2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 07:06:40 +08:00
linux-next/mm/filemap_xip.c
Nick Piggin 4a9e5ef1f4 mm: write iovec cleanup
Hide some of the open-coded nr_segs tests into the iovec helpers.  This is all
to simplify generic_file_buffered_write, because that gets more complex in the
next patch.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:54 -07:00

437 lines
10 KiB
C

/*
* linux/mm/filemap_xip.c
*
* Copyright (C) 2005 IBM Corporation
* Author: Carsten Otte <cotte@de.ibm.com>
*
* derived from linux/mm/filemap.c - Copyright (C) Linus Torvalds
*
*/
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/module.h>
#include <linux/uio.h>
#include <linux/rmap.h>
#include <linux/sched.h>
#include <asm/tlbflush.h>
/*
* We do use our own empty page to avoid interference with other users
* of ZERO_PAGE(), such as /dev/zero
*/
static struct page *__xip_sparse_page;
static struct page *xip_sparse_page(void)
{
if (!__xip_sparse_page) {
unsigned long zeroes = get_zeroed_page(GFP_HIGHUSER);
if (zeroes) {
static DEFINE_SPINLOCK(xip_alloc_lock);
spin_lock(&xip_alloc_lock);
if (!__xip_sparse_page)
__xip_sparse_page = virt_to_page(zeroes);
else
free_page(zeroes);
spin_unlock(&xip_alloc_lock);
}
}
return __xip_sparse_page;
}
/*
* This is a file read routine for execute in place files, and uses
* the mapping->a_ops->get_xip_page() function for the actual low-level
* stuff.
*
* Note the struct file* is not used at all. It may be NULL.
*/
static void
do_xip_mapping_read(struct address_space *mapping,
struct file_ra_state *_ra,
struct file *filp,
loff_t *ppos,
read_descriptor_t *desc,
read_actor_t actor)
{
struct inode *inode = mapping->host;
unsigned long index, end_index, offset;
loff_t isize;
BUG_ON(!mapping->a_ops->get_xip_page);
index = *ppos >> PAGE_CACHE_SHIFT;
offset = *ppos & ~PAGE_CACHE_MASK;
isize = i_size_read(inode);
if (!isize)
goto out;
end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
for (;;) {
struct page *page;
unsigned long nr, ret;
/* nr is the maximum number of bytes to copy from this page */
nr = PAGE_CACHE_SIZE;
if (index >= end_index) {
if (index > end_index)
goto out;
nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
if (nr <= offset) {
goto out;
}
}
nr = nr - offset;
page = mapping->a_ops->get_xip_page(mapping,
index*(PAGE_SIZE/512), 0);
if (!page)
goto no_xip_page;
if (unlikely(IS_ERR(page))) {
if (PTR_ERR(page) == -ENODATA) {
/* sparse */
page = ZERO_PAGE(0);
} else {
desc->error = PTR_ERR(page);
goto out;
}
}
/* If users can be writing to this page using arbitrary
* virtual addresses, take care about potential aliasing
* before reading the page on the kernel side.
*/
if (mapping_writably_mapped(mapping))
flush_dcache_page(page);
/*
* Ok, we have the page, so now we can copy it to user space...
*
* The actor routine returns how many bytes were actually used..
* NOTE! This may not be the same as how much of a user buffer
* we filled up (we may be padding etc), so we can only update
* "pos" here (the actor routine has to update the user buffer
* pointers and the remaining count).
*/
ret = actor(desc, page, offset, nr);
offset += ret;
index += offset >> PAGE_CACHE_SHIFT;
offset &= ~PAGE_CACHE_MASK;
if (ret == nr && desc->count)
continue;
goto out;
no_xip_page:
/* Did not get the page. Report it */
desc->error = -EIO;
goto out;
}
out:
*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
if (filp)
file_accessed(filp);
}
ssize_t
xip_file_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
{
read_descriptor_t desc;
if (!access_ok(VERIFY_WRITE, buf, len))
return -EFAULT;
desc.written = 0;
desc.arg.buf = buf;
desc.count = len;
desc.error = 0;
do_xip_mapping_read(filp->f_mapping, &filp->f_ra, filp,
ppos, &desc, file_read_actor);
if (desc.written)
return desc.written;
else
return desc.error;
}
EXPORT_SYMBOL_GPL(xip_file_read);
/*
* __xip_unmap is invoked from xip_unmap and
* xip_write
*
* This function walks all vmas of the address_space and unmaps the
* __xip_sparse_page when found at pgoff.
*/
static void
__xip_unmap (struct address_space * mapping,
unsigned long pgoff)
{
struct vm_area_struct *vma;
struct mm_struct *mm;
struct prio_tree_iter iter;
unsigned long address;
pte_t *pte;
pte_t pteval;
spinlock_t *ptl;
struct page *page;
page = __xip_sparse_page;
if (!page)
return;
spin_lock(&mapping->i_mmap_lock);
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
mm = vma->vm_mm;
address = vma->vm_start +
((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
BUG_ON(address < vma->vm_start || address >= vma->vm_end);
pte = page_check_address(page, mm, address, &ptl);
if (pte) {
/* Nuke the page table entry. */
flush_cache_page(vma, address, pte_pfn(*pte));
pteval = ptep_clear_flush(vma, address, pte);
page_remove_rmap(page, vma);
dec_mm_counter(mm, file_rss);
BUG_ON(pte_dirty(pteval));
pte_unmap_unlock(pte, ptl);
page_cache_release(page);
}
}
spin_unlock(&mapping->i_mmap_lock);
}
/*
* xip_fault() is invoked via the vma operations vector for a
* mapped memory region to read in file data during a page fault.
*
* This function is derived from filemap_fault, but used for execute in place
*/
static int xip_file_fault(struct vm_area_struct *area, struct vm_fault *vmf)
{
struct file *file = area->vm_file;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct page *page;
pgoff_t size;
/* XXX: are VM_FAULT_ codes OK? */
size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
if (vmf->pgoff >= size)
return VM_FAULT_SIGBUS;
page = mapping->a_ops->get_xip_page(mapping,
vmf->pgoff*(PAGE_SIZE/512), 0);
if (!IS_ERR(page))
goto out;
if (PTR_ERR(page) != -ENODATA)
return VM_FAULT_OOM;
/* sparse block */
if ((area->vm_flags & (VM_WRITE | VM_MAYWRITE)) &&
(area->vm_flags & (VM_SHARED| VM_MAYSHARE)) &&
(!(mapping->host->i_sb->s_flags & MS_RDONLY))) {
/* maybe shared writable, allocate new block */
page = mapping->a_ops->get_xip_page(mapping,
vmf->pgoff*(PAGE_SIZE/512), 1);
if (IS_ERR(page))
return VM_FAULT_SIGBUS;
/* unmap page at pgoff from all other vmas */
__xip_unmap(mapping, vmf->pgoff);
} else {
/* not shared and writable, use xip_sparse_page() */
page = xip_sparse_page();
if (!page)
return VM_FAULT_OOM;
}
out:
page_cache_get(page);
vmf->page = page;
return 0;
}
static struct vm_operations_struct xip_file_vm_ops = {
.fault = xip_file_fault,
};
int xip_file_mmap(struct file * file, struct vm_area_struct * vma)
{
BUG_ON(!file->f_mapping->a_ops->get_xip_page);
file_accessed(file);
vma->vm_ops = &xip_file_vm_ops;
vma->vm_flags |= VM_CAN_NONLINEAR;
return 0;
}
EXPORT_SYMBOL_GPL(xip_file_mmap);
static ssize_t
__xip_file_write(struct file *filp, const char __user *buf,
size_t count, loff_t pos, loff_t *ppos)
{
struct address_space * mapping = filp->f_mapping;
const struct address_space_operations *a_ops = mapping->a_ops;
struct inode *inode = mapping->host;
long status = 0;
struct page *page;
size_t bytes;
ssize_t written = 0;
BUG_ON(!mapping->a_ops->get_xip_page);
do {
unsigned long index;
unsigned long offset;
size_t copied;
char *kaddr;
offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
index = pos >> PAGE_CACHE_SHIFT;
bytes = PAGE_CACHE_SIZE - offset;
if (bytes > count)
bytes = count;
page = a_ops->get_xip_page(mapping,
index*(PAGE_SIZE/512), 0);
if (IS_ERR(page) && (PTR_ERR(page) == -ENODATA)) {
/* we allocate a new page unmap it */
page = a_ops->get_xip_page(mapping,
index*(PAGE_SIZE/512), 1);
if (!IS_ERR(page))
/* unmap page at pgoff from all other vmas */
__xip_unmap(mapping, index);
}
if (IS_ERR(page)) {
status = PTR_ERR(page);
break;
}
fault_in_pages_readable(buf, bytes);
kaddr = kmap_atomic(page, KM_USER0);
copied = bytes -
__copy_from_user_inatomic_nocache(kaddr, buf, bytes);
kunmap_atomic(kaddr, KM_USER0);
flush_dcache_page(page);
if (likely(copied > 0)) {
status = copied;
if (status >= 0) {
written += status;
count -= status;
pos += status;
buf += status;
}
}
if (unlikely(copied != bytes))
if (status >= 0)
status = -EFAULT;
if (status < 0)
break;
} while (count);
*ppos = pos;
/*
* No need to use i_size_read() here, the i_size
* cannot change under us because we hold i_mutex.
*/
if (pos > inode->i_size) {
i_size_write(inode, pos);
mark_inode_dirty(inode);
}
return written ? written : status;
}
ssize_t
xip_file_write(struct file *filp, const char __user *buf, size_t len,
loff_t *ppos)
{
struct address_space *mapping = filp->f_mapping;
struct inode *inode = mapping->host;
size_t count;
loff_t pos;
ssize_t ret;
mutex_lock(&inode->i_mutex);
if (!access_ok(VERIFY_READ, buf, len)) {
ret=-EFAULT;
goto out_up;
}
pos = *ppos;
count = len;
vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
/* We can write back this queue in page reclaim */
current->backing_dev_info = mapping->backing_dev_info;
ret = generic_write_checks(filp, &pos, &count, S_ISBLK(inode->i_mode));
if (ret)
goto out_backing;
if (count == 0)
goto out_backing;
ret = remove_suid(filp->f_path.dentry);
if (ret)
goto out_backing;
file_update_time(filp);
ret = __xip_file_write (filp, buf, count, pos, ppos);
out_backing:
current->backing_dev_info = NULL;
out_up:
mutex_unlock(&inode->i_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(xip_file_write);
/*
* truncate a page used for execute in place
* functionality is analog to block_truncate_page but does use get_xip_page
* to get the page instead of page cache
*/
int
xip_truncate_page(struct address_space *mapping, loff_t from)
{
pgoff_t index = from >> PAGE_CACHE_SHIFT;
unsigned offset = from & (PAGE_CACHE_SIZE-1);
unsigned blocksize;
unsigned length;
struct page *page;
BUG_ON(!mapping->a_ops->get_xip_page);
blocksize = 1 << mapping->host->i_blkbits;
length = offset & (blocksize - 1);
/* Block boundary? Nothing to do */
if (!length)
return 0;
length = blocksize - length;
page = mapping->a_ops->get_xip_page(mapping,
index*(PAGE_SIZE/512), 0);
if (!page)
return -ENOMEM;
if (unlikely(IS_ERR(page))) {
if (PTR_ERR(page) == -ENODATA)
/* Hole? No need to truncate */
return 0;
else
return PTR_ERR(page);
}
zero_user_page(page, offset, length, KM_USER0);
return 0;
}
EXPORT_SYMBOL_GPL(xip_truncate_page);