2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 22:54:11 +08:00
linux-next/drivers/gpu/drm/radeon/radeon_ttm.c
Marek Olšák 67e8e3f970 drm/radeon: track memory statistics about VRAM and GTT usage and buffer moves v2
The statistics are:
- VRAM usage in bytes
- GTT usage in bytes
- number of bytes moved by TTM

The last one is actually a counter, so you need to sample it before and after
command submission and take the difference.

This is useful for finding performance bottlenecks. Userspace queries are
also added.

v2: use atomic64_t

Signed-off-by: Marek Olšák <marek.olsak@amd.com>
Reviewed-by: Christian König <christian.koenig@amd.com>
2014-03-03 10:54:19 +01:00

1027 lines
26 KiB
C

/*
* Copyright 2009 Jerome Glisse.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/*
* Authors:
* Jerome Glisse <glisse@freedesktop.org>
* Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
* Dave Airlie
*/
#include <ttm/ttm_bo_api.h>
#include <ttm/ttm_bo_driver.h>
#include <ttm/ttm_placement.h>
#include <ttm/ttm_module.h>
#include <ttm/ttm_page_alloc.h>
#include <drm/drmP.h>
#include <drm/radeon_drm.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/swiotlb.h>
#include <linux/debugfs.h>
#include "radeon_reg.h"
#include "radeon.h"
#define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
static int radeon_ttm_debugfs_init(struct radeon_device *rdev);
static void radeon_ttm_debugfs_fini(struct radeon_device *rdev);
static struct radeon_device *radeon_get_rdev(struct ttm_bo_device *bdev)
{
struct radeon_mman *mman;
struct radeon_device *rdev;
mman = container_of(bdev, struct radeon_mman, bdev);
rdev = container_of(mman, struct radeon_device, mman);
return rdev;
}
/*
* Global memory.
*/
static int radeon_ttm_mem_global_init(struct drm_global_reference *ref)
{
return ttm_mem_global_init(ref->object);
}
static void radeon_ttm_mem_global_release(struct drm_global_reference *ref)
{
ttm_mem_global_release(ref->object);
}
static int radeon_ttm_global_init(struct radeon_device *rdev)
{
struct drm_global_reference *global_ref;
int r;
rdev->mman.mem_global_referenced = false;
global_ref = &rdev->mman.mem_global_ref;
global_ref->global_type = DRM_GLOBAL_TTM_MEM;
global_ref->size = sizeof(struct ttm_mem_global);
global_ref->init = &radeon_ttm_mem_global_init;
global_ref->release = &radeon_ttm_mem_global_release;
r = drm_global_item_ref(global_ref);
if (r != 0) {
DRM_ERROR("Failed setting up TTM memory accounting "
"subsystem.\n");
return r;
}
rdev->mman.bo_global_ref.mem_glob =
rdev->mman.mem_global_ref.object;
global_ref = &rdev->mman.bo_global_ref.ref;
global_ref->global_type = DRM_GLOBAL_TTM_BO;
global_ref->size = sizeof(struct ttm_bo_global);
global_ref->init = &ttm_bo_global_init;
global_ref->release = &ttm_bo_global_release;
r = drm_global_item_ref(global_ref);
if (r != 0) {
DRM_ERROR("Failed setting up TTM BO subsystem.\n");
drm_global_item_unref(&rdev->mman.mem_global_ref);
return r;
}
rdev->mman.mem_global_referenced = true;
return 0;
}
static void radeon_ttm_global_fini(struct radeon_device *rdev)
{
if (rdev->mman.mem_global_referenced) {
drm_global_item_unref(&rdev->mman.bo_global_ref.ref);
drm_global_item_unref(&rdev->mman.mem_global_ref);
rdev->mman.mem_global_referenced = false;
}
}
static int radeon_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
{
return 0;
}
static int radeon_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
struct ttm_mem_type_manager *man)
{
struct radeon_device *rdev;
rdev = radeon_get_rdev(bdev);
switch (type) {
case TTM_PL_SYSTEM:
/* System memory */
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_MASK_CACHING;
man->default_caching = TTM_PL_FLAG_CACHED;
break;
case TTM_PL_TT:
man->func = &ttm_bo_manager_func;
man->gpu_offset = rdev->mc.gtt_start;
man->available_caching = TTM_PL_MASK_CACHING;
man->default_caching = TTM_PL_FLAG_CACHED;
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
#if __OS_HAS_AGP
if (rdev->flags & RADEON_IS_AGP) {
if (!rdev->ddev->agp) {
DRM_ERROR("AGP is not enabled for memory type %u\n",
(unsigned)type);
return -EINVAL;
}
if (!rdev->ddev->agp->cant_use_aperture)
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_WC;
man->default_caching = TTM_PL_FLAG_WC;
}
#endif
break;
case TTM_PL_VRAM:
/* "On-card" video ram */
man->func = &ttm_bo_manager_func;
man->gpu_offset = rdev->mc.vram_start;
man->flags = TTM_MEMTYPE_FLAG_FIXED |
TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
man->default_caching = TTM_PL_FLAG_WC;
break;
default:
DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
return -EINVAL;
}
return 0;
}
static void radeon_evict_flags(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
struct radeon_bo *rbo;
static u32 placements = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM;
if (!radeon_ttm_bo_is_radeon_bo(bo)) {
placement->fpfn = 0;
placement->lpfn = 0;
placement->placement = &placements;
placement->busy_placement = &placements;
placement->num_placement = 1;
placement->num_busy_placement = 1;
return;
}
rbo = container_of(bo, struct radeon_bo, tbo);
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
if (rbo->rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready == false)
radeon_ttm_placement_from_domain(rbo, RADEON_GEM_DOMAIN_CPU);
else
radeon_ttm_placement_from_domain(rbo, RADEON_GEM_DOMAIN_GTT);
break;
case TTM_PL_TT:
default:
radeon_ttm_placement_from_domain(rbo, RADEON_GEM_DOMAIN_CPU);
}
*placement = rbo->placement;
}
static int radeon_verify_access(struct ttm_buffer_object *bo, struct file *filp)
{
struct radeon_bo *rbo = container_of(bo, struct radeon_bo, tbo);
return drm_vma_node_verify_access(&rbo->gem_base.vma_node, filp);
}
static void radeon_move_null(struct ttm_buffer_object *bo,
struct ttm_mem_reg *new_mem)
{
struct ttm_mem_reg *old_mem = &bo->mem;
BUG_ON(old_mem->mm_node != NULL);
*old_mem = *new_mem;
new_mem->mm_node = NULL;
}
static int radeon_move_blit(struct ttm_buffer_object *bo,
bool evict, bool no_wait_gpu,
struct ttm_mem_reg *new_mem,
struct ttm_mem_reg *old_mem)
{
struct radeon_device *rdev;
uint64_t old_start, new_start;
struct radeon_fence *fence;
int r, ridx;
rdev = radeon_get_rdev(bo->bdev);
ridx = radeon_copy_ring_index(rdev);
old_start = old_mem->start << PAGE_SHIFT;
new_start = new_mem->start << PAGE_SHIFT;
switch (old_mem->mem_type) {
case TTM_PL_VRAM:
old_start += rdev->mc.vram_start;
break;
case TTM_PL_TT:
old_start += rdev->mc.gtt_start;
break;
default:
DRM_ERROR("Unknown placement %d\n", old_mem->mem_type);
return -EINVAL;
}
switch (new_mem->mem_type) {
case TTM_PL_VRAM:
new_start += rdev->mc.vram_start;
break;
case TTM_PL_TT:
new_start += rdev->mc.gtt_start;
break;
default:
DRM_ERROR("Unknown placement %d\n", old_mem->mem_type);
return -EINVAL;
}
if (!rdev->ring[ridx].ready) {
DRM_ERROR("Trying to move memory with ring turned off.\n");
return -EINVAL;
}
BUILD_BUG_ON((PAGE_SIZE % RADEON_GPU_PAGE_SIZE) != 0);
/* sync other rings */
fence = bo->sync_obj;
r = radeon_copy(rdev, old_start, new_start,
new_mem->num_pages * (PAGE_SIZE / RADEON_GPU_PAGE_SIZE), /* GPU pages */
&fence);
/* FIXME: handle copy error */
r = ttm_bo_move_accel_cleanup(bo, (void *)fence,
evict, no_wait_gpu, new_mem);
radeon_fence_unref(&fence);
return r;
}
static int radeon_move_vram_ram(struct ttm_buffer_object *bo,
bool evict, bool interruptible,
bool no_wait_gpu,
struct ttm_mem_reg *new_mem)
{
struct radeon_device *rdev;
struct ttm_mem_reg *old_mem = &bo->mem;
struct ttm_mem_reg tmp_mem;
u32 placements;
struct ttm_placement placement;
int r;
rdev = radeon_get_rdev(bo->bdev);
tmp_mem = *new_mem;
tmp_mem.mm_node = NULL;
placement.fpfn = 0;
placement.lpfn = 0;
placement.num_placement = 1;
placement.placement = &placements;
placement.num_busy_placement = 1;
placement.busy_placement = &placements;
placements = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
r = ttm_bo_mem_space(bo, &placement, &tmp_mem,
interruptible, no_wait_gpu);
if (unlikely(r)) {
return r;
}
r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
if (unlikely(r)) {
goto out_cleanup;
}
r = ttm_tt_bind(bo->ttm, &tmp_mem);
if (unlikely(r)) {
goto out_cleanup;
}
r = radeon_move_blit(bo, true, no_wait_gpu, &tmp_mem, old_mem);
if (unlikely(r)) {
goto out_cleanup;
}
r = ttm_bo_move_ttm(bo, true, no_wait_gpu, new_mem);
out_cleanup:
ttm_bo_mem_put(bo, &tmp_mem);
return r;
}
static int radeon_move_ram_vram(struct ttm_buffer_object *bo,
bool evict, bool interruptible,
bool no_wait_gpu,
struct ttm_mem_reg *new_mem)
{
struct radeon_device *rdev;
struct ttm_mem_reg *old_mem = &bo->mem;
struct ttm_mem_reg tmp_mem;
struct ttm_placement placement;
u32 placements;
int r;
rdev = radeon_get_rdev(bo->bdev);
tmp_mem = *new_mem;
tmp_mem.mm_node = NULL;
placement.fpfn = 0;
placement.lpfn = 0;
placement.num_placement = 1;
placement.placement = &placements;
placement.num_busy_placement = 1;
placement.busy_placement = &placements;
placements = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
r = ttm_bo_mem_space(bo, &placement, &tmp_mem,
interruptible, no_wait_gpu);
if (unlikely(r)) {
return r;
}
r = ttm_bo_move_ttm(bo, true, no_wait_gpu, &tmp_mem);
if (unlikely(r)) {
goto out_cleanup;
}
r = radeon_move_blit(bo, true, no_wait_gpu, new_mem, old_mem);
if (unlikely(r)) {
goto out_cleanup;
}
out_cleanup:
ttm_bo_mem_put(bo, &tmp_mem);
return r;
}
static int radeon_bo_move(struct ttm_buffer_object *bo,
bool evict, bool interruptible,
bool no_wait_gpu,
struct ttm_mem_reg *new_mem)
{
struct radeon_device *rdev;
struct ttm_mem_reg *old_mem = &bo->mem;
int r;
rdev = radeon_get_rdev(bo->bdev);
if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
radeon_move_null(bo, new_mem);
return 0;
}
if ((old_mem->mem_type == TTM_PL_TT &&
new_mem->mem_type == TTM_PL_SYSTEM) ||
(old_mem->mem_type == TTM_PL_SYSTEM &&
new_mem->mem_type == TTM_PL_TT)) {
/* bind is enough */
radeon_move_null(bo, new_mem);
return 0;
}
if (!rdev->ring[radeon_copy_ring_index(rdev)].ready ||
rdev->asic->copy.copy == NULL) {
/* use memcpy */
goto memcpy;
}
if (old_mem->mem_type == TTM_PL_VRAM &&
new_mem->mem_type == TTM_PL_SYSTEM) {
r = radeon_move_vram_ram(bo, evict, interruptible,
no_wait_gpu, new_mem);
} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
new_mem->mem_type == TTM_PL_VRAM) {
r = radeon_move_ram_vram(bo, evict, interruptible,
no_wait_gpu, new_mem);
} else {
r = radeon_move_blit(bo, evict, no_wait_gpu, new_mem, old_mem);
}
if (r) {
memcpy:
r = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, new_mem);
if (r) {
return r;
}
}
/* update statistics */
atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &rdev->num_bytes_moved);
return 0;
}
static int radeon_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
struct radeon_device *rdev = radeon_get_rdev(bdev);
mem->bus.addr = NULL;
mem->bus.offset = 0;
mem->bus.size = mem->num_pages << PAGE_SHIFT;
mem->bus.base = 0;
mem->bus.is_iomem = false;
if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
return -EINVAL;
switch (mem->mem_type) {
case TTM_PL_SYSTEM:
/* system memory */
return 0;
case TTM_PL_TT:
#if __OS_HAS_AGP
if (rdev->flags & RADEON_IS_AGP) {
/* RADEON_IS_AGP is set only if AGP is active */
mem->bus.offset = mem->start << PAGE_SHIFT;
mem->bus.base = rdev->mc.agp_base;
mem->bus.is_iomem = !rdev->ddev->agp->cant_use_aperture;
}
#endif
break;
case TTM_PL_VRAM:
mem->bus.offset = mem->start << PAGE_SHIFT;
/* check if it's visible */
if ((mem->bus.offset + mem->bus.size) > rdev->mc.visible_vram_size)
return -EINVAL;
mem->bus.base = rdev->mc.aper_base;
mem->bus.is_iomem = true;
#ifdef __alpha__
/*
* Alpha: use bus.addr to hold the ioremap() return,
* so we can modify bus.base below.
*/
if (mem->placement & TTM_PL_FLAG_WC)
mem->bus.addr =
ioremap_wc(mem->bus.base + mem->bus.offset,
mem->bus.size);
else
mem->bus.addr =
ioremap_nocache(mem->bus.base + mem->bus.offset,
mem->bus.size);
/*
* Alpha: Use just the bus offset plus
* the hose/domain memory base for bus.base.
* It then can be used to build PTEs for VRAM
* access, as done in ttm_bo_vm_fault().
*/
mem->bus.base = (mem->bus.base & 0x0ffffffffUL) +
rdev->ddev->hose->dense_mem_base;
#endif
break;
default:
return -EINVAL;
}
return 0;
}
static void radeon_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
}
static int radeon_sync_obj_wait(void *sync_obj, bool lazy, bool interruptible)
{
return radeon_fence_wait((struct radeon_fence *)sync_obj, interruptible);
}
static int radeon_sync_obj_flush(void *sync_obj)
{
return 0;
}
static void radeon_sync_obj_unref(void **sync_obj)
{
radeon_fence_unref((struct radeon_fence **)sync_obj);
}
static void *radeon_sync_obj_ref(void *sync_obj)
{
return radeon_fence_ref((struct radeon_fence *)sync_obj);
}
static bool radeon_sync_obj_signaled(void *sync_obj)
{
return radeon_fence_signaled((struct radeon_fence *)sync_obj);
}
/*
* TTM backend functions.
*/
struct radeon_ttm_tt {
struct ttm_dma_tt ttm;
struct radeon_device *rdev;
u64 offset;
};
static int radeon_ttm_backend_bind(struct ttm_tt *ttm,
struct ttm_mem_reg *bo_mem)
{
struct radeon_ttm_tt *gtt = (void*)ttm;
int r;
gtt->offset = (unsigned long)(bo_mem->start << PAGE_SHIFT);
if (!ttm->num_pages) {
WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
ttm->num_pages, bo_mem, ttm);
}
r = radeon_gart_bind(gtt->rdev, gtt->offset,
ttm->num_pages, ttm->pages, gtt->ttm.dma_address);
if (r) {
DRM_ERROR("failed to bind %lu pages at 0x%08X\n",
ttm->num_pages, (unsigned)gtt->offset);
return r;
}
return 0;
}
static int radeon_ttm_backend_unbind(struct ttm_tt *ttm)
{
struct radeon_ttm_tt *gtt = (void *)ttm;
radeon_gart_unbind(gtt->rdev, gtt->offset, ttm->num_pages);
return 0;
}
static void radeon_ttm_backend_destroy(struct ttm_tt *ttm)
{
struct radeon_ttm_tt *gtt = (void *)ttm;
ttm_dma_tt_fini(&gtt->ttm);
kfree(gtt);
}
static struct ttm_backend_func radeon_backend_func = {
.bind = &radeon_ttm_backend_bind,
.unbind = &radeon_ttm_backend_unbind,
.destroy = &radeon_ttm_backend_destroy,
};
static struct ttm_tt *radeon_ttm_tt_create(struct ttm_bo_device *bdev,
unsigned long size, uint32_t page_flags,
struct page *dummy_read_page)
{
struct radeon_device *rdev;
struct radeon_ttm_tt *gtt;
rdev = radeon_get_rdev(bdev);
#if __OS_HAS_AGP
if (rdev->flags & RADEON_IS_AGP) {
return ttm_agp_tt_create(bdev, rdev->ddev->agp->bridge,
size, page_flags, dummy_read_page);
}
#endif
gtt = kzalloc(sizeof(struct radeon_ttm_tt), GFP_KERNEL);
if (gtt == NULL) {
return NULL;
}
gtt->ttm.ttm.func = &radeon_backend_func;
gtt->rdev = rdev;
if (ttm_dma_tt_init(&gtt->ttm, bdev, size, page_flags, dummy_read_page)) {
kfree(gtt);
return NULL;
}
return &gtt->ttm.ttm;
}
static int radeon_ttm_tt_populate(struct ttm_tt *ttm)
{
struct radeon_device *rdev;
struct radeon_ttm_tt *gtt = (void *)ttm;
unsigned i;
int r;
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
if (ttm->state != tt_unpopulated)
return 0;
if (slave && ttm->sg) {
drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
gtt->ttm.dma_address, ttm->num_pages);
ttm->state = tt_unbound;
return 0;
}
rdev = radeon_get_rdev(ttm->bdev);
#if __OS_HAS_AGP
if (rdev->flags & RADEON_IS_AGP) {
return ttm_agp_tt_populate(ttm);
}
#endif
#ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) {
return ttm_dma_populate(&gtt->ttm, rdev->dev);
}
#endif
r = ttm_pool_populate(ttm);
if (r) {
return r;
}
for (i = 0; i < ttm->num_pages; i++) {
gtt->ttm.dma_address[i] = pci_map_page(rdev->pdev, ttm->pages[i],
0, PAGE_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(rdev->pdev, gtt->ttm.dma_address[i])) {
while (--i) {
pci_unmap_page(rdev->pdev, gtt->ttm.dma_address[i],
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
gtt->ttm.dma_address[i] = 0;
}
ttm_pool_unpopulate(ttm);
return -EFAULT;
}
}
return 0;
}
static void radeon_ttm_tt_unpopulate(struct ttm_tt *ttm)
{
struct radeon_device *rdev;
struct radeon_ttm_tt *gtt = (void *)ttm;
unsigned i;
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
if (slave)
return;
rdev = radeon_get_rdev(ttm->bdev);
#if __OS_HAS_AGP
if (rdev->flags & RADEON_IS_AGP) {
ttm_agp_tt_unpopulate(ttm);
return;
}
#endif
#ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) {
ttm_dma_unpopulate(&gtt->ttm, rdev->dev);
return;
}
#endif
for (i = 0; i < ttm->num_pages; i++) {
if (gtt->ttm.dma_address[i]) {
pci_unmap_page(rdev->pdev, gtt->ttm.dma_address[i],
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
}
}
ttm_pool_unpopulate(ttm);
}
static struct ttm_bo_driver radeon_bo_driver = {
.ttm_tt_create = &radeon_ttm_tt_create,
.ttm_tt_populate = &radeon_ttm_tt_populate,
.ttm_tt_unpopulate = &radeon_ttm_tt_unpopulate,
.invalidate_caches = &radeon_invalidate_caches,
.init_mem_type = &radeon_init_mem_type,
.evict_flags = &radeon_evict_flags,
.move = &radeon_bo_move,
.verify_access = &radeon_verify_access,
.sync_obj_signaled = &radeon_sync_obj_signaled,
.sync_obj_wait = &radeon_sync_obj_wait,
.sync_obj_flush = &radeon_sync_obj_flush,
.sync_obj_unref = &radeon_sync_obj_unref,
.sync_obj_ref = &radeon_sync_obj_ref,
.move_notify = &radeon_bo_move_notify,
.fault_reserve_notify = &radeon_bo_fault_reserve_notify,
.io_mem_reserve = &radeon_ttm_io_mem_reserve,
.io_mem_free = &radeon_ttm_io_mem_free,
};
int radeon_ttm_init(struct radeon_device *rdev)
{
int r;
r = radeon_ttm_global_init(rdev);
if (r) {
return r;
}
/* No others user of address space so set it to 0 */
r = ttm_bo_device_init(&rdev->mman.bdev,
rdev->mman.bo_global_ref.ref.object,
&radeon_bo_driver, DRM_FILE_PAGE_OFFSET,
rdev->need_dma32);
if (r) {
DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
return r;
}
rdev->mman.initialized = true;
r = ttm_bo_init_mm(&rdev->mman.bdev, TTM_PL_VRAM,
rdev->mc.real_vram_size >> PAGE_SHIFT);
if (r) {
DRM_ERROR("Failed initializing VRAM heap.\n");
return r;
}
r = radeon_bo_create(rdev, 256 * 1024, PAGE_SIZE, true,
RADEON_GEM_DOMAIN_VRAM,
NULL, &rdev->stollen_vga_memory);
if (r) {
return r;
}
r = radeon_bo_reserve(rdev->stollen_vga_memory, false);
if (r)
return r;
r = radeon_bo_pin(rdev->stollen_vga_memory, RADEON_GEM_DOMAIN_VRAM, NULL);
radeon_bo_unreserve(rdev->stollen_vga_memory);
if (r) {
radeon_bo_unref(&rdev->stollen_vga_memory);
return r;
}
DRM_INFO("radeon: %uM of VRAM memory ready\n",
(unsigned) (rdev->mc.real_vram_size / (1024 * 1024)));
r = ttm_bo_init_mm(&rdev->mman.bdev, TTM_PL_TT,
rdev->mc.gtt_size >> PAGE_SHIFT);
if (r) {
DRM_ERROR("Failed initializing GTT heap.\n");
return r;
}
DRM_INFO("radeon: %uM of GTT memory ready.\n",
(unsigned)(rdev->mc.gtt_size / (1024 * 1024)));
rdev->mman.bdev.dev_mapping = rdev->ddev->dev_mapping;
r = radeon_ttm_debugfs_init(rdev);
if (r) {
DRM_ERROR("Failed to init debugfs\n");
return r;
}
return 0;
}
void radeon_ttm_fini(struct radeon_device *rdev)
{
int r;
if (!rdev->mman.initialized)
return;
radeon_ttm_debugfs_fini(rdev);
if (rdev->stollen_vga_memory) {
r = radeon_bo_reserve(rdev->stollen_vga_memory, false);
if (r == 0) {
radeon_bo_unpin(rdev->stollen_vga_memory);
radeon_bo_unreserve(rdev->stollen_vga_memory);
}
radeon_bo_unref(&rdev->stollen_vga_memory);
}
ttm_bo_clean_mm(&rdev->mman.bdev, TTM_PL_VRAM);
ttm_bo_clean_mm(&rdev->mman.bdev, TTM_PL_TT);
ttm_bo_device_release(&rdev->mman.bdev);
radeon_gart_fini(rdev);
radeon_ttm_global_fini(rdev);
rdev->mman.initialized = false;
DRM_INFO("radeon: ttm finalized\n");
}
/* this should only be called at bootup or when userspace
* isn't running */
void radeon_ttm_set_active_vram_size(struct radeon_device *rdev, u64 size)
{
struct ttm_mem_type_manager *man;
if (!rdev->mman.initialized)
return;
man = &rdev->mman.bdev.man[TTM_PL_VRAM];
/* this just adjusts TTM size idea, which sets lpfn to the correct value */
man->size = size >> PAGE_SHIFT;
}
static struct vm_operations_struct radeon_ttm_vm_ops;
static const struct vm_operations_struct *ttm_vm_ops = NULL;
static int radeon_ttm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct ttm_buffer_object *bo;
struct radeon_device *rdev;
int r;
bo = (struct ttm_buffer_object *)vma->vm_private_data;
if (bo == NULL) {
return VM_FAULT_NOPAGE;
}
rdev = radeon_get_rdev(bo->bdev);
down_read(&rdev->pm.mclk_lock);
r = ttm_vm_ops->fault(vma, vmf);
up_read(&rdev->pm.mclk_lock);
return r;
}
int radeon_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct drm_file *file_priv;
struct radeon_device *rdev;
int r;
if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET)) {
return drm_mmap(filp, vma);
}
file_priv = filp->private_data;
rdev = file_priv->minor->dev->dev_private;
if (rdev == NULL) {
return -EINVAL;
}
r = ttm_bo_mmap(filp, vma, &rdev->mman.bdev);
if (unlikely(r != 0)) {
return r;
}
if (unlikely(ttm_vm_ops == NULL)) {
ttm_vm_ops = vma->vm_ops;
radeon_ttm_vm_ops = *ttm_vm_ops;
radeon_ttm_vm_ops.fault = &radeon_ttm_fault;
}
vma->vm_ops = &radeon_ttm_vm_ops;
return 0;
}
#if defined(CONFIG_DEBUG_FS)
static int radeon_mm_dump_table(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
unsigned ttm_pl = *(int *)node->info_ent->data;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
struct drm_mm *mm = (struct drm_mm *)rdev->mman.bdev.man[ttm_pl].priv;
int ret;
struct ttm_bo_global *glob = rdev->mman.bdev.glob;
spin_lock(&glob->lru_lock);
ret = drm_mm_dump_table(m, mm);
spin_unlock(&glob->lru_lock);
return ret;
}
static int ttm_pl_vram = TTM_PL_VRAM;
static int ttm_pl_tt = TTM_PL_TT;
static struct drm_info_list radeon_ttm_debugfs_list[] = {
{"radeon_vram_mm", radeon_mm_dump_table, 0, &ttm_pl_vram},
{"radeon_gtt_mm", radeon_mm_dump_table, 0, &ttm_pl_tt},
{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
#ifdef CONFIG_SWIOTLB
{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
#endif
};
static int radeon_ttm_vram_open(struct inode *inode, struct file *filep)
{
struct radeon_device *rdev = inode->i_private;
i_size_write(inode, rdev->mc.mc_vram_size);
filep->private_data = inode->i_private;
return 0;
}
static ssize_t radeon_ttm_vram_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct radeon_device *rdev = f->private_data;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
unsigned long flags;
uint32_t value;
if (*pos >= rdev->mc.mc_vram_size)
return result;
spin_lock_irqsave(&rdev->mmio_idx_lock, flags);
WREG32(RADEON_MM_INDEX, ((uint32_t)*pos) | 0x80000000);
if (rdev->family >= CHIP_CEDAR)
WREG32(EVERGREEN_MM_INDEX_HI, *pos >> 31);
value = RREG32(RADEON_MM_DATA);
spin_unlock_irqrestore(&rdev->mmio_idx_lock, flags);
r = put_user(value, (uint32_t *)buf);
if (r)
return r;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
static const struct file_operations radeon_ttm_vram_fops = {
.owner = THIS_MODULE,
.open = radeon_ttm_vram_open,
.read = radeon_ttm_vram_read,
.llseek = default_llseek
};
static int radeon_ttm_gtt_open(struct inode *inode, struct file *filep)
{
struct radeon_device *rdev = inode->i_private;
i_size_write(inode, rdev->mc.gtt_size);
filep->private_data = inode->i_private;
return 0;
}
static ssize_t radeon_ttm_gtt_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct radeon_device *rdev = f->private_data;
ssize_t result = 0;
int r;
while (size) {
loff_t p = *pos / PAGE_SIZE;
unsigned off = *pos & ~PAGE_MASK;
ssize_t cur_size = min(size, PAGE_SIZE - off);
struct page *page;
void *ptr;
if (p >= rdev->gart.num_cpu_pages)
return result;
page = rdev->gart.pages[p];
if (page) {
ptr = kmap(page);
ptr += off;
r = copy_to_user(buf, ptr, cur_size);
kunmap(rdev->gart.pages[p]);
} else
r = clear_user(buf, cur_size);
if (r)
return -EFAULT;
result += cur_size;
buf += cur_size;
*pos += cur_size;
size -= cur_size;
}
return result;
}
static const struct file_operations radeon_ttm_gtt_fops = {
.owner = THIS_MODULE,
.open = radeon_ttm_gtt_open,
.read = radeon_ttm_gtt_read,
.llseek = default_llseek
};
#endif
static int radeon_ttm_debugfs_init(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
unsigned count;
struct drm_minor *minor = rdev->ddev->primary;
struct dentry *ent, *root = minor->debugfs_root;
ent = debugfs_create_file("radeon_vram", S_IFREG | S_IRUGO, root,
rdev, &radeon_ttm_vram_fops);
if (IS_ERR(ent))
return PTR_ERR(ent);
rdev->mman.vram = ent;
ent = debugfs_create_file("radeon_gtt", S_IFREG | S_IRUGO, root,
rdev, &radeon_ttm_gtt_fops);
if (IS_ERR(ent))
return PTR_ERR(ent);
rdev->mman.gtt = ent;
count = ARRAY_SIZE(radeon_ttm_debugfs_list);
#ifdef CONFIG_SWIOTLB
if (!swiotlb_nr_tbl())
--count;
#endif
return radeon_debugfs_add_files(rdev, radeon_ttm_debugfs_list, count);
#else
return 0;
#endif
}
static void radeon_ttm_debugfs_fini(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
debugfs_remove(rdev->mman.vram);
rdev->mman.vram = NULL;
debugfs_remove(rdev->mman.gtt);
rdev->mman.gtt = NULL;
#endif
}