mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-13 08:04:45 +08:00
57fa2369ab
- Clean up list_sort prototypes (Sami Tolvanen) - Introduce CONFIG_CFI_CLANG for arm64 (Sami Tolvanen) -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmCHCR8ACgkQiXL039xt wCZyFQ//fnUZaXR2K354zDyW6CJljMf+d94RF6rH+J6eMTH2/HXa5v0iJokwABLf ussP6qF4k5wtmI22Gm9A5Zc3e4iiry5pC0jOdk0mk4gzWwFN9MdgNxJZIGA3xqhS bsBK4AGrVKjtZl48G1/ZxJuNDeJhVp6GNK2n6/Gl4rZF6R7D/Upz0XelyJRdDpcM HIGma7jZl6xfGU0mdWCzpOGK1zdMca1WVs7A4YuurSbLn5PZJrcNVWLouDqt/Si2 AduSri1gyPClicgvqWjMOzhUpuw/nJtBLRl1x1EsWk/KSZ1/uNVjlewfzdN4fZrr zbtFr2gLubYLK6JOX7/LqoHlOTgE3tYLL+WIVN75DsOGZBKgHhmebTmWLyqzV0SL oqcyM5d3ucC6msdtAK5Fv4MSp8rpjqlK1Ha4SGRT6kC2wut7AhZ3KD7eyRIz8mV9 Sa9mhignGFJnTEUp+LSbYdrAudgSKxB40WyXPmswAXX4VJFRD4ONrrcAON/SzkUT Hw/JdFRCKkJjgwNQjIQoZcUNMTbFz2PlNIEnjJWm38YImQKQlCb2mXaZKCwBkf45 aheCZk17eKoxTCXFMd+KxlyNEtS2yBfq/PpZgvw7GW/pfFbWUg1+2O41LnihIe5v zu0hN1wNCQqgfxiMZqX1OTb9C/2vybzGsXILt+9nppjZ8EBU7iU= =wU6U -----END PGP SIGNATURE----- Merge tag 'cfi-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull CFI on arm64 support from Kees Cook: "This builds on last cycle's LTO work, and allows the arm64 kernels to be built with Clang's Control Flow Integrity feature. This feature has happily lived in Android kernels for almost 3 years[1], so I'm excited to have it ready for upstream. The wide diffstat is mainly due to the treewide fixing of mismatched list_sort prototypes. Other things in core kernel are to address various CFI corner cases. The largest code portion is the CFI runtime implementation itself (which will be shared by all architectures implementing support for CFI). The arm64 pieces are Acked by arm64 maintainers rather than coming through the arm64 tree since carrying this tree over there was going to be awkward. CFI support for x86 is still under development, but is pretty close. There are a handful of corner cases on x86 that need some improvements to Clang and objtool, but otherwise works well. Summary: - Clean up list_sort prototypes (Sami Tolvanen) - Introduce CONFIG_CFI_CLANG for arm64 (Sami Tolvanen)" * tag 'cfi-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: arm64: allow CONFIG_CFI_CLANG to be selected KVM: arm64: Disable CFI for nVHE arm64: ftrace: use function_nocfi for ftrace_call arm64: add __nocfi to __apply_alternatives arm64: add __nocfi to functions that jump to a physical address arm64: use function_nocfi with __pa_symbol arm64: implement function_nocfi psci: use function_nocfi for cpu_resume lkdtm: use function_nocfi treewide: Change list_sort to use const pointers bpf: disable CFI in dispatcher functions kallsyms: strip ThinLTO hashes from static functions kthread: use WARN_ON_FUNCTION_MISMATCH workqueue: use WARN_ON_FUNCTION_MISMATCH module: ensure __cfi_check alignment mm: add generic function_nocfi macro cfi: add __cficanonical add support for Clang CFI
866 lines
21 KiB
C
866 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2019, Intel Corporation.
|
|
*
|
|
* Heterogeneous Memory Attributes Table (HMAT) representation
|
|
*
|
|
* This program parses and reports the platform's HMAT tables, and registers
|
|
* the applicable attributes with the node's interfaces.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "acpi/hmat: " fmt
|
|
#define dev_fmt(fmt) "acpi/hmat: " fmt
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/device.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/memregion.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/node.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/dax.h>
|
|
|
|
static u8 hmat_revision;
|
|
static int hmat_disable __initdata;
|
|
|
|
void __init disable_hmat(void)
|
|
{
|
|
hmat_disable = 1;
|
|
}
|
|
|
|
static LIST_HEAD(targets);
|
|
static LIST_HEAD(initiators);
|
|
static LIST_HEAD(localities);
|
|
|
|
static DEFINE_MUTEX(target_lock);
|
|
|
|
/*
|
|
* The defined enum order is used to prioritize attributes to break ties when
|
|
* selecting the best performing node.
|
|
*/
|
|
enum locality_types {
|
|
WRITE_LATENCY,
|
|
READ_LATENCY,
|
|
WRITE_BANDWIDTH,
|
|
READ_BANDWIDTH,
|
|
};
|
|
|
|
static struct memory_locality *localities_types[4];
|
|
|
|
struct target_cache {
|
|
struct list_head node;
|
|
struct node_cache_attrs cache_attrs;
|
|
};
|
|
|
|
struct memory_target {
|
|
struct list_head node;
|
|
unsigned int memory_pxm;
|
|
unsigned int processor_pxm;
|
|
struct resource memregions;
|
|
struct node_hmem_attrs hmem_attrs[2];
|
|
struct list_head caches;
|
|
struct node_cache_attrs cache_attrs;
|
|
bool registered;
|
|
};
|
|
|
|
struct memory_initiator {
|
|
struct list_head node;
|
|
unsigned int processor_pxm;
|
|
bool has_cpu;
|
|
};
|
|
|
|
struct memory_locality {
|
|
struct list_head node;
|
|
struct acpi_hmat_locality *hmat_loc;
|
|
};
|
|
|
|
static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
|
|
{
|
|
struct memory_initiator *initiator;
|
|
|
|
list_for_each_entry(initiator, &initiators, node)
|
|
if (initiator->processor_pxm == cpu_pxm)
|
|
return initiator;
|
|
return NULL;
|
|
}
|
|
|
|
static struct memory_target *find_mem_target(unsigned int mem_pxm)
|
|
{
|
|
struct memory_target *target;
|
|
|
|
list_for_each_entry(target, &targets, node)
|
|
if (target->memory_pxm == mem_pxm)
|
|
return target;
|
|
return NULL;
|
|
}
|
|
|
|
static __init void alloc_memory_initiator(unsigned int cpu_pxm)
|
|
{
|
|
struct memory_initiator *initiator;
|
|
|
|
if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
|
|
return;
|
|
|
|
initiator = find_mem_initiator(cpu_pxm);
|
|
if (initiator)
|
|
return;
|
|
|
|
initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
|
|
if (!initiator)
|
|
return;
|
|
|
|
initiator->processor_pxm = cpu_pxm;
|
|
initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
|
|
list_add_tail(&initiator->node, &initiators);
|
|
}
|
|
|
|
static __init void alloc_memory_target(unsigned int mem_pxm,
|
|
resource_size_t start, resource_size_t len)
|
|
{
|
|
struct memory_target *target;
|
|
|
|
target = find_mem_target(mem_pxm);
|
|
if (!target) {
|
|
target = kzalloc(sizeof(*target), GFP_KERNEL);
|
|
if (!target)
|
|
return;
|
|
target->memory_pxm = mem_pxm;
|
|
target->processor_pxm = PXM_INVAL;
|
|
target->memregions = (struct resource) {
|
|
.name = "ACPI mem",
|
|
.start = 0,
|
|
.end = -1,
|
|
.flags = IORESOURCE_MEM,
|
|
};
|
|
list_add_tail(&target->node, &targets);
|
|
INIT_LIST_HEAD(&target->caches);
|
|
}
|
|
|
|
/*
|
|
* There are potentially multiple ranges per PXM, so record each
|
|
* in the per-target memregions resource tree.
|
|
*/
|
|
if (!__request_region(&target->memregions, start, len, "memory target",
|
|
IORESOURCE_MEM))
|
|
pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
|
|
start, start + len, mem_pxm);
|
|
}
|
|
|
|
static __init const char *hmat_data_type(u8 type)
|
|
{
|
|
switch (type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
return "Access Latency";
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
return "Read Latency";
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
return "Write Latency";
|
|
case ACPI_HMAT_ACCESS_BANDWIDTH:
|
|
return "Access Bandwidth";
|
|
case ACPI_HMAT_READ_BANDWIDTH:
|
|
return "Read Bandwidth";
|
|
case ACPI_HMAT_WRITE_BANDWIDTH:
|
|
return "Write Bandwidth";
|
|
default:
|
|
return "Reserved";
|
|
}
|
|
}
|
|
|
|
static __init const char *hmat_data_type_suffix(u8 type)
|
|
{
|
|
switch (type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
return " nsec";
|
|
case ACPI_HMAT_ACCESS_BANDWIDTH:
|
|
case ACPI_HMAT_READ_BANDWIDTH:
|
|
case ACPI_HMAT_WRITE_BANDWIDTH:
|
|
return " MB/s";
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
|
|
static u32 hmat_normalize(u16 entry, u64 base, u8 type)
|
|
{
|
|
u32 value;
|
|
|
|
/*
|
|
* Check for invalid and overflow values
|
|
*/
|
|
if (entry == 0xffff || !entry)
|
|
return 0;
|
|
else if (base > (UINT_MAX / (entry)))
|
|
return 0;
|
|
|
|
/*
|
|
* Divide by the base unit for version 1, convert latency from
|
|
* picosenonds to nanoseconds if revision 2.
|
|
*/
|
|
value = entry * base;
|
|
if (hmat_revision == 1) {
|
|
if (value < 10)
|
|
return 0;
|
|
value = DIV_ROUND_UP(value, 10);
|
|
} else if (hmat_revision == 2) {
|
|
switch (type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
value = DIV_ROUND_UP(value, 1000);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static void hmat_update_target_access(struct memory_target *target,
|
|
u8 type, u32 value, int access)
|
|
{
|
|
switch (type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
target->hmem_attrs[access].read_latency = value;
|
|
target->hmem_attrs[access].write_latency = value;
|
|
break;
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
target->hmem_attrs[access].read_latency = value;
|
|
break;
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
target->hmem_attrs[access].write_latency = value;
|
|
break;
|
|
case ACPI_HMAT_ACCESS_BANDWIDTH:
|
|
target->hmem_attrs[access].read_bandwidth = value;
|
|
target->hmem_attrs[access].write_bandwidth = value;
|
|
break;
|
|
case ACPI_HMAT_READ_BANDWIDTH:
|
|
target->hmem_attrs[access].read_bandwidth = value;
|
|
break;
|
|
case ACPI_HMAT_WRITE_BANDWIDTH:
|
|
target->hmem_attrs[access].write_bandwidth = value;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
|
|
{
|
|
struct memory_locality *loc;
|
|
|
|
loc = kzalloc(sizeof(*loc), GFP_KERNEL);
|
|
if (!loc) {
|
|
pr_notice_once("Failed to allocate HMAT locality\n");
|
|
return;
|
|
}
|
|
|
|
loc->hmat_loc = hmat_loc;
|
|
list_add_tail(&loc->node, &localities);
|
|
|
|
switch (hmat_loc->data_type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
localities_types[READ_LATENCY] = loc;
|
|
localities_types[WRITE_LATENCY] = loc;
|
|
break;
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
localities_types[READ_LATENCY] = loc;
|
|
break;
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
localities_types[WRITE_LATENCY] = loc;
|
|
break;
|
|
case ACPI_HMAT_ACCESS_BANDWIDTH:
|
|
localities_types[READ_BANDWIDTH] = loc;
|
|
localities_types[WRITE_BANDWIDTH] = loc;
|
|
break;
|
|
case ACPI_HMAT_READ_BANDWIDTH:
|
|
localities_types[READ_BANDWIDTH] = loc;
|
|
break;
|
|
case ACPI_HMAT_WRITE_BANDWIDTH:
|
|
localities_types[WRITE_BANDWIDTH] = loc;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __init int hmat_parse_locality(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_hmat_locality *hmat_loc = (void *)header;
|
|
struct memory_target *target;
|
|
unsigned int init, targ, total_size, ipds, tpds;
|
|
u32 *inits, *targs, value;
|
|
u16 *entries;
|
|
u8 type, mem_hier;
|
|
|
|
if (hmat_loc->header.length < sizeof(*hmat_loc)) {
|
|
pr_notice("HMAT: Unexpected locality header length: %u\n",
|
|
hmat_loc->header.length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
type = hmat_loc->data_type;
|
|
mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
|
|
ipds = hmat_loc->number_of_initiator_Pds;
|
|
tpds = hmat_loc->number_of_target_Pds;
|
|
total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
|
|
sizeof(*inits) * ipds + sizeof(*targs) * tpds;
|
|
if (hmat_loc->header.length < total_size) {
|
|
pr_notice("HMAT: Unexpected locality header length:%u, minimum required:%u\n",
|
|
hmat_loc->header.length, total_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pr_info("HMAT: Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
|
|
hmat_loc->flags, hmat_data_type(type), ipds, tpds,
|
|
hmat_loc->entry_base_unit);
|
|
|
|
inits = (u32 *)(hmat_loc + 1);
|
|
targs = inits + ipds;
|
|
entries = (u16 *)(targs + tpds);
|
|
for (init = 0; init < ipds; init++) {
|
|
alloc_memory_initiator(inits[init]);
|
|
for (targ = 0; targ < tpds; targ++) {
|
|
value = hmat_normalize(entries[init * tpds + targ],
|
|
hmat_loc->entry_base_unit,
|
|
type);
|
|
pr_info(" Initiator-Target[%u-%u]:%u%s\n",
|
|
inits[init], targs[targ], value,
|
|
hmat_data_type_suffix(type));
|
|
|
|
if (mem_hier == ACPI_HMAT_MEMORY) {
|
|
target = find_mem_target(targs[targ]);
|
|
if (target && target->processor_pxm == inits[init]) {
|
|
hmat_update_target_access(target, type, value, 0);
|
|
/* If the node has a CPU, update access 1 */
|
|
if (node_state(pxm_to_node(inits[init]), N_CPU))
|
|
hmat_update_target_access(target, type, value, 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mem_hier == ACPI_HMAT_MEMORY)
|
|
hmat_add_locality(hmat_loc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __init int hmat_parse_cache(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_hmat_cache *cache = (void *)header;
|
|
struct memory_target *target;
|
|
struct target_cache *tcache;
|
|
u32 attrs;
|
|
|
|
if (cache->header.length < sizeof(*cache)) {
|
|
pr_notice("HMAT: Unexpected cache header length: %u\n",
|
|
cache->header.length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
attrs = cache->cache_attributes;
|
|
pr_info("HMAT: Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
|
|
cache->memory_PD, cache->cache_size, attrs,
|
|
cache->number_of_SMBIOShandles);
|
|
|
|
target = find_mem_target(cache->memory_PD);
|
|
if (!target)
|
|
return 0;
|
|
|
|
tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
|
|
if (!tcache) {
|
|
pr_notice_once("Failed to allocate HMAT cache info\n");
|
|
return 0;
|
|
}
|
|
|
|
tcache->cache_attrs.size = cache->cache_size;
|
|
tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
|
|
tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
|
|
|
|
switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
|
|
case ACPI_HMAT_CA_DIRECT_MAPPED:
|
|
tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
|
|
break;
|
|
case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
|
|
tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
|
|
break;
|
|
case ACPI_HMAT_CA_NONE:
|
|
default:
|
|
tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
|
|
break;
|
|
}
|
|
|
|
switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
|
|
case ACPI_HMAT_CP_WB:
|
|
tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
|
|
break;
|
|
case ACPI_HMAT_CP_WT:
|
|
tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
|
|
break;
|
|
case ACPI_HMAT_CP_NONE:
|
|
default:
|
|
tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
|
|
break;
|
|
}
|
|
list_add_tail(&tcache->node, &target->caches);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_hmat_proximity_domain *p = (void *)header;
|
|
struct memory_target *target = NULL;
|
|
|
|
if (p->header.length != sizeof(*p)) {
|
|
pr_notice("HMAT: Unexpected address range header length: %u\n",
|
|
p->header.length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hmat_revision == 1)
|
|
pr_info("HMAT: Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
|
|
p->reserved3, p->reserved4, p->flags, p->processor_PD,
|
|
p->memory_PD);
|
|
else
|
|
pr_info("HMAT: Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
|
|
p->flags, p->processor_PD, p->memory_PD);
|
|
|
|
if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
|
|
hmat_revision > 1) {
|
|
target = find_mem_target(p->memory_PD);
|
|
if (!target) {
|
|
pr_debug("HMAT: Memory Domain missing from SRAT\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
|
|
int p_node = pxm_to_node(p->processor_PD);
|
|
|
|
if (p_node == NUMA_NO_NODE) {
|
|
pr_debug("HMAT: Invalid Processor Domain\n");
|
|
return -EINVAL;
|
|
}
|
|
target->processor_pxm = p->processor_PD;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_hmat_structure *hdr = (void *)header;
|
|
|
|
if (!hdr)
|
|
return -EINVAL;
|
|
|
|
switch (hdr->type) {
|
|
case ACPI_HMAT_TYPE_PROXIMITY:
|
|
return hmat_parse_proximity_domain(header, end);
|
|
case ACPI_HMAT_TYPE_LOCALITY:
|
|
return hmat_parse_locality(header, end);
|
|
case ACPI_HMAT_TYPE_CACHE:
|
|
return hmat_parse_cache(header, end);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_srat_mem_affinity *ma = (void *)header;
|
|
|
|
if (!ma)
|
|
return -EINVAL;
|
|
if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
|
|
return 0;
|
|
alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
|
|
return 0;
|
|
}
|
|
|
|
static u32 hmat_initiator_perf(struct memory_target *target,
|
|
struct memory_initiator *initiator,
|
|
struct acpi_hmat_locality *hmat_loc)
|
|
{
|
|
unsigned int ipds, tpds, i, idx = 0, tdx = 0;
|
|
u32 *inits, *targs;
|
|
u16 *entries;
|
|
|
|
ipds = hmat_loc->number_of_initiator_Pds;
|
|
tpds = hmat_loc->number_of_target_Pds;
|
|
inits = (u32 *)(hmat_loc + 1);
|
|
targs = inits + ipds;
|
|
entries = (u16 *)(targs + tpds);
|
|
|
|
for (i = 0; i < ipds; i++) {
|
|
if (inits[i] == initiator->processor_pxm) {
|
|
idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == ipds)
|
|
return 0;
|
|
|
|
for (i = 0; i < tpds; i++) {
|
|
if (targs[i] == target->memory_pxm) {
|
|
tdx = i;
|
|
break;
|
|
}
|
|
}
|
|
if (i == tpds)
|
|
return 0;
|
|
|
|
return hmat_normalize(entries[idx * tpds + tdx],
|
|
hmat_loc->entry_base_unit,
|
|
hmat_loc->data_type);
|
|
}
|
|
|
|
static bool hmat_update_best(u8 type, u32 value, u32 *best)
|
|
{
|
|
bool updated = false;
|
|
|
|
if (!value)
|
|
return false;
|
|
|
|
switch (type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
if (!*best || *best > value) {
|
|
*best = value;
|
|
updated = true;
|
|
}
|
|
break;
|
|
case ACPI_HMAT_ACCESS_BANDWIDTH:
|
|
case ACPI_HMAT_READ_BANDWIDTH:
|
|
case ACPI_HMAT_WRITE_BANDWIDTH:
|
|
if (!*best || *best < value) {
|
|
*best = value;
|
|
updated = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return updated;
|
|
}
|
|
|
|
static int initiator_cmp(void *priv, const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
struct memory_initiator *ia;
|
|
struct memory_initiator *ib;
|
|
unsigned long *p_nodes = priv;
|
|
|
|
ia = list_entry(a, struct memory_initiator, node);
|
|
ib = list_entry(b, struct memory_initiator, node);
|
|
|
|
set_bit(ia->processor_pxm, p_nodes);
|
|
set_bit(ib->processor_pxm, p_nodes);
|
|
|
|
return ia->processor_pxm - ib->processor_pxm;
|
|
}
|
|
|
|
static void hmat_register_target_initiators(struct memory_target *target)
|
|
{
|
|
static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
|
|
struct memory_initiator *initiator;
|
|
unsigned int mem_nid, cpu_nid;
|
|
struct memory_locality *loc = NULL;
|
|
u32 best = 0;
|
|
bool access0done = false;
|
|
int i;
|
|
|
|
mem_nid = pxm_to_node(target->memory_pxm);
|
|
/*
|
|
* If the Address Range Structure provides a local processor pxm, link
|
|
* only that one. Otherwise, find the best performance attributes and
|
|
* register all initiators that match.
|
|
*/
|
|
if (target->processor_pxm != PXM_INVAL) {
|
|
cpu_nid = pxm_to_node(target->processor_pxm);
|
|
register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
|
|
access0done = true;
|
|
if (node_state(cpu_nid, N_CPU)) {
|
|
register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (list_empty(&localities))
|
|
return;
|
|
|
|
/*
|
|
* We need the initiator list sorted so we can use bitmap_clear for
|
|
* previously set initiators when we find a better memory accessor.
|
|
* We'll also use the sorting to prime the candidate nodes with known
|
|
* initiators.
|
|
*/
|
|
bitmap_zero(p_nodes, MAX_NUMNODES);
|
|
list_sort(p_nodes, &initiators, initiator_cmp);
|
|
if (!access0done) {
|
|
for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
|
|
loc = localities_types[i];
|
|
if (!loc)
|
|
continue;
|
|
|
|
best = 0;
|
|
list_for_each_entry(initiator, &initiators, node) {
|
|
u32 value;
|
|
|
|
if (!test_bit(initiator->processor_pxm, p_nodes))
|
|
continue;
|
|
|
|
value = hmat_initiator_perf(target, initiator,
|
|
loc->hmat_loc);
|
|
if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
|
|
bitmap_clear(p_nodes, 0, initiator->processor_pxm);
|
|
if (value != best)
|
|
clear_bit(initiator->processor_pxm, p_nodes);
|
|
}
|
|
if (best)
|
|
hmat_update_target_access(target, loc->hmat_loc->data_type,
|
|
best, 0);
|
|
}
|
|
|
|
for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
|
|
cpu_nid = pxm_to_node(i);
|
|
register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
|
|
}
|
|
}
|
|
|
|
/* Access 1 ignores Generic Initiators */
|
|
bitmap_zero(p_nodes, MAX_NUMNODES);
|
|
list_sort(p_nodes, &initiators, initiator_cmp);
|
|
best = 0;
|
|
for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
|
|
loc = localities_types[i];
|
|
if (!loc)
|
|
continue;
|
|
|
|
best = 0;
|
|
list_for_each_entry(initiator, &initiators, node) {
|
|
u32 value;
|
|
|
|
if (!initiator->has_cpu) {
|
|
clear_bit(initiator->processor_pxm, p_nodes);
|
|
continue;
|
|
}
|
|
if (!test_bit(initiator->processor_pxm, p_nodes))
|
|
continue;
|
|
|
|
value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
|
|
if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
|
|
bitmap_clear(p_nodes, 0, initiator->processor_pxm);
|
|
if (value != best)
|
|
clear_bit(initiator->processor_pxm, p_nodes);
|
|
}
|
|
if (best)
|
|
hmat_update_target_access(target, loc->hmat_loc->data_type, best, 1);
|
|
}
|
|
for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
|
|
cpu_nid = pxm_to_node(i);
|
|
register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
|
|
}
|
|
}
|
|
|
|
static void hmat_register_target_cache(struct memory_target *target)
|
|
{
|
|
unsigned mem_nid = pxm_to_node(target->memory_pxm);
|
|
struct target_cache *tcache;
|
|
|
|
list_for_each_entry(tcache, &target->caches, node)
|
|
node_add_cache(mem_nid, &tcache->cache_attrs);
|
|
}
|
|
|
|
static void hmat_register_target_perf(struct memory_target *target, int access)
|
|
{
|
|
unsigned mem_nid = pxm_to_node(target->memory_pxm);
|
|
node_set_perf_attrs(mem_nid, &target->hmem_attrs[access], access);
|
|
}
|
|
|
|
static void hmat_register_target_devices(struct memory_target *target)
|
|
{
|
|
struct resource *res;
|
|
|
|
/*
|
|
* Do not bother creating devices if no driver is available to
|
|
* consume them.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
|
|
return;
|
|
|
|
for (res = target->memregions.child; res; res = res->sibling) {
|
|
int target_nid = pxm_to_node(target->memory_pxm);
|
|
|
|
hmem_register_device(target_nid, res);
|
|
}
|
|
}
|
|
|
|
static void hmat_register_target(struct memory_target *target)
|
|
{
|
|
int nid = pxm_to_node(target->memory_pxm);
|
|
|
|
/*
|
|
* Devices may belong to either an offline or online
|
|
* node, so unconditionally add them.
|
|
*/
|
|
hmat_register_target_devices(target);
|
|
|
|
/*
|
|
* Skip offline nodes. This can happen when memory
|
|
* marked EFI_MEMORY_SP, "specific purpose", is applied
|
|
* to all the memory in a proximity domain leading to
|
|
* the node being marked offline / unplugged, or if
|
|
* memory-only "hotplug" node is offline.
|
|
*/
|
|
if (nid == NUMA_NO_NODE || !node_online(nid))
|
|
return;
|
|
|
|
mutex_lock(&target_lock);
|
|
if (!target->registered) {
|
|
hmat_register_target_initiators(target);
|
|
hmat_register_target_cache(target);
|
|
hmat_register_target_perf(target, 0);
|
|
hmat_register_target_perf(target, 1);
|
|
target->registered = true;
|
|
}
|
|
mutex_unlock(&target_lock);
|
|
}
|
|
|
|
static void hmat_register_targets(void)
|
|
{
|
|
struct memory_target *target;
|
|
|
|
list_for_each_entry(target, &targets, node)
|
|
hmat_register_target(target);
|
|
}
|
|
|
|
static int hmat_callback(struct notifier_block *self,
|
|
unsigned long action, void *arg)
|
|
{
|
|
struct memory_target *target;
|
|
struct memory_notify *mnb = arg;
|
|
int pxm, nid = mnb->status_change_nid;
|
|
|
|
if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
|
|
return NOTIFY_OK;
|
|
|
|
pxm = node_to_pxm(nid);
|
|
target = find_mem_target(pxm);
|
|
if (!target)
|
|
return NOTIFY_OK;
|
|
|
|
hmat_register_target(target);
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block hmat_callback_nb = {
|
|
.notifier_call = hmat_callback,
|
|
.priority = 2,
|
|
};
|
|
|
|
static __init void hmat_free_structures(void)
|
|
{
|
|
struct memory_target *target, *tnext;
|
|
struct memory_locality *loc, *lnext;
|
|
struct memory_initiator *initiator, *inext;
|
|
struct target_cache *tcache, *cnext;
|
|
|
|
list_for_each_entry_safe(target, tnext, &targets, node) {
|
|
struct resource *res, *res_next;
|
|
|
|
list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
|
|
list_del(&tcache->node);
|
|
kfree(tcache);
|
|
}
|
|
|
|
list_del(&target->node);
|
|
res = target->memregions.child;
|
|
while (res) {
|
|
res_next = res->sibling;
|
|
__release_region(&target->memregions, res->start,
|
|
resource_size(res));
|
|
res = res_next;
|
|
}
|
|
kfree(target);
|
|
}
|
|
|
|
list_for_each_entry_safe(initiator, inext, &initiators, node) {
|
|
list_del(&initiator->node);
|
|
kfree(initiator);
|
|
}
|
|
|
|
list_for_each_entry_safe(loc, lnext, &localities, node) {
|
|
list_del(&loc->node);
|
|
kfree(loc);
|
|
}
|
|
}
|
|
|
|
static __init int hmat_init(void)
|
|
{
|
|
struct acpi_table_header *tbl;
|
|
enum acpi_hmat_type i;
|
|
acpi_status status;
|
|
|
|
if (srat_disabled() || hmat_disable)
|
|
return 0;
|
|
|
|
status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
|
|
if (ACPI_FAILURE(status))
|
|
return 0;
|
|
|
|
if (acpi_table_parse_entries(ACPI_SIG_SRAT,
|
|
sizeof(struct acpi_table_srat),
|
|
ACPI_SRAT_TYPE_MEMORY_AFFINITY,
|
|
srat_parse_mem_affinity, 0) < 0)
|
|
goto out_put;
|
|
acpi_put_table(tbl);
|
|
|
|
status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
|
|
if (ACPI_FAILURE(status))
|
|
goto out_put;
|
|
|
|
hmat_revision = tbl->revision;
|
|
switch (hmat_revision) {
|
|
case 1:
|
|
case 2:
|
|
break;
|
|
default:
|
|
pr_notice("Ignoring HMAT: Unknown revision:%d\n", hmat_revision);
|
|
goto out_put;
|
|
}
|
|
|
|
for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
|
|
if (acpi_table_parse_entries(ACPI_SIG_HMAT,
|
|
sizeof(struct acpi_table_hmat), i,
|
|
hmat_parse_subtable, 0) < 0) {
|
|
pr_notice("Ignoring HMAT: Invalid table");
|
|
goto out_put;
|
|
}
|
|
}
|
|
hmat_register_targets();
|
|
|
|
/* Keep the table and structures if the notifier may use them */
|
|
if (!register_hotmemory_notifier(&hmat_callback_nb))
|
|
return 0;
|
|
out_put:
|
|
hmat_free_structures();
|
|
acpi_put_table(tbl);
|
|
return 0;
|
|
}
|
|
device_initcall(hmat_init);
|