unplug_slaves(conf->mddev));
spin_unlock_irq(&conf->resync_lock);
if (conf->barrier) BUG();
if (waitqueue_active(&conf->wait_idle)) BUG();
mempool_destroy(conf->r10buf_pool);
conf->r10buf_pool = NULL;
}
static int raid10_spare_active(mddev_t *mddev)
{
int i;
conf_t *conf = mddev->private;
mirror_info_t *tmp;
/*
* Find all non-in_sync disks within the RAID10 configuration
* and mark them in_sync
*/
for (i = 0; i < conf->raid_disks; i++) {
tmp = conf->mirrors + i;
if (tmp->rdev
&& !tmp->rdev->faulty
&& !tmp->rdev->in_sync) {
conf->working_disks++;
mddev->degraded--;
tmp->rdev->in_sync = 1;
}
}
print_conf(conf);
return 0;
}
static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
conf_t *conf = mddev->private;
int found = 0;
int mirror;
mirror_info_t *p;
if (mddev->recovery_cp < MaxSector)
/* only hot-add to in-sync arrays, as recovery is
* very different from resync
*/
return 0;
for (mirror=0; mirror < mddev->raid_disks; mirror++)
if ( !(p=conf->mirrors+mirror)->rdev) {
blk_queue_stack_limits(mddev->queue,
rdev->bdev->bd_disk->queue);
/* as we don't honour merge_bvec_fn, we must never risk
* violating it, so limit ->max_sector to one PAGE, as
* a one page request is never in violation.
*/
if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
mddev->queue->max_sectors > (PAGE_SIZE>>9))
mddev->queue->max_sectors = (PAGE_SIZE>>9);
p->head_position = 0;
rdev->raid_disk = mirror;
found = 1;
p->rdev = rdev;
break;
}
print_conf(conf);
return found;
}
static int raid10_remove_disk(mddev_t *mddev, int number)
{
conf_t *conf = mddev->private;
int err = 0;
mdk_rdev_t *rdev;
mirror_info_t *p = conf->mirrors+ number;
print_conf(conf);
rdev = p->rdev;
if (rdev) {
if (rdev->in_sync ||
atomic_read(&rdev->nr_pending)) {
err = -EBUSY;
goto abort;
}
p->rdev = NULL;
synchronize_rcu();
if (atomic_read(&rdev->nr_pending)) {
/* lost the race, try later */
err = -EBUSY;
p->rdev = rdev;
}
}
abort:
print_conf(conf);
return err;
}
static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
{
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
conf_t *conf = mddev_to_conf(r10_bio->mddev);
int i,d;
if (bio->bi_size)
return 1;
for (i=0; i<conf->copies; i++)
if (r10_bio->devs[i].bio == bio)
break;
if (i == conf->copies)
BUG();
update_head_pos(i, r10_bio);
d = r10_bio->devs[i].devnum;
if (!uptodate)
md_error(r10_bio->mddev,
conf->mirrors[d].rdev);
/* for reconstruct, we always reschedule after a read.
* for resync, only after all reads
*/
if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
atomic_dec_and_test(&r10_bio->remaining)) {
/* we have read all the blocks,
* do the comparison in process context in raid10d
*/
reschedule_retry(r10_bio);
}
rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
return 0;
}
static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
{
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
mddev_t *mddev = r10_bio->mddev;
conf_t *conf = mddev_to_conf(mddev);
int i,d;
if (bio->bi_size)
return 1;
for (i = 0; i < conf->copies; i++)
if (r10_bio->devs[i].bio == bio)
break;
d = r10_bio->devs[i].devnum;
if (!uptodate)
md_error(mddev, conf->mirrors[d].rdev);
update_head_pos(i, r10_bio);
while (atomic_dec_and_test(&r10_bio->remaining)) {
if (r10_bio->master_bio == NULL) {
/* the primary of several recovery bios */
md_done_sync(mddev, r10_bio->sectors, 1);
put_buf(r10_bio);
break;
} else {
r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
put_buf(r10_bio);
r10_bio = r10_bio2;
}
}
rdev_dec_pending(conf->mirrors[d].rdev, mddev);
return 0;
}
/*
* Note: sync and recover and handled very differently for raid10
* This code is for resync.
* For resync, we read through virtual addresses and read all blocks.
* If there is any error, we schedule a write. The lowest numbered
* drive is authoritative.
* However requests come for physical address, so we need to map.
* For every physical address there are raid_disks/copies virtual addresses,
* which is always are least one, but is not necessarly an integer.
* This means that a physical address can span multiple chunks, so we may
* have to submit multiple io requests for a single sync request.
*/
/*
* We check if all blocks are in-sync and only write to blocks that
* aren't in sync
*/
static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
{
conf_t *conf = mddev_to_conf(mddev);
int i, first;
struct bio *tbio, *fbio;
atomic_set(&r10_bio->remaining, 1);
/* find the first device with a block */
for (i=0; i<conf->copies; i++)
if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
break;
if (i == conf->copies)
goto done;
first = i;
fbio = r10_bio->devs[i].bio;
/* now find blocks with errors */
for (i=first+1 ; i < conf->copies ; i++) {
int vcnt, j, d;
if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
continue;
/* We know that the bi_io_vec layout is the same for
* both 'first' and 'i', so we just compare them.
* All vec entries are PAGE_SIZE;
*/
tbio = r10_bio->devs[i].bio;
vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
for (j = 0; j < vcnt; j++)
if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
page_address(tbio->bi_io_vec[j].bv_page),
PAGE_SIZE))
break;
if (j == vcnt)
continue;
/* Ok, we need to write this bio
* First we need to fixup bv_offset, bv_len and
* bi_vecs, as the read request might have corrupted these
*/
tbio->bi_vcnt = vcnt;
tbio->bi_size = r10_bio->sectors << 9;
tbio->bi_idx = 0;
tbio->bi_phys_segments = 0;
tbio->bi_hw_segments = 0;
tbio->bi_hw_front_size = 0;
tbio->bi_hw_back_size = 0;
tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
tbio->bi_flags |= 1 << BIO_UPTODATE;
tbio->bi_next = NULL;
tbio->bi_rw = WRITE;
tbio->bi_private = r10_bio;
tbio->bi_sector = r10_bio->devs[i].addr;
for (j=0; j < vcnt ; j++) {
tbio->bi_io_vec[j].bv_offset = 0;
tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
memcpy(page_address(tbio->bi_io_vec[j].bv_page),
page_address(fbio->bi_io_vec[j].bv_page),
PAGE_SIZE);
}
tbio->bi_end_io = end_sync_write;
d = r10_bio->devs[i].devnum;
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
atomic_inc(&r10_bio->remaining);
md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
generic_make_request(tbio);
}
done:
if (atomic_dec_and_test(&r10_bio->remaining)) {
md_done_sync(mddev, r10_bio->sectors, 1);
put_buf(r10_bio);
}
}
/*
* Now for the recovery code.
* Recovery happens across physical sectors.
* We recover all non-is_sync drives by finding the virtual address of
* each, and then choose a working drive that also has that virt address.
* There is a separate r10_bio for each non-in_sync drive.
* Only the first two slots are in use. The first for reading,
* The second for writing.
*
*/
static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
{
conf_t *conf = mddev_to_conf(mddev);
int i, d;
struct bio *bio, *wbio;
/* move the pages across to the second bio
* and submit the write request
*/
bio = r10_bio->devs[0].bio;
wbio = r10_bio->devs[1].bio;
for (i=0; i < wbio->bi_vcnt; i++) {
struct page *p = bio->bi_io_vec[i].bv_page;
bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
wbio->bi_io_vec[i].bv_page = p;
}
d = r10_bio->devs[1].devnum;
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
generic_make_request(wbio);
}
/*
* This is a kernel thread which:
*
* 1. Retries failed read operations on working mirrors.
* 2. Updates the raid superblock when problems encounter.
* 3. Performs writes following reads for array syncronising.
*/
static void raid10d(mddev_t *mddev)
{
r10bio_t *r10_bio;
struct bio *bio;
unsigned long flags;
conf_t *conf = mddev_to_conf(mddev);
struct list_head *head = &conf->retry_list;
int unplug=0;
mdk_rdev_t *rdev;
md_check_recovery(mddev);
for (;;) {
char b[BDEVNAME_SIZE];
spin_lock_irqsave(&conf->device_lock, flags);
if (list_empty(head))
break;
r10_bio = list_entry(head->prev, r10bio_t, retry_list);
list_del(head->prev);
spin_unlock_irqrestore(&conf->device_lock, flags);
mddev = r10_bio->mddev;
conf = mddev_to_conf(mddev);
if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
sync_request_write(mddev, r10_bio);
unplug = 1;
} else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
recovery_request_write(mddev, r10_bio);
unplug = 1;
} else {
int mirror;
bio = r10_bio->devs[r10_bio->read_slot].bio;
r10_bio->devs[r10_bio->read_slot].bio = NULL;
bio_put(bio);
mirror = read_balance(conf, r10_bio);
if (mirror == -1) {
printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
" read error for block %llu\n",
bdevname(bio->bi_bdev,b),
(unsigned long long)r10_bio->sector);
raid_end_bio_io(r10_bio);
} else {
rdev = conf->mirrors[mirror].rdev;
if (printk_ratelimit())
printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
" another mirror\n",
bdevname(rdev->bdev,b),
(unsigned long long)r10_bio->sector);
bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
r10_bio->devs[r10_bio->read_slot].bio = bio;
bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
+ rdev->data_offset;
bio->bi_bdev = rdev->bdev;
bio->bi_rw = READ;
bio->bi_private = r10_bio;
bio->bi_end_io = raid10_end_read_request;
unplug = 1;
generic_make_request(bio);
}
}
}
spin_unlock_irqrestore(&conf->device_lock, flags);
if (unplug)
unplug_slaves(mddev);
}
static int init_resync(conf_t *conf)
{
int buffs;
buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
if (conf->r10buf_pool)
BUG();
conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
if (!conf->r10buf_pool)
return -ENOMEM;
conf->next_resync = 0;
return 0;
}
/*
* perform a "sync" on one "block"
*
* We need to make sure that no normal I/O request - particularly write
* requests - conflict with active sync requests.
*
* This is achieved by tracking pending requests and a 'barrier' concept
* that can be installed to exclude normal IO requests.
*
* Resync and recovery are handled very differently.
* We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
*
* For resync, we iterate over virtual addresses, read all copies,
* and update if there are differences. If only one copy is live,
* skip it.
* For recovery, we iterate over physical addresses, read a good
* value for each non-in_sync drive, and over-write.
*
* So, for recovery we may have several outstanding complex requests for a
* given address, one for each out-of-sync device. We model this by allocating
* a number of r10_bio structures, one for each out-of-sync device.
* As we setup these structures, we collect all bio's together into a list
* which we then process collectively to add pages, and then process again
* to pass to generic_make_request.
*
* The r10_bio structures are linked using a borrowed master_bio pointer.
* This link is counted in ->remaining. When the r10_bio that points to NULL
* has its remaining count decremented to 0, the whole complex operation
* is complete.
*
*/
static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
conf_t *conf = mddev_to_conf(mddev);
r10bio_t *r10_bio;
struct bio *biolist = NULL, *bio;
sector_t max_sector, nr_sectors;
int disk;
int i;
sector_t sectors_skipped = 0;
int chunks_skipped = 0;
if (!conf->r10buf_pool)
if (init_resync(conf))
return 0;
skipped:
max_sector = mddev->size << 1;
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
max_sector = mddev->resync_max_sectors;
if (sector_nr >= max_sector) {
close_sync(conf);
*skipped = 1;
return sectors_skipped;
}
if (chunks_skipped >= conf->raid_disks) {
/* if there has been nothing to do on any drive,
* then there is nothing to do at all..
*/
*skipped = 1;
return (max_sector - sector_nr) + sectors_skipped;
}
/* make sure whole request will fit in a chunk - if chunks
* are meaningful
*/
if (conf->near_copies < conf->raid_disks &&
max_sector > (sector_nr | conf->chunk_mask))
max_sector = (sector_nr | conf->chunk_mask) + 1;
/*
* If there is non-resync activity waiting for us then
* put in a delay to throttle resync.
*/
if (!go_faster && waitqueue_active(&conf->wait_resume))
msleep_interruptible(1000);
device_barrier(conf, sector_nr + RESYNC_SECTORS);
/* Again, very different code for resync and recovery.
* Both must result in an r10bio with a list of bios that
* have bi_end_io, bi_sector, bi_bdev set,
* and bi_private set to the r10bio.
* For recovery, we may actually create several r10bios
* with 2 bios in each, that correspond to the bios in the main one.
* In this case, the subordinate r10bios link back through a
* borrowed master_bio pointer, and the counter in the master
* includes a ref from each subordinate.
*/
/* First, we decide what to do and set ->bi_end_io
* To end_sync_read if we want to read, and
* end_sync_write if we will want to write.
*/
if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
/* recovery... the complicated one */
int i, j, k;
r10_bio = NULL;
for (i=0 ; i<conf->raid_disks; i++)
if (conf->mirrors[i].rdev &&
!conf->mirrors[i].rdev->in_sync) {
/* want to reconstruct this device */
r10bio_t *rb2 = r10_bio;
r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
spin_lock_irq(&conf->resync_lock);
conf->nr_pending++;
if (rb2) conf->barrier++;
spin_unlock_irq(&conf->resync_lock);
atomic_set(&r10_bio->remaining, 0);
r10_bio->master_bio = (struct bio*)rb2;
if (rb2)
atomic_inc(&rb2->remaining);
r10_bio->mddev = mddev;
set_bit(R10BIO_IsRecover, &r10_bio->state);
r10_bio->sector = raid10_find_virt(conf, sector_nr, i);
raid10_find_phys(conf, r10_bio);
for (j=0; j<conf->copies;j++) {
int d = r10_bio->devs[j].devnum;
if (conf->mirrors[d].rdev &&
conf->mirrors[d].rdev->in_sync) {
/* This is where we read from */
bio = r10_bio->devs[0].bio;
bio->bi_next = biolist;
biolist = bio;
bio->bi_private = r10_bio;
bio->bi_end_io = end_sync_read;
bio->bi_rw = 0;
bio->bi_sector = r10_bio->devs[j].addr +
conf->mirrors[d].rdev->data_offset;
bio->bi_bdev = conf->mirrors[d].rdev->bdev;
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
atomic_inc(&r10_bio->remaining);
/* and we write to 'i' */
for (k=0; k<conf->copies; k++)
if (r10_bio->devs[k].devnum == i)
break;
bio = r10_bio->devs[1].bio;
bio->bi_next = biolist;
biolist = bio;
bio->bi_private = r10_bio;
bio->bi_end_io = end_sync_write;
bio->bi_rw = 1;
bio->bi_sector = r10_bio->devs[k].addr +
conf->mirrors[i].rdev->data_offset;
bio->bi_bdev = conf->mirrors[i].rdev->bdev;
r10_bio->devs[0].devnum = d;
r10_bio->devs[1].devnum = i;
break;
}
}
if (j == conf->copies) {
BUG();
}
}
if (biolist == NULL) {
while (r10_bio) {
r10bio_t *rb2 = r10_bio;
r10_bio = (r10bio_t*) rb2->master_bio;
rb2->master_bio = NULL;
put_buf(rb2);
}
goto giveup;
}
} else {
/* resync. Schedule a read for every block at this virt offset */
int count = 0;
r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
spin_lock_irq(&conf->resync_lock);
conf->nr_pending++;
spin_unlock_irq(&conf->resync_lock);
r10_bio->mddev = mddev;
atomic_set(&r10_bio->remaining, 0);
r10_bio->master_bio = NULL;
r10_bio->sector = sector_nr;
set_bit(R10BIO_IsSync, &r10_bio->state);
raid10_find_phys(conf, r10_bio);
r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
for (i=0; i<conf->copies; i++) {
int d = r10_bio->devs[i].devnum;
bio = r10_bio->devs[i].bio;
bio->bi_end_io = NULL;
if (conf->mirrors[d].rdev == NULL ||
conf->mirrors[d].rdev->faulty)
continue;
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
atomic_inc(&r10_bio->remaining);
bio->bi_next = biolist;
biolist = bio;
bio->bi_private = r10_bio;
bio->bi_end_io = end_sync_read;
bio->bi_rw = 0;
bio->bi_sector = r10_bio->devs[i].addr +
conf->mirrors[d].rdev->data_offset;
bio->bi_bdev = conf->mirrors[d].rdev->bdev;
count++;
}
if (count < 2) {
for (i=0; i<conf->copies; i++) {
int d = r10_bio->devs[i].devnum;
if (r10_bio->devs[i].bio->bi_end_io)
rdev_dec_pending(conf->mirrors[d].rdev, mddev);
}
put_buf(r10_bio);
biolist = NULL;
goto giveup;
}
}
for (bio = biolist; bio ; bio=bio->bi_next) {
bio->bi_flags &= ~(BIO_POOL_MASK - 1);
if (bio->bi_end_io)
bio->bi_flags |= 1 << BIO_UPTODATE;
bio->bi_vcnt = 0;
bio->bi_idx = 0;
bio->bi_phys_segments = 0;
bio->bi_hw_segments = 0;
bio->bi_size = 0;
}
nr_sectors = 0;
do {
struct page *page;
int len = PAGE_SIZE;
disk = 0;
if (sector_nr + (len>>9) > max_sector)
len = (max_sector - sector_nr) << 9;
if (len == 0)
break;
for (bio= biolist ; bio ; bio=bio->bi_next) {
page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
if (bio_add_page(bio, page, len, 0) == 0) {
/* stop here */
struct bio *bio2;
bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
/* remove last page from this bio */
bio2->bi_vcnt--;
bio2->bi_size -= len;
bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
}
goto bio_full;
}
disk = i;
}
nr_sectors += len>>9;
sector_nr += len>>9;
} while (biolist->bi_vcnt < RESYNC_PAGES);
bio_full:
r10_bio->sectors = nr_sectors;
while (biolist) {
bio = biolist;
biolist = biolist->bi_next;
bio->bi_next = NULL;
r10_bio = bio->bi_private;
r10_bio->sectors = nr_sectors;
if (bio->bi_end_io == end_sync_read) {
md_sync_acct(bio->bi_bdev, nr_sectors);
generic_make_request(bio);
}
}
if (sectors_skipped)
/* pretend they weren't skipped, it makes
* no important difference in this case
*/
md_done_sync(mddev, sectors_skipped, 1);
return sectors_skipped + nr_sectors;
giveup:
/* There is nowhere to write, so all non-sync
* drives must be failed, so try the next chunk...
*/
{
sector_t sec = max_sector - sector_nr;
sectors_skipped += sec;
chunks_skipped ++;
sector_nr = max_sector;
goto skipped;
}
}
static int run(mddev_t *mddev)
{
conf_t *conf;
int i, disk_idx;
mirror_info_t *disk;
mdk_rdev_t *rdev;
struct list_head *tmp;
int nc, fc;
sector_t stride, size;
if (mddev->level != 10) {
printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
mdname(mddev), mddev->level);
goto out;
}
nc = mddev->layout & 255;
fc = (mddev->layout >> 8) & 255;
if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
(mddev->layout >> 16)) {
printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
mdname(mddev), mddev->layout);
goto out;
}
/*
* copy the already verified devices into our private RAID10
* bookkeeping area. [whatever we allocate in run(),
* should be freed in stop()]
*/
conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
mddev->private = conf;
if (!conf) {
printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
mdname(mddev));
goto out;
}
memset(conf, 0, sizeof(*conf));
conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
GFP_KERNEL);
if (!conf->mirrors) {
printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
mdname(mddev));
goto out_free_conf;
}
memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
conf->near_copies = nc;
conf->far_copies = fc;
conf->copies = nc*fc;
conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
stride = mddev->size >> (conf->chunk_shift-1);
sector_div(stride, fc);
conf->stride = stride << conf->chunk_shift;
conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
r10bio_pool_free, conf);
if (!conf->r10bio_pool) {
printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
mdname(mddev));
goto out_free_conf;
}
ITERATE_RDEV(mddev, rdev, tmp) {
disk_idx = rdev->raid_disk;
if (disk_idx >= mddev->raid_disks
|| disk_idx < 0)
continue;
disk = conf->mirrors + disk_idx;
disk->rdev = rdev;
blk_queue_stack_limits(mddev->queue,
rdev->bdev->bd_disk->queue);
/* as we don't honour merge_bvec_fn, we must never risk
* violating it, so limit ->max_sector to one PAGE, as
* a one page request is never in violation.
*/
if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
mddev->queue->max_sectors > (PAGE_SIZE>>9))
mddev->queue->max_sectors = (PAGE_SIZE>>9);
disk->head_position = 0;
if (!rdev->faulty && rdev->in_sync)
conf->working_disks++;
}
conf->raid_disks = mddev->raid_disks;
conf->mddev = mddev;
spin_lock_init(&conf->device_lock);
INIT_LIST_HEAD(&conf->retry_list);
spin_lock_init(&conf->resync_lock);
init_waitqueue_head(&conf->wait_idle);
init_waitqueue_head(&conf->wait_resume);
if (!conf->working_disks) {
printk(KERN_ERR "raid10: no operational mirrors for %s\n",
mdname(mddev));
goto out_free_conf;
}
mddev->degraded = 0;
for (i = 0; i < conf->raid_disks; i++) {
disk = conf->mirrors + i;
if (!disk->rdev) {
disk->head_position = 0;
mddev->degraded++;
}
}
mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
if (!mddev->thread) {
printk(KERN_ERR
"raid10: couldn't allocate thread for %s\n",
mdname(mddev));
goto out_free_conf;
}
printk(KERN_INFO
"raid10: raid set %s active with %d out of %d devices\n",
mdname(mddev), mddev->raid_disks - mddev->degraded,
mddev->raid_disks);
/*
* Ok, everything is just fine now
*/
size = conf->stride * conf->raid_disks;
sector_div(size, conf->near_copies);
mddev->array_size = size/2;
mddev->resync_max_sectors = size;
mddev->queue->unplug_fn = raid10_unplug;
mddev->queue->issue_flush_fn = raid10_issue_flush;
/* Calculate max read-ahead size.
* We need to readahead at least twice a whole stripe....
* maybe...
*/
{
int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
stripe /= conf->near_copies;
if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
mddev->queue->backing_dev_info.ra_pages = 2* stripe;
}
if (conf->near_copies < mddev->raid_disks)
blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
return 0;
out_free_conf:
if (conf->r10bio_pool)
mempool_destroy(conf->r10bio_pool);
kfree(conf->mirrors);
kfree(conf);
mddev->private = NULL;
out:
return -EIO;
}
static int stop(mddev_t *mddev)
{
conf_t *conf = mddev_to_conf(mddev);
md_unregister_thread(mddev->thread);
mddev->thread = NULL;
blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
if (conf->r10bio_pool)
mempool_destroy(conf->r10bio_pool);
kfree(conf->mirrors);
kfree(conf);
mddev->private = NULL;
return 0;
}
static mdk_personality_t raid10_personality =
{
.name = "raid10",
.owner = THIS_MODULE,
.make_request = make_request,
.run = run,
.stop = stop,
.status = status,
.error_handler = error,
.hot_add_disk = raid10_add_disk,
.hot_remove_disk= raid10_remove_disk,
.spare_active = raid10_spare_active,
.sync_request = sync_request,
};
static int __init raid_init(void)
{
return register_md_personality(RAID10, &raid10_personality);
}
static void raid_exit(void)
{
unregister_md_personality(RAID10);
}
module_init(raid_init);
module_exit(raid_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-9"); /* RAID10 */