2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 02:24:21 +08:00
linux-next/drivers/spi/spi-meson-spifc.c
Neil Armstrong 2f58ea64bd spi: meson: Add GXBB compatible
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Acked-by: Kevin Hilman <khilman@baylibre.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
2016-09-12 20:11:39 +01:00

465 lines
11 KiB
C

/*
* Driver for Amlogic Meson SPI flash controller (SPIFC)
*
* Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
/* register map */
#define REG_CMD 0x00
#define REG_ADDR 0x04
#define REG_CTRL 0x08
#define REG_CTRL1 0x0c
#define REG_STATUS 0x10
#define REG_CTRL2 0x14
#define REG_CLOCK 0x18
#define REG_USER 0x1c
#define REG_USER1 0x20
#define REG_USER2 0x24
#define REG_USER3 0x28
#define REG_USER4 0x2c
#define REG_SLAVE 0x30
#define REG_SLAVE1 0x34
#define REG_SLAVE2 0x38
#define REG_SLAVE3 0x3c
#define REG_C0 0x40
#define REG_B8 0x60
#define REG_MAX 0x7c
/* register fields */
#define CMD_USER BIT(18)
#define CTRL_ENABLE_AHB BIT(17)
#define CLOCK_SOURCE BIT(31)
#define CLOCK_DIV_SHIFT 12
#define CLOCK_DIV_MASK (0x3f << CLOCK_DIV_SHIFT)
#define CLOCK_CNT_HIGH_SHIFT 6
#define CLOCK_CNT_HIGH_MASK (0x3f << CLOCK_CNT_HIGH_SHIFT)
#define CLOCK_CNT_LOW_SHIFT 0
#define CLOCK_CNT_LOW_MASK (0x3f << CLOCK_CNT_LOW_SHIFT)
#define USER_DIN_EN_MS BIT(0)
#define USER_CMP_MODE BIT(2)
#define USER_UC_DOUT_SEL BIT(27)
#define USER_UC_DIN_SEL BIT(28)
#define USER_UC_MASK ((BIT(5) - 1) << 27)
#define USER1_BN_UC_DOUT_SHIFT 17
#define USER1_BN_UC_DOUT_MASK (0xff << 16)
#define USER1_BN_UC_DIN_SHIFT 8
#define USER1_BN_UC_DIN_MASK (0xff << 8)
#define USER4_CS_ACT BIT(30)
#define SLAVE_TRST_DONE BIT(4)
#define SLAVE_OP_MODE BIT(30)
#define SLAVE_SW_RST BIT(31)
#define SPIFC_BUFFER_SIZE 64
/**
* struct meson_spifc
* @master: the SPI master
* @regmap: regmap for device registers
* @clk: input clock of the built-in baud rate generator
* @device: the device structure
*/
struct meson_spifc {
struct spi_master *master;
struct regmap *regmap;
struct clk *clk;
struct device *dev;
};
static const struct regmap_config spifc_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = REG_MAX,
};
/**
* meson_spifc_wait_ready() - wait for the current operation to terminate
* @spifc: the Meson SPI device
* Return: 0 on success, a negative value on error
*/
static int meson_spifc_wait_ready(struct meson_spifc *spifc)
{
unsigned long deadline = jiffies + msecs_to_jiffies(5);
u32 data;
do {
regmap_read(spifc->regmap, REG_SLAVE, &data);
if (data & SLAVE_TRST_DONE)
return 0;
cond_resched();
} while (!time_after(jiffies, deadline));
return -ETIMEDOUT;
}
/**
* meson_spifc_drain_buffer() - copy data from device buffer to memory
* @spifc: the Meson SPI device
* @buf: the destination buffer
* @len: number of bytes to copy
*/
static void meson_spifc_drain_buffer(struct meson_spifc *spifc, u8 *buf,
int len)
{
u32 data;
int i = 0;
while (i < len) {
regmap_read(spifc->regmap, REG_C0 + i, &data);
if (len - i >= 4) {
*((u32 *)buf) = data;
buf += 4;
} else {
memcpy(buf, &data, len - i);
break;
}
i += 4;
}
}
/**
* meson_spifc_fill_buffer() - copy data from memory to device buffer
* @spifc: the Meson SPI device
* @buf: the source buffer
* @len: number of bytes to copy
*/
static void meson_spifc_fill_buffer(struct meson_spifc *spifc, const u8 *buf,
int len)
{
u32 data;
int i = 0;
while (i < len) {
if (len - i >= 4)
data = *(u32 *)buf;
else
memcpy(&data, buf, len - i);
regmap_write(spifc->regmap, REG_C0 + i, data);
buf += 4;
i += 4;
}
}
/**
* meson_spifc_setup_speed() - program the clock divider
* @spifc: the Meson SPI device
* @speed: desired speed in Hz
*/
static void meson_spifc_setup_speed(struct meson_spifc *spifc, u32 speed)
{
unsigned long parent, value;
int n;
parent = clk_get_rate(spifc->clk);
n = max_t(int, parent / speed - 1, 1);
dev_dbg(spifc->dev, "parent %lu, speed %u, n %d\n", parent,
speed, n);
value = (n << CLOCK_DIV_SHIFT) & CLOCK_DIV_MASK;
value |= (n << CLOCK_CNT_LOW_SHIFT) & CLOCK_CNT_LOW_MASK;
value |= (((n + 1) / 2 - 1) << CLOCK_CNT_HIGH_SHIFT) &
CLOCK_CNT_HIGH_MASK;
regmap_write(spifc->regmap, REG_CLOCK, value);
}
/**
* meson_spifc_txrx() - transfer a chunk of data
* @spifc: the Meson SPI device
* @xfer: the current SPI transfer
* @offset: offset of the data to transfer
* @len: length of the data to transfer
* @last_xfer: whether this is the last transfer of the message
* @last_chunk: whether this is the last chunk of the transfer
* Return: 0 on success, a negative value on error
*/
static int meson_spifc_txrx(struct meson_spifc *spifc,
struct spi_transfer *xfer,
int offset, int len, bool last_xfer,
bool last_chunk)
{
bool keep_cs = true;
int ret;
if (xfer->tx_buf)
meson_spifc_fill_buffer(spifc, xfer->tx_buf + offset, len);
/* enable DOUT stage */
regmap_update_bits(spifc->regmap, REG_USER, USER_UC_MASK,
USER_UC_DOUT_SEL);
regmap_write(spifc->regmap, REG_USER1,
(8 * len - 1) << USER1_BN_UC_DOUT_SHIFT);
/* enable data input during DOUT */
regmap_update_bits(spifc->regmap, REG_USER, USER_DIN_EN_MS,
USER_DIN_EN_MS);
if (last_chunk) {
if (last_xfer)
keep_cs = xfer->cs_change;
else
keep_cs = !xfer->cs_change;
}
regmap_update_bits(spifc->regmap, REG_USER4, USER4_CS_ACT,
keep_cs ? USER4_CS_ACT : 0);
/* clear transition done bit */
regmap_update_bits(spifc->regmap, REG_SLAVE, SLAVE_TRST_DONE, 0);
/* start transfer */
regmap_update_bits(spifc->regmap, REG_CMD, CMD_USER, CMD_USER);
ret = meson_spifc_wait_ready(spifc);
if (!ret && xfer->rx_buf)
meson_spifc_drain_buffer(spifc, xfer->rx_buf + offset, len);
return ret;
}
/**
* meson_spifc_transfer_one() - perform a single transfer
* @master: the SPI master
* @spi: the SPI device
* @xfer: the current SPI transfer
* Return: 0 on success, a negative value on error
*/
static int meson_spifc_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct meson_spifc *spifc = spi_master_get_devdata(master);
int len, done = 0, ret = 0;
meson_spifc_setup_speed(spifc, xfer->speed_hz);
regmap_update_bits(spifc->regmap, REG_CTRL, CTRL_ENABLE_AHB, 0);
while (done < xfer->len && !ret) {
len = min_t(int, xfer->len - done, SPIFC_BUFFER_SIZE);
ret = meson_spifc_txrx(spifc, xfer, done, len,
spi_transfer_is_last(master, xfer),
done + len >= xfer->len);
done += len;
}
regmap_update_bits(spifc->regmap, REG_CTRL, CTRL_ENABLE_AHB,
CTRL_ENABLE_AHB);
return ret;
}
/**
* meson_spifc_hw_init() - reset and initialize the SPI controller
* @spifc: the Meson SPI device
*/
static void meson_spifc_hw_init(struct meson_spifc *spifc)
{
/* reset device */
regmap_update_bits(spifc->regmap, REG_SLAVE, SLAVE_SW_RST,
SLAVE_SW_RST);
/* disable compatible mode */
regmap_update_bits(spifc->regmap, REG_USER, USER_CMP_MODE, 0);
/* set master mode */
regmap_update_bits(spifc->regmap, REG_SLAVE, SLAVE_OP_MODE, 0);
}
static int meson_spifc_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct meson_spifc *spifc;
struct resource *res;
void __iomem *base;
unsigned int rate;
int ret = 0;
master = spi_alloc_master(&pdev->dev, sizeof(struct meson_spifc));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
spifc = spi_master_get_devdata(master);
spifc->dev = &pdev->dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(spifc->dev, res);
if (IS_ERR(base)) {
ret = PTR_ERR(base);
goto out_err;
}
spifc->regmap = devm_regmap_init_mmio(spifc->dev, base,
&spifc_regmap_config);
if (IS_ERR(spifc->regmap)) {
ret = PTR_ERR(spifc->regmap);
goto out_err;
}
spifc->clk = devm_clk_get(spifc->dev, NULL);
if (IS_ERR(spifc->clk)) {
dev_err(spifc->dev, "missing clock\n");
ret = PTR_ERR(spifc->clk);
goto out_err;
}
ret = clk_prepare_enable(spifc->clk);
if (ret) {
dev_err(spifc->dev, "can't prepare clock\n");
goto out_err;
}
rate = clk_get_rate(spifc->clk);
master->num_chipselect = 1;
master->dev.of_node = pdev->dev.of_node;
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->auto_runtime_pm = true;
master->transfer_one = meson_spifc_transfer_one;
master->min_speed_hz = rate >> 6;
master->max_speed_hz = rate >> 1;
meson_spifc_hw_init(spifc);
pm_runtime_set_active(spifc->dev);
pm_runtime_enable(spifc->dev);
ret = devm_spi_register_master(spifc->dev, master);
if (ret) {
dev_err(spifc->dev, "failed to register spi master\n");
goto out_clk;
}
return 0;
out_clk:
clk_disable_unprepare(spifc->clk);
out_err:
spi_master_put(master);
return ret;
}
static int meson_spifc_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct meson_spifc *spifc = spi_master_get_devdata(master);
pm_runtime_get_sync(&pdev->dev);
clk_disable_unprepare(spifc->clk);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int meson_spifc_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct meson_spifc *spifc = spi_master_get_devdata(master);
int ret;
ret = spi_master_suspend(master);
if (ret)
return ret;
if (!pm_runtime_suspended(dev))
clk_disable_unprepare(spifc->clk);
return 0;
}
static int meson_spifc_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct meson_spifc *spifc = spi_master_get_devdata(master);
int ret;
if (!pm_runtime_suspended(dev)) {
ret = clk_prepare_enable(spifc->clk);
if (ret)
return ret;
}
meson_spifc_hw_init(spifc);
ret = spi_master_resume(master);
if (ret)
clk_disable_unprepare(spifc->clk);
return ret;
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_PM
static int meson_spifc_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct meson_spifc *spifc = spi_master_get_devdata(master);
clk_disable_unprepare(spifc->clk);
return 0;
}
static int meson_spifc_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct meson_spifc *spifc = spi_master_get_devdata(master);
return clk_prepare_enable(spifc->clk);
}
#endif /* CONFIG_PM */
static const struct dev_pm_ops meson_spifc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(meson_spifc_suspend, meson_spifc_resume)
SET_RUNTIME_PM_OPS(meson_spifc_runtime_suspend,
meson_spifc_runtime_resume,
NULL)
};
static const struct of_device_id meson_spifc_dt_match[] = {
{ .compatible = "amlogic,meson6-spifc", },
{ .compatible = "amlogic,meson-gxbb-spifc", },
{ },
};
MODULE_DEVICE_TABLE(of, meson_spifc_dt_match);
static struct platform_driver meson_spifc_driver = {
.probe = meson_spifc_probe,
.remove = meson_spifc_remove,
.driver = {
.name = "meson-spifc",
.of_match_table = of_match_ptr(meson_spifc_dt_match),
.pm = &meson_spifc_pm_ops,
},
};
module_platform_driver(meson_spifc_driver);
MODULE_AUTHOR("Beniamino Galvani <b.galvani@gmail.com>");
MODULE_DESCRIPTION("Amlogic Meson SPIFC driver");
MODULE_LICENSE("GPL v2");