mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-07 13:13:57 +08:00
f000fd8093
free_irq() calls synchronize_irq() for you, so there is no need for drivers to manually do the same thing (again). Thus, calls where sync-irq immediately precedes free-irq can be simplified. However, during this audit several bugs were noticed, where free-irq is preceded by a "irq >= 0" check... but the sync-irq call is not covered by the same check. So, where sync-irq could not be eliminated completely, the missing check was added. Signed-off-by: Jeff Garzik <jgarzik@redhat.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
1460 lines
39 KiB
C
1460 lines
39 KiB
C
/*
|
|
* Driver for SiS7019 Audio Accelerator
|
|
*
|
|
* Copyright (C) 2004-2007, David Dillow
|
|
* Written by David Dillow <dave@thedillows.org>
|
|
* Inspired by the Trident 4D-WaveDX/NX driver.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/time.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <sound/core.h>
|
|
#include <sound/ac97_codec.h>
|
|
#include <sound/initval.h>
|
|
#include "sis7019.h"
|
|
|
|
MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
|
|
MODULE_DESCRIPTION("SiS7019");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
|
|
|
|
static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
|
|
static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
|
|
static int enable = 1;
|
|
|
|
module_param(index, int, 0444);
|
|
MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
|
|
module_param(id, charp, 0444);
|
|
MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
|
|
module_param(enable, bool, 0444);
|
|
MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
|
|
|
|
static struct pci_device_id snd_sis7019_ids[] = {
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
|
|
{ 0, }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
|
|
|
|
/* There are three timing modes for the voices.
|
|
*
|
|
* For both playback and capture, when the buffer is one or two periods long,
|
|
* we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
|
|
* to let us know when the periods have ended.
|
|
*
|
|
* When performing playback with more than two periods per buffer, we set
|
|
* the "Stop Sample Offset" and tell the hardware to interrupt us when we
|
|
* reach it. We then update the offset and continue on until we are
|
|
* interrupted for the next period.
|
|
*
|
|
* Capture channels do not have a SSO, so we allocate a playback channel to
|
|
* use as a timer for the capture periods. We use the SSO on the playback
|
|
* channel to clock out virtual periods, and adjust the virtual period length
|
|
* to maintain synchronization. This algorithm came from the Trident driver.
|
|
*
|
|
* FIXME: It'd be nice to make use of some of the synth features in the
|
|
* hardware, but a woeful lack of documentation is a significant roadblock.
|
|
*/
|
|
struct voice {
|
|
u16 flags;
|
|
#define VOICE_IN_USE 1
|
|
#define VOICE_CAPTURE 2
|
|
#define VOICE_SSO_TIMING 4
|
|
#define VOICE_SYNC_TIMING 8
|
|
u16 sync_cso;
|
|
u16 period_size;
|
|
u16 buffer_size;
|
|
u16 sync_period_size;
|
|
u16 sync_buffer_size;
|
|
u32 sso;
|
|
u32 vperiod;
|
|
struct snd_pcm_substream *substream;
|
|
struct voice *timing;
|
|
void __iomem *ctrl_base;
|
|
void __iomem *wave_base;
|
|
void __iomem *sync_base;
|
|
int num;
|
|
};
|
|
|
|
/* We need four pages to store our wave parameters during a suspend. If
|
|
* we're not doing power management, we still need to allocate a page
|
|
* for the silence buffer.
|
|
*/
|
|
#ifdef CONFIG_PM
|
|
#define SIS_SUSPEND_PAGES 4
|
|
#else
|
|
#define SIS_SUSPEND_PAGES 1
|
|
#endif
|
|
|
|
struct sis7019 {
|
|
unsigned long ioport;
|
|
void __iomem *ioaddr;
|
|
int irq;
|
|
int codecs_present;
|
|
|
|
struct pci_dev *pci;
|
|
struct snd_pcm *pcm;
|
|
struct snd_card *card;
|
|
struct snd_ac97 *ac97[3];
|
|
|
|
/* Protect against more than one thread hitting the AC97
|
|
* registers (in a more polite manner than pounding the hardware
|
|
* semaphore)
|
|
*/
|
|
struct mutex ac97_mutex;
|
|
|
|
/* voice_lock protects allocation/freeing of the voice descriptions
|
|
*/
|
|
spinlock_t voice_lock;
|
|
|
|
struct voice voices[64];
|
|
struct voice capture_voice;
|
|
|
|
/* Allocate pages to store the internal wave state during
|
|
* suspends. When we're operating, this can be used as a silence
|
|
* buffer for a timing channel.
|
|
*/
|
|
void *suspend_state[SIS_SUSPEND_PAGES];
|
|
|
|
int silence_users;
|
|
dma_addr_t silence_dma_addr;
|
|
};
|
|
|
|
#define SIS_PRIMARY_CODEC_PRESENT 0x0001
|
|
#define SIS_SECONDARY_CODEC_PRESENT 0x0002
|
|
#define SIS_TERTIARY_CODEC_PRESENT 0x0004
|
|
|
|
/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
|
|
* documented range of 8-0xfff8 samples. Given that they are 0-based,
|
|
* that places our period/buffer range at 9-0xfff9 samples. That makes the
|
|
* max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
|
|
* max samples / min samples gives us the max periods in a buffer.
|
|
*
|
|
* We'll add a constraint upon open that limits the period and buffer sample
|
|
* size to values that are legal for the hardware.
|
|
*/
|
|
static struct snd_pcm_hardware sis_playback_hw_info = {
|
|
.info = (SNDRV_PCM_INFO_MMAP |
|
|
SNDRV_PCM_INFO_MMAP_VALID |
|
|
SNDRV_PCM_INFO_INTERLEAVED |
|
|
SNDRV_PCM_INFO_BLOCK_TRANSFER |
|
|
SNDRV_PCM_INFO_SYNC_START |
|
|
SNDRV_PCM_INFO_RESUME),
|
|
.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
|
|
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
|
|
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
|
|
.rate_min = 4000,
|
|
.rate_max = 48000,
|
|
.channels_min = 1,
|
|
.channels_max = 2,
|
|
.buffer_bytes_max = (0xfff9 * 4),
|
|
.period_bytes_min = 9,
|
|
.period_bytes_max = (0xfff9 * 4),
|
|
.periods_min = 1,
|
|
.periods_max = (0xfff9 / 9),
|
|
};
|
|
|
|
static struct snd_pcm_hardware sis_capture_hw_info = {
|
|
.info = (SNDRV_PCM_INFO_MMAP |
|
|
SNDRV_PCM_INFO_MMAP_VALID |
|
|
SNDRV_PCM_INFO_INTERLEAVED |
|
|
SNDRV_PCM_INFO_BLOCK_TRANSFER |
|
|
SNDRV_PCM_INFO_SYNC_START |
|
|
SNDRV_PCM_INFO_RESUME),
|
|
.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
|
|
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
|
|
.rates = SNDRV_PCM_RATE_48000,
|
|
.rate_min = 4000,
|
|
.rate_max = 48000,
|
|
.channels_min = 1,
|
|
.channels_max = 2,
|
|
.buffer_bytes_max = (0xfff9 * 4),
|
|
.period_bytes_min = 9,
|
|
.period_bytes_max = (0xfff9 * 4),
|
|
.periods_min = 1,
|
|
.periods_max = (0xfff9 / 9),
|
|
};
|
|
|
|
static void sis_update_sso(struct voice *voice, u16 period)
|
|
{
|
|
void __iomem *base = voice->ctrl_base;
|
|
|
|
voice->sso += period;
|
|
if (voice->sso >= voice->buffer_size)
|
|
voice->sso -= voice->buffer_size;
|
|
|
|
/* Enforce the documented hardware minimum offset */
|
|
if (voice->sso < 8)
|
|
voice->sso = 8;
|
|
|
|
/* The SSO is in the upper 16 bits of the register. */
|
|
writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
|
|
}
|
|
|
|
static void sis_update_voice(struct voice *voice)
|
|
{
|
|
if (voice->flags & VOICE_SSO_TIMING) {
|
|
sis_update_sso(voice, voice->period_size);
|
|
} else if (voice->flags & VOICE_SYNC_TIMING) {
|
|
int sync;
|
|
|
|
/* If we've not hit the end of the virtual period, update
|
|
* our records and keep going.
|
|
*/
|
|
if (voice->vperiod > voice->period_size) {
|
|
voice->vperiod -= voice->period_size;
|
|
if (voice->vperiod < voice->period_size)
|
|
sis_update_sso(voice, voice->vperiod);
|
|
else
|
|
sis_update_sso(voice, voice->period_size);
|
|
return;
|
|
}
|
|
|
|
/* Calculate our relative offset between the target and
|
|
* the actual CSO value. Since we're operating in a loop,
|
|
* if the value is more than half way around, we can
|
|
* consider ourselves wrapped.
|
|
*/
|
|
sync = voice->sync_cso;
|
|
sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
|
|
if (sync > (voice->sync_buffer_size / 2))
|
|
sync -= voice->sync_buffer_size;
|
|
|
|
/* If sync is positive, then we interrupted too early, and
|
|
* we'll need to come back in a few samples and try again.
|
|
* There's a minimum wait, as it takes some time for the DMA
|
|
* engine to startup, etc...
|
|
*/
|
|
if (sync > 0) {
|
|
if (sync < 16)
|
|
sync = 16;
|
|
sis_update_sso(voice, sync);
|
|
return;
|
|
}
|
|
|
|
/* Ok, we interrupted right on time, or (hopefully) just
|
|
* a bit late. We'll adjst our next waiting period based
|
|
* on how close we got.
|
|
*
|
|
* We need to stay just behind the actual channel to ensure
|
|
* it really is past a period when we get our interrupt --
|
|
* otherwise we'll fall into the early code above and have
|
|
* a minimum wait time, which makes us quite late here,
|
|
* eating into the user's time to refresh the buffer, esp.
|
|
* if using small periods.
|
|
*
|
|
* If we're less than 9 samples behind, we're on target.
|
|
*/
|
|
if (sync > -9)
|
|
voice->vperiod = voice->sync_period_size + 1;
|
|
else
|
|
voice->vperiod = voice->sync_period_size - 4;
|
|
|
|
if (voice->vperiod < voice->buffer_size) {
|
|
sis_update_sso(voice, voice->vperiod);
|
|
voice->vperiod = 0;
|
|
} else
|
|
sis_update_sso(voice, voice->period_size);
|
|
|
|
sync = voice->sync_cso + voice->sync_period_size;
|
|
if (sync >= voice->sync_buffer_size)
|
|
sync -= voice->sync_buffer_size;
|
|
voice->sync_cso = sync;
|
|
}
|
|
|
|
snd_pcm_period_elapsed(voice->substream);
|
|
}
|
|
|
|
static void sis_voice_irq(u32 status, struct voice *voice)
|
|
{
|
|
int bit;
|
|
|
|
while (status) {
|
|
bit = __ffs(status);
|
|
status >>= bit + 1;
|
|
voice += bit;
|
|
sis_update_voice(voice);
|
|
voice++;
|
|
}
|
|
}
|
|
|
|
static irqreturn_t sis_interrupt(int irq, void *dev)
|
|
{
|
|
struct sis7019 *sis = dev;
|
|
unsigned long io = sis->ioport;
|
|
struct voice *voice;
|
|
u32 intr, status;
|
|
|
|
/* We only use the DMA interrupts, and we don't enable any other
|
|
* source of interrupts. But, it is possible to see an interupt
|
|
* status that didn't actually interrupt us, so eliminate anything
|
|
* we're not expecting to avoid falsely claiming an IRQ, and an
|
|
* ensuing endless loop.
|
|
*/
|
|
intr = inl(io + SIS_GISR);
|
|
intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
|
|
SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
|
|
if (!intr)
|
|
return IRQ_NONE;
|
|
|
|
do {
|
|
status = inl(io + SIS_PISR_A);
|
|
if (status) {
|
|
sis_voice_irq(status, sis->voices);
|
|
outl(status, io + SIS_PISR_A);
|
|
}
|
|
|
|
status = inl(io + SIS_PISR_B);
|
|
if (status) {
|
|
sis_voice_irq(status, &sis->voices[32]);
|
|
outl(status, io + SIS_PISR_B);
|
|
}
|
|
|
|
status = inl(io + SIS_RISR);
|
|
if (status) {
|
|
voice = &sis->capture_voice;
|
|
if (!voice->timing)
|
|
snd_pcm_period_elapsed(voice->substream);
|
|
|
|
outl(status, io + SIS_RISR);
|
|
}
|
|
|
|
outl(intr, io + SIS_GISR);
|
|
intr = inl(io + SIS_GISR);
|
|
intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
|
|
SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
|
|
} while (intr);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static u32 sis_rate_to_delta(unsigned int rate)
|
|
{
|
|
u32 delta;
|
|
|
|
/* This was copied from the trident driver, but it seems its gotten
|
|
* around a bit... nevertheless, it works well.
|
|
*
|
|
* We special case 44100 and 8000 since rounding with the equation
|
|
* does not give us an accurate enough value. For 11025 and 22050
|
|
* the equation gives us the best answer. All other frequencies will
|
|
* also use the equation. JDW
|
|
*/
|
|
if (rate == 44100)
|
|
delta = 0xeb3;
|
|
else if (rate == 8000)
|
|
delta = 0x2ab;
|
|
else if (rate == 48000)
|
|
delta = 0x1000;
|
|
else
|
|
delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
|
|
return delta;
|
|
}
|
|
|
|
static void __sis_map_silence(struct sis7019 *sis)
|
|
{
|
|
/* Helper function: must hold sis->voice_lock on entry */
|
|
if (!sis->silence_users)
|
|
sis->silence_dma_addr = pci_map_single(sis->pci,
|
|
sis->suspend_state[0],
|
|
4096, PCI_DMA_TODEVICE);
|
|
sis->silence_users++;
|
|
}
|
|
|
|
static void __sis_unmap_silence(struct sis7019 *sis)
|
|
{
|
|
/* Helper function: must hold sis->voice_lock on entry */
|
|
sis->silence_users--;
|
|
if (!sis->silence_users)
|
|
pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sis->voice_lock, flags);
|
|
if (voice->timing) {
|
|
__sis_unmap_silence(sis);
|
|
voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
|
|
VOICE_SYNC_TIMING);
|
|
voice->timing = NULL;
|
|
}
|
|
voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
|
|
spin_unlock_irqrestore(&sis->voice_lock, flags);
|
|
}
|
|
|
|
static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
|
|
{
|
|
/* Must hold the voice_lock on entry */
|
|
struct voice *voice;
|
|
int i;
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
voice = &sis->voices[i];
|
|
if (voice->flags & VOICE_IN_USE)
|
|
continue;
|
|
voice->flags |= VOICE_IN_USE;
|
|
goto found_one;
|
|
}
|
|
voice = NULL;
|
|
|
|
found_one:
|
|
return voice;
|
|
}
|
|
|
|
static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
|
|
{
|
|
struct voice *voice;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sis->voice_lock, flags);
|
|
voice = __sis_alloc_playback_voice(sis);
|
|
spin_unlock_irqrestore(&sis->voice_lock, flags);
|
|
|
|
return voice;
|
|
}
|
|
|
|
static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
|
|
struct snd_pcm_hw_params *hw_params)
|
|
{
|
|
struct sis7019 *sis = snd_pcm_substream_chip(substream);
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct voice *voice = runtime->private_data;
|
|
unsigned int period_size, buffer_size;
|
|
unsigned long flags;
|
|
int needed;
|
|
|
|
/* If there are one or two periods per buffer, we don't need a
|
|
* timing voice, as we can use the capture channel's interrupts
|
|
* to clock out the periods.
|
|
*/
|
|
period_size = params_period_size(hw_params);
|
|
buffer_size = params_buffer_size(hw_params);
|
|
needed = (period_size != buffer_size &&
|
|
period_size != (buffer_size / 2));
|
|
|
|
if (needed && !voice->timing) {
|
|
spin_lock_irqsave(&sis->voice_lock, flags);
|
|
voice->timing = __sis_alloc_playback_voice(sis);
|
|
if (voice->timing)
|
|
__sis_map_silence(sis);
|
|
spin_unlock_irqrestore(&sis->voice_lock, flags);
|
|
if (!voice->timing)
|
|
return -ENOMEM;
|
|
voice->timing->substream = substream;
|
|
} else if (!needed && voice->timing) {
|
|
sis_free_voice(sis, voice);
|
|
voice->timing = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sis_playback_open(struct snd_pcm_substream *substream)
|
|
{
|
|
struct sis7019 *sis = snd_pcm_substream_chip(substream);
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct voice *voice;
|
|
|
|
voice = sis_alloc_playback_voice(sis);
|
|
if (!voice)
|
|
return -EAGAIN;
|
|
|
|
voice->substream = substream;
|
|
runtime->private_data = voice;
|
|
runtime->hw = sis_playback_hw_info;
|
|
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
|
|
9, 0xfff9);
|
|
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
|
|
9, 0xfff9);
|
|
snd_pcm_set_sync(substream);
|
|
return 0;
|
|
}
|
|
|
|
static int sis_substream_close(struct snd_pcm_substream *substream)
|
|
{
|
|
struct sis7019 *sis = snd_pcm_substream_chip(substream);
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct voice *voice = runtime->private_data;
|
|
|
|
sis_free_voice(sis, voice);
|
|
return 0;
|
|
}
|
|
|
|
static int sis_playback_hw_params(struct snd_pcm_substream *substream,
|
|
struct snd_pcm_hw_params *hw_params)
|
|
{
|
|
return snd_pcm_lib_malloc_pages(substream,
|
|
params_buffer_bytes(hw_params));
|
|
}
|
|
|
|
static int sis_hw_free(struct snd_pcm_substream *substream)
|
|
{
|
|
return snd_pcm_lib_free_pages(substream);
|
|
}
|
|
|
|
static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct voice *voice = runtime->private_data;
|
|
void __iomem *ctrl_base = voice->ctrl_base;
|
|
void __iomem *wave_base = voice->wave_base;
|
|
u32 format, dma_addr, control, sso_eso, delta, reg;
|
|
u16 leo;
|
|
|
|
/* We rely on the PCM core to ensure that the parameters for this
|
|
* substream do not change on us while we're programming the HW.
|
|
*/
|
|
format = 0;
|
|
if (snd_pcm_format_width(runtime->format) == 8)
|
|
format |= SIS_PLAY_DMA_FORMAT_8BIT;
|
|
if (!snd_pcm_format_signed(runtime->format))
|
|
format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
|
|
if (runtime->channels == 1)
|
|
format |= SIS_PLAY_DMA_FORMAT_MONO;
|
|
|
|
/* The baseline setup is for a single period per buffer, and
|
|
* we add bells and whistles as needed from there.
|
|
*/
|
|
dma_addr = runtime->dma_addr;
|
|
leo = runtime->buffer_size - 1;
|
|
control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
|
|
sso_eso = leo;
|
|
|
|
if (runtime->period_size == (runtime->buffer_size / 2)) {
|
|
control |= SIS_PLAY_DMA_INTR_AT_MLP;
|
|
} else if (runtime->period_size != runtime->buffer_size) {
|
|
voice->flags |= VOICE_SSO_TIMING;
|
|
voice->sso = runtime->period_size - 1;
|
|
voice->period_size = runtime->period_size;
|
|
voice->buffer_size = runtime->buffer_size;
|
|
|
|
control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
|
|
control |= SIS_PLAY_DMA_INTR_AT_SSO;
|
|
sso_eso |= (runtime->period_size - 1) << 16;
|
|
}
|
|
|
|
delta = sis_rate_to_delta(runtime->rate);
|
|
|
|
/* Ok, we're ready to go, set up the channel.
|
|
*/
|
|
writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
|
|
writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
|
|
writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
|
|
writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
|
|
|
|
for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
|
|
writel(0, wave_base + reg);
|
|
|
|
writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
|
|
writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
|
|
writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
|
|
SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
|
|
SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
|
|
wave_base + SIS_WAVE_CHANNEL_CONTROL);
|
|
|
|
/* Force PCI writes to post. */
|
|
readl(ctrl_base);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
|
|
{
|
|
struct sis7019 *sis = snd_pcm_substream_chip(substream);
|
|
unsigned long io = sis->ioport;
|
|
struct snd_pcm_substream *s;
|
|
struct voice *voice;
|
|
void *chip;
|
|
int starting;
|
|
u32 record = 0;
|
|
u32 play[2] = { 0, 0 };
|
|
|
|
/* No locks needed, as the PCM core will hold the locks on the
|
|
* substreams, and the HW will only start/stop the indicated voices
|
|
* without changing the state of the others.
|
|
*/
|
|
switch (cmd) {
|
|
case SNDRV_PCM_TRIGGER_START:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
|
|
case SNDRV_PCM_TRIGGER_RESUME:
|
|
starting = 1;
|
|
break;
|
|
case SNDRV_PCM_TRIGGER_STOP:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
|
|
case SNDRV_PCM_TRIGGER_SUSPEND:
|
|
starting = 0;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
snd_pcm_group_for_each_entry(s, substream) {
|
|
/* Make sure it is for us... */
|
|
chip = snd_pcm_substream_chip(s);
|
|
if (chip != sis)
|
|
continue;
|
|
|
|
voice = s->runtime->private_data;
|
|
if (voice->flags & VOICE_CAPTURE) {
|
|
record |= 1 << voice->num;
|
|
voice = voice->timing;
|
|
}
|
|
|
|
/* voice could be NULL if this a recording stream, and it
|
|
* doesn't have an external timing channel.
|
|
*/
|
|
if (voice)
|
|
play[voice->num / 32] |= 1 << (voice->num & 0x1f);
|
|
|
|
snd_pcm_trigger_done(s, substream);
|
|
}
|
|
|
|
if (starting) {
|
|
if (record)
|
|
outl(record, io + SIS_RECORD_START_REG);
|
|
if (play[0])
|
|
outl(play[0], io + SIS_PLAY_START_A_REG);
|
|
if (play[1])
|
|
outl(play[1], io + SIS_PLAY_START_B_REG);
|
|
} else {
|
|
if (record)
|
|
outl(record, io + SIS_RECORD_STOP_REG);
|
|
if (play[0])
|
|
outl(play[0], io + SIS_PLAY_STOP_A_REG);
|
|
if (play[1])
|
|
outl(play[1], io + SIS_PLAY_STOP_B_REG);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct voice *voice = runtime->private_data;
|
|
u32 cso;
|
|
|
|
cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
|
|
cso &= 0xffff;
|
|
return cso;
|
|
}
|
|
|
|
static int sis_capture_open(struct snd_pcm_substream *substream)
|
|
{
|
|
struct sis7019 *sis = snd_pcm_substream_chip(substream);
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct voice *voice = &sis->capture_voice;
|
|
unsigned long flags;
|
|
|
|
/* FIXME: The driver only supports recording from one channel
|
|
* at the moment, but it could support more.
|
|
*/
|
|
spin_lock_irqsave(&sis->voice_lock, flags);
|
|
if (voice->flags & VOICE_IN_USE)
|
|
voice = NULL;
|
|
else
|
|
voice->flags |= VOICE_IN_USE;
|
|
spin_unlock_irqrestore(&sis->voice_lock, flags);
|
|
|
|
if (!voice)
|
|
return -EAGAIN;
|
|
|
|
voice->substream = substream;
|
|
runtime->private_data = voice;
|
|
runtime->hw = sis_capture_hw_info;
|
|
runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
|
|
snd_pcm_limit_hw_rates(runtime);
|
|
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
|
|
9, 0xfff9);
|
|
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
|
|
9, 0xfff9);
|
|
snd_pcm_set_sync(substream);
|
|
return 0;
|
|
}
|
|
|
|
static int sis_capture_hw_params(struct snd_pcm_substream *substream,
|
|
struct snd_pcm_hw_params *hw_params)
|
|
{
|
|
struct sis7019 *sis = snd_pcm_substream_chip(substream);
|
|
int rc;
|
|
|
|
rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
|
|
params_rate(hw_params));
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = snd_pcm_lib_malloc_pages(substream,
|
|
params_buffer_bytes(hw_params));
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
rc = sis_alloc_timing_voice(substream, hw_params);
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static void sis_prepare_timing_voice(struct voice *voice,
|
|
struct snd_pcm_substream *substream)
|
|
{
|
|
struct sis7019 *sis = snd_pcm_substream_chip(substream);
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct voice *timing = voice->timing;
|
|
void __iomem *play_base = timing->ctrl_base;
|
|
void __iomem *wave_base = timing->wave_base;
|
|
u16 buffer_size, period_size;
|
|
u32 format, control, sso_eso, delta;
|
|
u32 vperiod, sso, reg;
|
|
|
|
/* Set our initial buffer and period as large as we can given a
|
|
* single page of silence.
|
|
*/
|
|
buffer_size = 4096 / runtime->channels;
|
|
buffer_size /= snd_pcm_format_size(runtime->format, 1);
|
|
period_size = buffer_size;
|
|
|
|
/* Initially, we want to interrupt just a bit behind the end of
|
|
* the period we're clocking out. 10 samples seems to give a good
|
|
* delay.
|
|
*
|
|
* We want to spread our interrupts throughout the virtual period,
|
|
* so that we don't end up with two interrupts back to back at the
|
|
* end -- this helps minimize the effects of any jitter. Adjust our
|
|
* clocking period size so that the last period is at least a fourth
|
|
* of a full period.
|
|
*
|
|
* This is all moot if we don't need to use virtual periods.
|
|
*/
|
|
vperiod = runtime->period_size + 10;
|
|
if (vperiod > period_size) {
|
|
u16 tail = vperiod % period_size;
|
|
u16 quarter_period = period_size / 4;
|
|
|
|
if (tail && tail < quarter_period) {
|
|
u16 loops = vperiod / period_size;
|
|
|
|
tail = quarter_period - tail;
|
|
tail += loops - 1;
|
|
tail /= loops;
|
|
period_size -= tail;
|
|
}
|
|
|
|
sso = period_size - 1;
|
|
} else {
|
|
/* The initial period will fit inside the buffer, so we
|
|
* don't need to use virtual periods -- disable them.
|
|
*/
|
|
period_size = runtime->period_size;
|
|
sso = vperiod - 1;
|
|
vperiod = 0;
|
|
}
|
|
|
|
/* The interrupt handler implements the timing syncronization, so
|
|
* setup its state.
|
|
*/
|
|
timing->flags |= VOICE_SYNC_TIMING;
|
|
timing->sync_base = voice->ctrl_base;
|
|
timing->sync_cso = runtime->period_size - 1;
|
|
timing->sync_period_size = runtime->period_size;
|
|
timing->sync_buffer_size = runtime->buffer_size;
|
|
timing->period_size = period_size;
|
|
timing->buffer_size = buffer_size;
|
|
timing->sso = sso;
|
|
timing->vperiod = vperiod;
|
|
|
|
/* Using unsigned samples with the all-zero silence buffer
|
|
* forces the output to the lower rail, killing playback.
|
|
* So ignore unsigned vs signed -- it doesn't change the timing.
|
|
*/
|
|
format = 0;
|
|
if (snd_pcm_format_width(runtime->format) == 8)
|
|
format = SIS_CAPTURE_DMA_FORMAT_8BIT;
|
|
if (runtime->channels == 1)
|
|
format |= SIS_CAPTURE_DMA_FORMAT_MONO;
|
|
|
|
control = timing->buffer_size - 1;
|
|
control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
|
|
sso_eso = timing->buffer_size - 1;
|
|
sso_eso |= timing->sso << 16;
|
|
|
|
delta = sis_rate_to_delta(runtime->rate);
|
|
|
|
/* We've done the math, now configure the channel.
|
|
*/
|
|
writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
|
|
writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
|
|
writel(control, play_base + SIS_PLAY_DMA_CONTROL);
|
|
writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
|
|
|
|
for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
|
|
writel(0, wave_base + reg);
|
|
|
|
writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
|
|
writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
|
|
writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
|
|
SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
|
|
SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
|
|
wave_base + SIS_WAVE_CHANNEL_CONTROL);
|
|
}
|
|
|
|
static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct voice *voice = runtime->private_data;
|
|
void __iomem *rec_base = voice->ctrl_base;
|
|
u32 format, dma_addr, control;
|
|
u16 leo;
|
|
|
|
/* We rely on the PCM core to ensure that the parameters for this
|
|
* substream do not change on us while we're programming the HW.
|
|
*/
|
|
format = 0;
|
|
if (snd_pcm_format_width(runtime->format) == 8)
|
|
format = SIS_CAPTURE_DMA_FORMAT_8BIT;
|
|
if (!snd_pcm_format_signed(runtime->format))
|
|
format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
|
|
if (runtime->channels == 1)
|
|
format |= SIS_CAPTURE_DMA_FORMAT_MONO;
|
|
|
|
dma_addr = runtime->dma_addr;
|
|
leo = runtime->buffer_size - 1;
|
|
control = leo | SIS_CAPTURE_DMA_LOOP;
|
|
|
|
/* If we've got more than two periods per buffer, then we have
|
|
* use a timing voice to clock out the periods. Otherwise, we can
|
|
* use the capture channel's interrupts.
|
|
*/
|
|
if (voice->timing) {
|
|
sis_prepare_timing_voice(voice, substream);
|
|
} else {
|
|
control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
|
|
if (runtime->period_size != runtime->buffer_size)
|
|
control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
|
|
}
|
|
|
|
writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
|
|
writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
|
|
writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
|
|
|
|
/* Force the writes to post. */
|
|
readl(rec_base);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct snd_pcm_ops sis_playback_ops = {
|
|
.open = sis_playback_open,
|
|
.close = sis_substream_close,
|
|
.ioctl = snd_pcm_lib_ioctl,
|
|
.hw_params = sis_playback_hw_params,
|
|
.hw_free = sis_hw_free,
|
|
.prepare = sis_pcm_playback_prepare,
|
|
.trigger = sis_pcm_trigger,
|
|
.pointer = sis_pcm_pointer,
|
|
};
|
|
|
|
static struct snd_pcm_ops sis_capture_ops = {
|
|
.open = sis_capture_open,
|
|
.close = sis_substream_close,
|
|
.ioctl = snd_pcm_lib_ioctl,
|
|
.hw_params = sis_capture_hw_params,
|
|
.hw_free = sis_hw_free,
|
|
.prepare = sis_pcm_capture_prepare,
|
|
.trigger = sis_pcm_trigger,
|
|
.pointer = sis_pcm_pointer,
|
|
};
|
|
|
|
static int __devinit sis_pcm_create(struct sis7019 *sis)
|
|
{
|
|
struct snd_pcm *pcm;
|
|
int rc;
|
|
|
|
/* We have 64 voices, and the driver currently records from
|
|
* only one channel, though that could change in the future.
|
|
*/
|
|
rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
|
|
if (rc)
|
|
return rc;
|
|
|
|
pcm->private_data = sis;
|
|
strcpy(pcm->name, "SiS7019");
|
|
sis->pcm = pcm;
|
|
|
|
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
|
|
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
|
|
|
|
/* Try to preallocate some memory, but it's not the end of the
|
|
* world if this fails.
|
|
*/
|
|
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
|
|
snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
|
|
{
|
|
unsigned long io = sis->ioport;
|
|
unsigned short val = 0xffff;
|
|
u16 status;
|
|
u16 rdy;
|
|
int count;
|
|
static const u16 codec_ready[3] = {
|
|
SIS_AC97_STATUS_CODEC_READY,
|
|
SIS_AC97_STATUS_CODEC2_READY,
|
|
SIS_AC97_STATUS_CODEC3_READY,
|
|
};
|
|
|
|
rdy = codec_ready[codec];
|
|
|
|
|
|
/* Get the AC97 semaphore -- software first, so we don't spin
|
|
* pounding out IO reads on the hardware semaphore...
|
|
*/
|
|
mutex_lock(&sis->ac97_mutex);
|
|
|
|
count = 0xffff;
|
|
while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
|
|
udelay(1);
|
|
|
|
if (!count)
|
|
goto timeout;
|
|
|
|
/* ... and wait for any outstanding commands to complete ...
|
|
*/
|
|
count = 0xffff;
|
|
do {
|
|
status = inw(io + SIS_AC97_STATUS);
|
|
if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
|
|
break;
|
|
|
|
udelay(1);
|
|
} while (--count);
|
|
|
|
if (!count)
|
|
goto timeout_sema;
|
|
|
|
/* ... before sending our command and waiting for it to finish ...
|
|
*/
|
|
outl(cmd, io + SIS_AC97_CMD);
|
|
udelay(10);
|
|
|
|
count = 0xffff;
|
|
while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
|
|
udelay(1);
|
|
|
|
/* ... and reading the results (if any).
|
|
*/
|
|
val = inl(io + SIS_AC97_CMD) >> 16;
|
|
|
|
timeout_sema:
|
|
outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
|
|
timeout:
|
|
mutex_unlock(&sis->ac97_mutex);
|
|
|
|
if (!count) {
|
|
printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n",
|
|
codec, cmd);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
|
|
unsigned short val)
|
|
{
|
|
static const u32 cmd[3] = {
|
|
SIS_AC97_CMD_CODEC_WRITE,
|
|
SIS_AC97_CMD_CODEC2_WRITE,
|
|
SIS_AC97_CMD_CODEC3_WRITE,
|
|
};
|
|
sis_ac97_rw(ac97->private_data, ac97->num,
|
|
(val << 16) | (reg << 8) | cmd[ac97->num]);
|
|
}
|
|
|
|
static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
|
|
{
|
|
static const u32 cmd[3] = {
|
|
SIS_AC97_CMD_CODEC_READ,
|
|
SIS_AC97_CMD_CODEC2_READ,
|
|
SIS_AC97_CMD_CODEC3_READ,
|
|
};
|
|
return sis_ac97_rw(ac97->private_data, ac97->num,
|
|
(reg << 8) | cmd[ac97->num]);
|
|
}
|
|
|
|
static int __devinit sis_mixer_create(struct sis7019 *sis)
|
|
{
|
|
struct snd_ac97_bus *bus;
|
|
struct snd_ac97_template ac97;
|
|
static struct snd_ac97_bus_ops ops = {
|
|
.write = sis_ac97_write,
|
|
.read = sis_ac97_read,
|
|
};
|
|
int rc;
|
|
|
|
memset(&ac97, 0, sizeof(ac97));
|
|
ac97.private_data = sis;
|
|
|
|
rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
|
|
if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
|
|
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
|
|
ac97.num = 1;
|
|
if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
|
|
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
|
|
ac97.num = 2;
|
|
if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
|
|
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
|
|
|
|
/* If we return an error here, then snd_card_free() should
|
|
* free up any ac97 codecs that got created, as well as the bus.
|
|
*/
|
|
return rc;
|
|
}
|
|
|
|
static void sis_free_suspend(struct sis7019 *sis)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SIS_SUSPEND_PAGES; i++)
|
|
kfree(sis->suspend_state[i]);
|
|
}
|
|
|
|
static int sis_chip_free(struct sis7019 *sis)
|
|
{
|
|
/* Reset the chip, and disable all interrputs.
|
|
*/
|
|
outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
|
|
udelay(10);
|
|
outl(0, sis->ioport + SIS_GCR);
|
|
outl(0, sis->ioport + SIS_GIER);
|
|
|
|
/* Now, free everything we allocated.
|
|
*/
|
|
if (sis->irq >= 0)
|
|
free_irq(sis->irq, sis);
|
|
|
|
if (sis->ioaddr)
|
|
iounmap(sis->ioaddr);
|
|
|
|
pci_release_regions(sis->pci);
|
|
pci_disable_device(sis->pci);
|
|
|
|
sis_free_suspend(sis);
|
|
return 0;
|
|
}
|
|
|
|
static int sis_dev_free(struct snd_device *dev)
|
|
{
|
|
struct sis7019 *sis = dev->device_data;
|
|
return sis_chip_free(sis);
|
|
}
|
|
|
|
static int sis_chip_init(struct sis7019 *sis)
|
|
{
|
|
unsigned long io = sis->ioport;
|
|
void __iomem *ioaddr = sis->ioaddr;
|
|
u16 status;
|
|
int count;
|
|
int i;
|
|
|
|
/* Reset the audio controller
|
|
*/
|
|
outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
|
|
udelay(10);
|
|
outl(0, io + SIS_GCR);
|
|
|
|
/* Get the AC-link semaphore, and reset the codecs
|
|
*/
|
|
count = 0xffff;
|
|
while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
|
|
udelay(1);
|
|
|
|
if (!count)
|
|
return -EIO;
|
|
|
|
outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
|
|
udelay(10);
|
|
|
|
count = 0xffff;
|
|
while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
|
|
udelay(1);
|
|
|
|
/* Now that we've finished the reset, find out what's attached.
|
|
*/
|
|
status = inl(io + SIS_AC97_STATUS);
|
|
if (status & SIS_AC97_STATUS_CODEC_READY)
|
|
sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
|
|
if (status & SIS_AC97_STATUS_CODEC2_READY)
|
|
sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
|
|
if (status & SIS_AC97_STATUS_CODEC3_READY)
|
|
sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
|
|
|
|
/* All done, let go of the semaphore, and check for errors
|
|
*/
|
|
outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
|
|
if (!sis->codecs_present || !count)
|
|
return -EIO;
|
|
|
|
/* Let the hardware know that the audio driver is alive,
|
|
* and enable PCM slots on the AC-link for L/R playback (3 & 4) and
|
|
* record channels. We're going to want to use Variable Rate Audio
|
|
* for recording, to avoid needlessly resampling from 48kHZ.
|
|
*/
|
|
outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
|
|
outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
|
|
SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
|
|
SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
|
|
SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
|
|
|
|
/* All AC97 PCM slots should be sourced from sub-mixer 0.
|
|
*/
|
|
outl(0, io + SIS_AC97_PSR);
|
|
|
|
/* There is only one valid DMA setup for a PCI environment.
|
|
*/
|
|
outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
|
|
|
|
/* Reset the syncronization groups for all of the channels
|
|
* to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
|
|
* we'll need to change how we handle these. Until then, we just
|
|
* assign sub-mixer 0 to all playback channels, and avoid any
|
|
* attenuation on the audio.
|
|
*/
|
|
outl(0, io + SIS_PLAY_SYNC_GROUP_A);
|
|
outl(0, io + SIS_PLAY_SYNC_GROUP_B);
|
|
outl(0, io + SIS_PLAY_SYNC_GROUP_C);
|
|
outl(0, io + SIS_PLAY_SYNC_GROUP_D);
|
|
outl(0, io + SIS_MIXER_SYNC_GROUP);
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
|
|
writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
|
|
SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
|
|
}
|
|
|
|
/* Don't attenuate any audio set for the wave amplifier.
|
|
*
|
|
* FIXME: Maximum attenuation is set for the music amp, which will
|
|
* need to change if we start using the synth engine.
|
|
*/
|
|
outl(0xffff0000, io + SIS_WEVCR);
|
|
|
|
/* Ensure that the wave engine is in normal operating mode.
|
|
*/
|
|
outl(0, io + SIS_WECCR);
|
|
|
|
/* Go ahead and enable the DMA interrupts. They won't go live
|
|
* until we start a channel.
|
|
*/
|
|
outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
|
|
SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int sis_suspend(struct pci_dev *pci, pm_message_t state)
|
|
{
|
|
struct snd_card *card = pci_get_drvdata(pci);
|
|
struct sis7019 *sis = card->private_data;
|
|
void __iomem *ioaddr = sis->ioaddr;
|
|
int i;
|
|
|
|
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
|
|
snd_pcm_suspend_all(sis->pcm);
|
|
if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
|
|
snd_ac97_suspend(sis->ac97[0]);
|
|
if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
|
|
snd_ac97_suspend(sis->ac97[1]);
|
|
if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
|
|
snd_ac97_suspend(sis->ac97[2]);
|
|
|
|
/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
|
|
*/
|
|
if (sis->irq >= 0) {
|
|
free_irq(sis->irq, sis);
|
|
sis->irq = -1;
|
|
}
|
|
|
|
/* Save the internal state away
|
|
*/
|
|
for (i = 0; i < 4; i++) {
|
|
memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
|
|
ioaddr += 4096;
|
|
}
|
|
|
|
pci_disable_device(pci);
|
|
pci_save_state(pci);
|
|
pci_set_power_state(pci, pci_choose_state(pci, state));
|
|
return 0;
|
|
}
|
|
|
|
static int sis_resume(struct pci_dev *pci)
|
|
{
|
|
struct snd_card *card = pci_get_drvdata(pci);
|
|
struct sis7019 *sis = card->private_data;
|
|
void __iomem *ioaddr = sis->ioaddr;
|
|
int i;
|
|
|
|
pci_set_power_state(pci, PCI_D0);
|
|
pci_restore_state(pci);
|
|
|
|
if (pci_enable_device(pci) < 0) {
|
|
printk(KERN_ERR "sis7019: unable to re-enable device\n");
|
|
goto error;
|
|
}
|
|
|
|
if (sis_chip_init(sis)) {
|
|
printk(KERN_ERR "sis7019: unable to re-init controller\n");
|
|
goto error;
|
|
}
|
|
|
|
if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
|
|
card->shortname, sis)) {
|
|
printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq);
|
|
goto error;
|
|
}
|
|
|
|
/* Restore saved state, then clear out the page we use for the
|
|
* silence buffer.
|
|
*/
|
|
for (i = 0; i < 4; i++) {
|
|
memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
|
|
ioaddr += 4096;
|
|
}
|
|
|
|
memset(sis->suspend_state[0], 0, 4096);
|
|
|
|
sis->irq = pci->irq;
|
|
pci_set_master(pci);
|
|
|
|
if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
|
|
snd_ac97_resume(sis->ac97[0]);
|
|
if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
|
|
snd_ac97_resume(sis->ac97[1]);
|
|
if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
|
|
snd_ac97_resume(sis->ac97[2]);
|
|
|
|
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
|
|
return 0;
|
|
|
|
error:
|
|
snd_card_disconnect(card);
|
|
return -EIO;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
static int sis_alloc_suspend(struct sis7019 *sis)
|
|
{
|
|
int i;
|
|
|
|
/* We need 16K to store the internal wave engine state during a
|
|
* suspend, but we don't need it to be contiguous, so play nice
|
|
* with the memory system. We'll also use this area for a silence
|
|
* buffer.
|
|
*/
|
|
for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
|
|
sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
|
|
if (!sis->suspend_state[i])
|
|
return -ENOMEM;
|
|
}
|
|
memset(sis->suspend_state[0], 0, 4096);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit sis_chip_create(struct snd_card *card,
|
|
struct pci_dev *pci)
|
|
{
|
|
struct sis7019 *sis = card->private_data;
|
|
struct voice *voice;
|
|
static struct snd_device_ops ops = {
|
|
.dev_free = sis_dev_free,
|
|
};
|
|
int rc;
|
|
int i;
|
|
|
|
rc = pci_enable_device(pci);
|
|
if (rc)
|
|
goto error_out;
|
|
|
|
if (pci_set_dma_mask(pci, DMA_30BIT_MASK) < 0) {
|
|
printk(KERN_ERR "sis7019: architecture does not support "
|
|
"30-bit PCI busmaster DMA");
|
|
goto error_out_enabled;
|
|
}
|
|
|
|
memset(sis, 0, sizeof(*sis));
|
|
mutex_init(&sis->ac97_mutex);
|
|
spin_lock_init(&sis->voice_lock);
|
|
sis->card = card;
|
|
sis->pci = pci;
|
|
sis->irq = -1;
|
|
sis->ioport = pci_resource_start(pci, 0);
|
|
|
|
rc = pci_request_regions(pci, "SiS7019");
|
|
if (rc) {
|
|
printk(KERN_ERR "sis7019: unable request regions\n");
|
|
goto error_out_enabled;
|
|
}
|
|
|
|
rc = -EIO;
|
|
sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
|
|
if (!sis->ioaddr) {
|
|
printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n");
|
|
goto error_out_cleanup;
|
|
}
|
|
|
|
rc = sis_alloc_suspend(sis);
|
|
if (rc < 0) {
|
|
printk(KERN_ERR "sis7019: unable to allocate state storage\n");
|
|
goto error_out_cleanup;
|
|
}
|
|
|
|
rc = sis_chip_init(sis);
|
|
if (rc)
|
|
goto error_out_cleanup;
|
|
|
|
if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
|
|
card->shortname, sis)) {
|
|
printk(KERN_ERR "unable to allocate irq %d\n", sis->irq);
|
|
goto error_out_cleanup;
|
|
}
|
|
|
|
sis->irq = pci->irq;
|
|
pci_set_master(pci);
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
voice = &sis->voices[i];
|
|
voice->num = i;
|
|
voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
|
|
voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
|
|
}
|
|
|
|
voice = &sis->capture_voice;
|
|
voice->flags = VOICE_CAPTURE;
|
|
voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
|
|
voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
|
|
|
|
rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
|
|
if (rc)
|
|
goto error_out_cleanup;
|
|
|
|
snd_card_set_dev(card, &pci->dev);
|
|
|
|
return 0;
|
|
|
|
error_out_cleanup:
|
|
sis_chip_free(sis);
|
|
|
|
error_out_enabled:
|
|
pci_disable_device(pci);
|
|
|
|
error_out:
|
|
return rc;
|
|
}
|
|
|
|
static int __devinit snd_sis7019_probe(struct pci_dev *pci,
|
|
const struct pci_device_id *pci_id)
|
|
{
|
|
struct snd_card *card;
|
|
struct sis7019 *sis;
|
|
int rc;
|
|
|
|
rc = -ENOENT;
|
|
if (!enable)
|
|
goto error_out;
|
|
|
|
rc = -ENOMEM;
|
|
card = snd_card_new(index, id, THIS_MODULE, sizeof(*sis));
|
|
if (!card)
|
|
goto error_out;
|
|
|
|
strcpy(card->driver, "SiS7019");
|
|
strcpy(card->shortname, "SiS7019");
|
|
rc = sis_chip_create(card, pci);
|
|
if (rc)
|
|
goto card_error_out;
|
|
|
|
sis = card->private_data;
|
|
|
|
rc = sis_mixer_create(sis);
|
|
if (rc)
|
|
goto card_error_out;
|
|
|
|
rc = sis_pcm_create(sis);
|
|
if (rc)
|
|
goto card_error_out;
|
|
|
|
snprintf(card->longname, sizeof(card->longname),
|
|
"%s Audio Accelerator with %s at 0x%lx, irq %d",
|
|
card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
|
|
sis->ioport, sis->irq);
|
|
|
|
rc = snd_card_register(card);
|
|
if (rc)
|
|
goto card_error_out;
|
|
|
|
pci_set_drvdata(pci, card);
|
|
return 0;
|
|
|
|
card_error_out:
|
|
snd_card_free(card);
|
|
|
|
error_out:
|
|
return rc;
|
|
}
|
|
|
|
static void __devexit snd_sis7019_remove(struct pci_dev *pci)
|
|
{
|
|
snd_card_free(pci_get_drvdata(pci));
|
|
pci_set_drvdata(pci, NULL);
|
|
}
|
|
|
|
static struct pci_driver sis7019_driver = {
|
|
.name = "SiS7019",
|
|
.id_table = snd_sis7019_ids,
|
|
.probe = snd_sis7019_probe,
|
|
.remove = __devexit_p(snd_sis7019_remove),
|
|
|
|
#ifdef CONFIG_PM
|
|
.suspend = sis_suspend,
|
|
.resume = sis_resume,
|
|
#endif
|
|
};
|
|
|
|
static int __init sis7019_init(void)
|
|
{
|
|
return pci_register_driver(&sis7019_driver);
|
|
}
|
|
|
|
static void __exit sis7019_exit(void)
|
|
{
|
|
pci_unregister_driver(&sis7019_driver);
|
|
}
|
|
|
|
module_init(sis7019_init);
|
|
module_exit(sis7019_exit);
|