2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 23:54:19 +08:00
linux-next/kernel/exit.c
Frans Klaver 3da56d1663 kernel: exit: fix typo in comment
s,critiera,criteria,

While at it, add a comma, because it makes sense grammatically.

Signed-off-by: Frans Klaver <fransklaver@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.com>
2015-08-07 13:59:49 +02:00

1633 lines
42 KiB
C

/*
* linux/kernel/exit.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/capability.h>
#include <linux/completion.h>
#include <linux/personality.h>
#include <linux/tty.h>
#include <linux/iocontext.h>
#include <linux/key.h>
#include <linux/security.h>
#include <linux/cpu.h>
#include <linux/acct.h>
#include <linux/tsacct_kern.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/freezer.h>
#include <linux/binfmts.h>
#include <linux/nsproxy.h>
#include <linux/pid_namespace.h>
#include <linux/ptrace.h>
#include <linux/profile.h>
#include <linux/mount.h>
#include <linux/proc_fs.h>
#include <linux/kthread.h>
#include <linux/mempolicy.h>
#include <linux/taskstats_kern.h>
#include <linux/delayacct.h>
#include <linux/cgroup.h>
#include <linux/syscalls.h>
#include <linux/signal.h>
#include <linux/posix-timers.h>
#include <linux/cn_proc.h>
#include <linux/mutex.h>
#include <linux/futex.h>
#include <linux/pipe_fs_i.h>
#include <linux/audit.h> /* for audit_free() */
#include <linux/resource.h>
#include <linux/blkdev.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/tracehook.h>
#include <linux/fs_struct.h>
#include <linux/init_task.h>
#include <linux/perf_event.h>
#include <trace/events/sched.h>
#include <linux/hw_breakpoint.h>
#include <linux/oom.h>
#include <linux/writeback.h>
#include <linux/shm.h>
#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
static void exit_mm(struct task_struct *tsk);
static void __unhash_process(struct task_struct *p, bool group_dead)
{
nr_threads--;
detach_pid(p, PIDTYPE_PID);
if (group_dead) {
detach_pid(p, PIDTYPE_PGID);
detach_pid(p, PIDTYPE_SID);
list_del_rcu(&p->tasks);
list_del_init(&p->sibling);
__this_cpu_dec(process_counts);
}
list_del_rcu(&p->thread_group);
list_del_rcu(&p->thread_node);
}
/*
* This function expects the tasklist_lock write-locked.
*/
static void __exit_signal(struct task_struct *tsk)
{
struct signal_struct *sig = tsk->signal;
bool group_dead = thread_group_leader(tsk);
struct sighand_struct *sighand;
struct tty_struct *uninitialized_var(tty);
cputime_t utime, stime;
sighand = rcu_dereference_check(tsk->sighand,
lockdep_tasklist_lock_is_held());
spin_lock(&sighand->siglock);
posix_cpu_timers_exit(tsk);
if (group_dead) {
posix_cpu_timers_exit_group(tsk);
tty = sig->tty;
sig->tty = NULL;
} else {
/*
* This can only happen if the caller is de_thread().
* FIXME: this is the temporary hack, we should teach
* posix-cpu-timers to handle this case correctly.
*/
if (unlikely(has_group_leader_pid(tsk)))
posix_cpu_timers_exit_group(tsk);
/*
* If there is any task waiting for the group exit
* then notify it:
*/
if (sig->notify_count > 0 && !--sig->notify_count)
wake_up_process(sig->group_exit_task);
if (tsk == sig->curr_target)
sig->curr_target = next_thread(tsk);
}
/*
* Accumulate here the counters for all threads as they die. We could
* skip the group leader because it is the last user of signal_struct,
* but we want to avoid the race with thread_group_cputime() which can
* see the empty ->thread_head list.
*/
task_cputime(tsk, &utime, &stime);
write_seqlock(&sig->stats_lock);
sig->utime += utime;
sig->stime += stime;
sig->gtime += task_gtime(tsk);
sig->min_flt += tsk->min_flt;
sig->maj_flt += tsk->maj_flt;
sig->nvcsw += tsk->nvcsw;
sig->nivcsw += tsk->nivcsw;
sig->inblock += task_io_get_inblock(tsk);
sig->oublock += task_io_get_oublock(tsk);
task_io_accounting_add(&sig->ioac, &tsk->ioac);
sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
sig->nr_threads--;
__unhash_process(tsk, group_dead);
write_sequnlock(&sig->stats_lock);
/*
* Do this under ->siglock, we can race with another thread
* doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
*/
flush_sigqueue(&tsk->pending);
tsk->sighand = NULL;
spin_unlock(&sighand->siglock);
__cleanup_sighand(sighand);
clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
if (group_dead) {
flush_sigqueue(&sig->shared_pending);
tty_kref_put(tty);
}
}
static void delayed_put_task_struct(struct rcu_head *rhp)
{
struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
perf_event_delayed_put(tsk);
trace_sched_process_free(tsk);
put_task_struct(tsk);
}
void release_task(struct task_struct *p)
{
struct task_struct *leader;
int zap_leader;
repeat:
/* don't need to get the RCU readlock here - the process is dead and
* can't be modifying its own credentials. But shut RCU-lockdep up */
rcu_read_lock();
atomic_dec(&__task_cred(p)->user->processes);
rcu_read_unlock();
proc_flush_task(p);
write_lock_irq(&tasklist_lock);
ptrace_release_task(p);
__exit_signal(p);
/*
* If we are the last non-leader member of the thread
* group, and the leader is zombie, then notify the
* group leader's parent process. (if it wants notification.)
*/
zap_leader = 0;
leader = p->group_leader;
if (leader != p && thread_group_empty(leader)
&& leader->exit_state == EXIT_ZOMBIE) {
/*
* If we were the last child thread and the leader has
* exited already, and the leader's parent ignores SIGCHLD,
* then we are the one who should release the leader.
*/
zap_leader = do_notify_parent(leader, leader->exit_signal);
if (zap_leader)
leader->exit_state = EXIT_DEAD;
}
write_unlock_irq(&tasklist_lock);
release_thread(p);
call_rcu(&p->rcu, delayed_put_task_struct);
p = leader;
if (unlikely(zap_leader))
goto repeat;
}
/*
* Determine if a process group is "orphaned", according to the POSIX
* definition in 2.2.2.52. Orphaned process groups are not to be affected
* by terminal-generated stop signals. Newly orphaned process groups are
* to receive a SIGHUP and a SIGCONT.
*
* "I ask you, have you ever known what it is to be an orphan?"
*/
static int will_become_orphaned_pgrp(struct pid *pgrp,
struct task_struct *ignored_task)
{
struct task_struct *p;
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
if ((p == ignored_task) ||
(p->exit_state && thread_group_empty(p)) ||
is_global_init(p->real_parent))
continue;
if (task_pgrp(p->real_parent) != pgrp &&
task_session(p->real_parent) == task_session(p))
return 0;
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
return 1;
}
int is_current_pgrp_orphaned(void)
{
int retval;
read_lock(&tasklist_lock);
retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
read_unlock(&tasklist_lock);
return retval;
}
static bool has_stopped_jobs(struct pid *pgrp)
{
struct task_struct *p;
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
if (p->signal->flags & SIGNAL_STOP_STOPPED)
return true;
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
return false;
}
/*
* Check to see if any process groups have become orphaned as
* a result of our exiting, and if they have any stopped jobs,
* send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
*/
static void
kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
{
struct pid *pgrp = task_pgrp(tsk);
struct task_struct *ignored_task = tsk;
if (!parent)
/* exit: our father is in a different pgrp than
* we are and we were the only connection outside.
*/
parent = tsk->real_parent;
else
/* reparent: our child is in a different pgrp than
* we are, and it was the only connection outside.
*/
ignored_task = NULL;
if (task_pgrp(parent) != pgrp &&
task_session(parent) == task_session(tsk) &&
will_become_orphaned_pgrp(pgrp, ignored_task) &&
has_stopped_jobs(pgrp)) {
__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
}
}
#ifdef CONFIG_MEMCG
/*
* A task is exiting. If it owned this mm, find a new owner for the mm.
*/
void mm_update_next_owner(struct mm_struct *mm)
{
struct task_struct *c, *g, *p = current;
retry:
/*
* If the exiting or execing task is not the owner, it's
* someone else's problem.
*/
if (mm->owner != p)
return;
/*
* The current owner is exiting/execing and there are no other
* candidates. Do not leave the mm pointing to a possibly
* freed task structure.
*/
if (atomic_read(&mm->mm_users) <= 1) {
mm->owner = NULL;
return;
}
read_lock(&tasklist_lock);
/*
* Search in the children
*/
list_for_each_entry(c, &p->children, sibling) {
if (c->mm == mm)
goto assign_new_owner;
}
/*
* Search in the siblings
*/
list_for_each_entry(c, &p->real_parent->children, sibling) {
if (c->mm == mm)
goto assign_new_owner;
}
/*
* Search through everything else, we should not get here often.
*/
for_each_process(g) {
if (g->flags & PF_KTHREAD)
continue;
for_each_thread(g, c) {
if (c->mm == mm)
goto assign_new_owner;
if (c->mm)
break;
}
}
read_unlock(&tasklist_lock);
/*
* We found no owner yet mm_users > 1: this implies that we are
* most likely racing with swapoff (try_to_unuse()) or /proc or
* ptrace or page migration (get_task_mm()). Mark owner as NULL.
*/
mm->owner = NULL;
return;
assign_new_owner:
BUG_ON(c == p);
get_task_struct(c);
/*
* The task_lock protects c->mm from changing.
* We always want mm->owner->mm == mm
*/
task_lock(c);
/*
* Delay read_unlock() till we have the task_lock()
* to ensure that c does not slip away underneath us
*/
read_unlock(&tasklist_lock);
if (c->mm != mm) {
task_unlock(c);
put_task_struct(c);
goto retry;
}
mm->owner = c;
task_unlock(c);
put_task_struct(c);
}
#endif /* CONFIG_MEMCG */
/*
* Turn us into a lazy TLB process if we
* aren't already..
*/
static void exit_mm(struct task_struct *tsk)
{
struct mm_struct *mm = tsk->mm;
struct core_state *core_state;
mm_release(tsk, mm);
if (!mm)
return;
sync_mm_rss(mm);
/*
* Serialize with any possible pending coredump.
* We must hold mmap_sem around checking core_state
* and clearing tsk->mm. The core-inducing thread
* will increment ->nr_threads for each thread in the
* group with ->mm != NULL.
*/
down_read(&mm->mmap_sem);
core_state = mm->core_state;
if (core_state) {
struct core_thread self;
up_read(&mm->mmap_sem);
self.task = tsk;
self.next = xchg(&core_state->dumper.next, &self);
/*
* Implies mb(), the result of xchg() must be visible
* to core_state->dumper.
*/
if (atomic_dec_and_test(&core_state->nr_threads))
complete(&core_state->startup);
for (;;) {
set_task_state(tsk, TASK_UNINTERRUPTIBLE);
if (!self.task) /* see coredump_finish() */
break;
freezable_schedule();
}
__set_task_state(tsk, TASK_RUNNING);
down_read(&mm->mmap_sem);
}
atomic_inc(&mm->mm_count);
BUG_ON(mm != tsk->active_mm);
/* more a memory barrier than a real lock */
task_lock(tsk);
tsk->mm = NULL;
up_read(&mm->mmap_sem);
enter_lazy_tlb(mm, current);
task_unlock(tsk);
mm_update_next_owner(mm);
mmput(mm);
if (test_thread_flag(TIF_MEMDIE))
exit_oom_victim();
}
static struct task_struct *find_alive_thread(struct task_struct *p)
{
struct task_struct *t;
for_each_thread(p, t) {
if (!(t->flags & PF_EXITING))
return t;
}
return NULL;
}
static struct task_struct *find_child_reaper(struct task_struct *father)
__releases(&tasklist_lock)
__acquires(&tasklist_lock)
{
struct pid_namespace *pid_ns = task_active_pid_ns(father);
struct task_struct *reaper = pid_ns->child_reaper;
if (likely(reaper != father))
return reaper;
reaper = find_alive_thread(father);
if (reaper) {
pid_ns->child_reaper = reaper;
return reaper;
}
write_unlock_irq(&tasklist_lock);
if (unlikely(pid_ns == &init_pid_ns)) {
panic("Attempted to kill init! exitcode=0x%08x\n",
father->signal->group_exit_code ?: father->exit_code);
}
zap_pid_ns_processes(pid_ns);
write_lock_irq(&tasklist_lock);
return father;
}
/*
* When we die, we re-parent all our children, and try to:
* 1. give them to another thread in our thread group, if such a member exists
* 2. give it to the first ancestor process which prctl'd itself as a
* child_subreaper for its children (like a service manager)
* 3. give it to the init process (PID 1) in our pid namespace
*/
static struct task_struct *find_new_reaper(struct task_struct *father,
struct task_struct *child_reaper)
{
struct task_struct *thread, *reaper;
thread = find_alive_thread(father);
if (thread)
return thread;
if (father->signal->has_child_subreaper) {
/*
* Find the first ->is_child_subreaper ancestor in our pid_ns.
* We start from father to ensure we can not look into another
* namespace, this is safe because all its threads are dead.
*/
for (reaper = father;
!same_thread_group(reaper, child_reaper);
reaper = reaper->real_parent) {
/* call_usermodehelper() descendants need this check */
if (reaper == &init_task)
break;
if (!reaper->signal->is_child_subreaper)
continue;
thread = find_alive_thread(reaper);
if (thread)
return thread;
}
}
return child_reaper;
}
/*
* Any that need to be release_task'd are put on the @dead list.
*/
static void reparent_leader(struct task_struct *father, struct task_struct *p,
struct list_head *dead)
{
if (unlikely(p->exit_state == EXIT_DEAD))
return;
/* We don't want people slaying init. */
p->exit_signal = SIGCHLD;
/* If it has exited notify the new parent about this child's death. */
if (!p->ptrace &&
p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
if (do_notify_parent(p, p->exit_signal)) {
p->exit_state = EXIT_DEAD;
list_add(&p->ptrace_entry, dead);
}
}
kill_orphaned_pgrp(p, father);
}
/*
* This does two things:
*
* A. Make init inherit all the child processes
* B. Check to see if any process groups have become orphaned
* as a result of our exiting, and if they have any stopped
* jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
*/
static void forget_original_parent(struct task_struct *father,
struct list_head *dead)
{
struct task_struct *p, *t, *reaper;
if (unlikely(!list_empty(&father->ptraced)))
exit_ptrace(father, dead);
/* Can drop and reacquire tasklist_lock */
reaper = find_child_reaper(father);
if (list_empty(&father->children))
return;
reaper = find_new_reaper(father, reaper);
list_for_each_entry(p, &father->children, sibling) {
for_each_thread(p, t) {
t->real_parent = reaper;
BUG_ON((!t->ptrace) != (t->parent == father));
if (likely(!t->ptrace))
t->parent = t->real_parent;
if (t->pdeath_signal)
group_send_sig_info(t->pdeath_signal,
SEND_SIG_NOINFO, t);
}
/*
* If this is a threaded reparent there is no need to
* notify anyone anything has happened.
*/
if (!same_thread_group(reaper, father))
reparent_leader(father, p, dead);
}
list_splice_tail_init(&father->children, &reaper->children);
}
/*
* Send signals to all our closest relatives so that they know
* to properly mourn us..
*/
static void exit_notify(struct task_struct *tsk, int group_dead)
{
bool autoreap;
struct task_struct *p, *n;
LIST_HEAD(dead);
write_lock_irq(&tasklist_lock);
forget_original_parent(tsk, &dead);
if (group_dead)
kill_orphaned_pgrp(tsk->group_leader, NULL);
if (unlikely(tsk->ptrace)) {
int sig = thread_group_leader(tsk) &&
thread_group_empty(tsk) &&
!ptrace_reparented(tsk) ?
tsk->exit_signal : SIGCHLD;
autoreap = do_notify_parent(tsk, sig);
} else if (thread_group_leader(tsk)) {
autoreap = thread_group_empty(tsk) &&
do_notify_parent(tsk, tsk->exit_signal);
} else {
autoreap = true;
}
tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
if (tsk->exit_state == EXIT_DEAD)
list_add(&tsk->ptrace_entry, &dead);
/* mt-exec, de_thread() is waiting for group leader */
if (unlikely(tsk->signal->notify_count < 0))
wake_up_process(tsk->signal->group_exit_task);
write_unlock_irq(&tasklist_lock);
list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
list_del_init(&p->ptrace_entry);
release_task(p);
}
}
#ifdef CONFIG_DEBUG_STACK_USAGE
static void check_stack_usage(void)
{
static DEFINE_SPINLOCK(low_water_lock);
static int lowest_to_date = THREAD_SIZE;
unsigned long free;
free = stack_not_used(current);
if (free >= lowest_to_date)
return;
spin_lock(&low_water_lock);
if (free < lowest_to_date) {
pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
current->comm, task_pid_nr(current), free);
lowest_to_date = free;
}
spin_unlock(&low_water_lock);
}
#else
static inline void check_stack_usage(void) {}
#endif
void do_exit(long code)
{
struct task_struct *tsk = current;
int group_dead;
TASKS_RCU(int tasks_rcu_i);
profile_task_exit(tsk);
WARN_ON(blk_needs_flush_plug(tsk));
if (unlikely(in_interrupt()))
panic("Aiee, killing interrupt handler!");
if (unlikely(!tsk->pid))
panic("Attempted to kill the idle task!");
/*
* If do_exit is called because this processes oopsed, it's possible
* that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
* continuing. Amongst other possible reasons, this is to prevent
* mm_release()->clear_child_tid() from writing to a user-controlled
* kernel address.
*/
set_fs(USER_DS);
ptrace_event(PTRACE_EVENT_EXIT, code);
validate_creds_for_do_exit(tsk);
/*
* We're taking recursive faults here in do_exit. Safest is to just
* leave this task alone and wait for reboot.
*/
if (unlikely(tsk->flags & PF_EXITING)) {
pr_alert("Fixing recursive fault but reboot is needed!\n");
/*
* We can do this unlocked here. The futex code uses
* this flag just to verify whether the pi state
* cleanup has been done or not. In the worst case it
* loops once more. We pretend that the cleanup was
* done as there is no way to return. Either the
* OWNER_DIED bit is set by now or we push the blocked
* task into the wait for ever nirwana as well.
*/
tsk->flags |= PF_EXITPIDONE;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule();
}
exit_signals(tsk); /* sets PF_EXITING */
/*
* tsk->flags are checked in the futex code to protect against
* an exiting task cleaning up the robust pi futexes.
*/
smp_mb();
raw_spin_unlock_wait(&tsk->pi_lock);
if (unlikely(in_atomic()))
pr_info("note: %s[%d] exited with preempt_count %d\n",
current->comm, task_pid_nr(current),
preempt_count());
/* sync mm's RSS info before statistics gathering */
if (tsk->mm)
sync_mm_rss(tsk->mm);
acct_update_integrals(tsk);
group_dead = atomic_dec_and_test(&tsk->signal->live);
if (group_dead) {
hrtimer_cancel(&tsk->signal->real_timer);
exit_itimers(tsk->signal);
if (tsk->mm)
setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
}
acct_collect(code, group_dead);
if (group_dead)
tty_audit_exit();
audit_free(tsk);
tsk->exit_code = code;
taskstats_exit(tsk, group_dead);
exit_mm(tsk);
if (group_dead)
acct_process();
trace_sched_process_exit(tsk);
exit_sem(tsk);
exit_shm(tsk);
exit_files(tsk);
exit_fs(tsk);
if (group_dead)
disassociate_ctty(1);
exit_task_namespaces(tsk);
exit_task_work(tsk);
exit_thread();
/*
* Flush inherited counters to the parent - before the parent
* gets woken up by child-exit notifications.
*
* because of cgroup mode, must be called before cgroup_exit()
*/
perf_event_exit_task(tsk);
cgroup_exit(tsk);
/*
* FIXME: do that only when needed, using sched_exit tracepoint
*/
flush_ptrace_hw_breakpoint(tsk);
TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
exit_notify(tsk, group_dead);
proc_exit_connector(tsk);
#ifdef CONFIG_NUMA
task_lock(tsk);
mpol_put(tsk->mempolicy);
tsk->mempolicy = NULL;
task_unlock(tsk);
#endif
#ifdef CONFIG_FUTEX
if (unlikely(current->pi_state_cache))
kfree(current->pi_state_cache);
#endif
/*
* Make sure we are holding no locks:
*/
debug_check_no_locks_held();
/*
* We can do this unlocked here. The futex code uses this flag
* just to verify whether the pi state cleanup has been done
* or not. In the worst case it loops once more.
*/
tsk->flags |= PF_EXITPIDONE;
if (tsk->io_context)
exit_io_context(tsk);
if (tsk->splice_pipe)
free_pipe_info(tsk->splice_pipe);
if (tsk->task_frag.page)
put_page(tsk->task_frag.page);
validate_creds_for_do_exit(tsk);
check_stack_usage();
preempt_disable();
if (tsk->nr_dirtied)
__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
exit_rcu();
TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
/*
* The setting of TASK_RUNNING by try_to_wake_up() may be delayed
* when the following two conditions become true.
* - There is race condition of mmap_sem (It is acquired by
* exit_mm()), and
* - SMI occurs before setting TASK_RUNINNG.
* (or hypervisor of virtual machine switches to other guest)
* As a result, we may become TASK_RUNNING after becoming TASK_DEAD
*
* To avoid it, we have to wait for releasing tsk->pi_lock which
* is held by try_to_wake_up()
*/
smp_mb();
raw_spin_unlock_wait(&tsk->pi_lock);
/* causes final put_task_struct in finish_task_switch(). */
tsk->state = TASK_DEAD;
tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
schedule();
BUG();
/* Avoid "noreturn function does return". */
for (;;)
cpu_relax(); /* For when BUG is null */
}
EXPORT_SYMBOL_GPL(do_exit);
void complete_and_exit(struct completion *comp, long code)
{
if (comp)
complete(comp);
do_exit(code);
}
EXPORT_SYMBOL(complete_and_exit);
SYSCALL_DEFINE1(exit, int, error_code)
{
do_exit((error_code&0xff)<<8);
}
/*
* Take down every thread in the group. This is called by fatal signals
* as well as by sys_exit_group (below).
*/
void
do_group_exit(int exit_code)
{
struct signal_struct *sig = current->signal;
BUG_ON(exit_code & 0x80); /* core dumps don't get here */
if (signal_group_exit(sig))
exit_code = sig->group_exit_code;
else if (!thread_group_empty(current)) {
struct sighand_struct *const sighand = current->sighand;
spin_lock_irq(&sighand->siglock);
if (signal_group_exit(sig))
/* Another thread got here before we took the lock. */
exit_code = sig->group_exit_code;
else {
sig->group_exit_code = exit_code;
sig->flags = SIGNAL_GROUP_EXIT;
zap_other_threads(current);
}
spin_unlock_irq(&sighand->siglock);
}
do_exit(exit_code);
/* NOTREACHED */
}
/*
* this kills every thread in the thread group. Note that any externally
* wait4()-ing process will get the correct exit code - even if this
* thread is not the thread group leader.
*/
SYSCALL_DEFINE1(exit_group, int, error_code)
{
do_group_exit((error_code & 0xff) << 8);
/* NOTREACHED */
return 0;
}
struct wait_opts {
enum pid_type wo_type;
int wo_flags;
struct pid *wo_pid;
struct siginfo __user *wo_info;
int __user *wo_stat;
struct rusage __user *wo_rusage;
wait_queue_t child_wait;
int notask_error;
};
static inline
struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
{
if (type != PIDTYPE_PID)
task = task->group_leader;
return task->pids[type].pid;
}
static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
{
return wo->wo_type == PIDTYPE_MAX ||
task_pid_type(p, wo->wo_type) == wo->wo_pid;
}
static int eligible_child(struct wait_opts *wo, struct task_struct *p)
{
if (!eligible_pid(wo, p))
return 0;
/* Wait for all children (clone and not) if __WALL is set;
* otherwise, wait for clone children *only* if __WCLONE is
* set; otherwise, wait for non-clone children *only*. (Note:
* A "clone" child here is one that reports to its parent
* using a signal other than SIGCHLD.) */
if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
&& !(wo->wo_flags & __WALL))
return 0;
return 1;
}
static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
pid_t pid, uid_t uid, int why, int status)
{
struct siginfo __user *infop;
int retval = wo->wo_rusage
? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
put_task_struct(p);
infop = wo->wo_info;
if (infop) {
if (!retval)
retval = put_user(SIGCHLD, &infop->si_signo);
if (!retval)
retval = put_user(0, &infop->si_errno);
if (!retval)
retval = put_user((short)why, &infop->si_code);
if (!retval)
retval = put_user(pid, &infop->si_pid);
if (!retval)
retval = put_user(uid, &infop->si_uid);
if (!retval)
retval = put_user(status, &infop->si_status);
}
if (!retval)
retval = pid;
return retval;
}
/*
* Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
* the lock and this task is uninteresting. If we return nonzero, we have
* released the lock and the system call should return.
*/
static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
{
int state, retval, status;
pid_t pid = task_pid_vnr(p);
uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
struct siginfo __user *infop;
if (!likely(wo->wo_flags & WEXITED))
return 0;
if (unlikely(wo->wo_flags & WNOWAIT)) {
int exit_code = p->exit_code;
int why;
get_task_struct(p);
read_unlock(&tasklist_lock);
sched_annotate_sleep();
if ((exit_code & 0x7f) == 0) {
why = CLD_EXITED;
status = exit_code >> 8;
} else {
why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
status = exit_code & 0x7f;
}
return wait_noreap_copyout(wo, p, pid, uid, why, status);
}
/*
* Move the task's state to DEAD/TRACE, only one thread can do this.
*/
state = (ptrace_reparented(p) && thread_group_leader(p)) ?
EXIT_TRACE : EXIT_DEAD;
if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
return 0;
/*
* We own this thread, nobody else can reap it.
*/
read_unlock(&tasklist_lock);
sched_annotate_sleep();
/*
* Check thread_group_leader() to exclude the traced sub-threads.
*/
if (state == EXIT_DEAD && thread_group_leader(p)) {
struct signal_struct *sig = p->signal;
struct signal_struct *psig = current->signal;
unsigned long maxrss;
cputime_t tgutime, tgstime;
/*
* The resource counters for the group leader are in its
* own task_struct. Those for dead threads in the group
* are in its signal_struct, as are those for the child
* processes it has previously reaped. All these
* accumulate in the parent's signal_struct c* fields.
*
* We don't bother to take a lock here to protect these
* p->signal fields because the whole thread group is dead
* and nobody can change them.
*
* psig->stats_lock also protects us from our sub-theads
* which can reap other children at the same time. Until
* we change k_getrusage()-like users to rely on this lock
* we have to take ->siglock as well.
*
* We use thread_group_cputime_adjusted() to get times for
* the thread group, which consolidates times for all threads
* in the group including the group leader.
*/
thread_group_cputime_adjusted(p, &tgutime, &tgstime);
spin_lock_irq(&current->sighand->siglock);
write_seqlock(&psig->stats_lock);
psig->cutime += tgutime + sig->cutime;
psig->cstime += tgstime + sig->cstime;
psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
psig->cmin_flt +=
p->min_flt + sig->min_flt + sig->cmin_flt;
psig->cmaj_flt +=
p->maj_flt + sig->maj_flt + sig->cmaj_flt;
psig->cnvcsw +=
p->nvcsw + sig->nvcsw + sig->cnvcsw;
psig->cnivcsw +=
p->nivcsw + sig->nivcsw + sig->cnivcsw;
psig->cinblock +=
task_io_get_inblock(p) +
sig->inblock + sig->cinblock;
psig->coublock +=
task_io_get_oublock(p) +
sig->oublock + sig->coublock;
maxrss = max(sig->maxrss, sig->cmaxrss);
if (psig->cmaxrss < maxrss)
psig->cmaxrss = maxrss;
task_io_accounting_add(&psig->ioac, &p->ioac);
task_io_accounting_add(&psig->ioac, &sig->ioac);
write_sequnlock(&psig->stats_lock);
spin_unlock_irq(&current->sighand->siglock);
}
retval = wo->wo_rusage
? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
status = (p->signal->flags & SIGNAL_GROUP_EXIT)
? p->signal->group_exit_code : p->exit_code;
if (!retval && wo->wo_stat)
retval = put_user(status, wo->wo_stat);
infop = wo->wo_info;
if (!retval && infop)
retval = put_user(SIGCHLD, &infop->si_signo);
if (!retval && infop)
retval = put_user(0, &infop->si_errno);
if (!retval && infop) {
int why;
if ((status & 0x7f) == 0) {
why = CLD_EXITED;
status >>= 8;
} else {
why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
status &= 0x7f;
}
retval = put_user((short)why, &infop->si_code);
if (!retval)
retval = put_user(status, &infop->si_status);
}
if (!retval && infop)
retval = put_user(pid, &infop->si_pid);
if (!retval && infop)
retval = put_user(uid, &infop->si_uid);
if (!retval)
retval = pid;
if (state == EXIT_TRACE) {
write_lock_irq(&tasklist_lock);
/* We dropped tasklist, ptracer could die and untrace */
ptrace_unlink(p);
/* If parent wants a zombie, don't release it now */
state = EXIT_ZOMBIE;
if (do_notify_parent(p, p->exit_signal))
state = EXIT_DEAD;
p->exit_state = state;
write_unlock_irq(&tasklist_lock);
}
if (state == EXIT_DEAD)
release_task(p);
return retval;
}
static int *task_stopped_code(struct task_struct *p, bool ptrace)
{
if (ptrace) {
if (task_is_stopped_or_traced(p) &&
!(p->jobctl & JOBCTL_LISTENING))
return &p->exit_code;
} else {
if (p->signal->flags & SIGNAL_STOP_STOPPED)
return &p->signal->group_exit_code;
}
return NULL;
}
/**
* wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
* @wo: wait options
* @ptrace: is the wait for ptrace
* @p: task to wait for
*
* Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
*
* CONTEXT:
* read_lock(&tasklist_lock), which is released if return value is
* non-zero. Also, grabs and releases @p->sighand->siglock.
*
* RETURNS:
* 0 if wait condition didn't exist and search for other wait conditions
* should continue. Non-zero return, -errno on failure and @p's pid on
* success, implies that tasklist_lock is released and wait condition
* search should terminate.
*/
static int wait_task_stopped(struct wait_opts *wo,
int ptrace, struct task_struct *p)
{
struct siginfo __user *infop;
int retval, exit_code, *p_code, why;
uid_t uid = 0; /* unneeded, required by compiler */
pid_t pid;
/*
* Traditionally we see ptrace'd stopped tasks regardless of options.
*/
if (!ptrace && !(wo->wo_flags & WUNTRACED))
return 0;
if (!task_stopped_code(p, ptrace))
return 0;
exit_code = 0;
spin_lock_irq(&p->sighand->siglock);
p_code = task_stopped_code(p, ptrace);
if (unlikely(!p_code))
goto unlock_sig;
exit_code = *p_code;
if (!exit_code)
goto unlock_sig;
if (!unlikely(wo->wo_flags & WNOWAIT))
*p_code = 0;
uid = from_kuid_munged(current_user_ns(), task_uid(p));
unlock_sig:
spin_unlock_irq(&p->sighand->siglock);
if (!exit_code)
return 0;
/*
* Now we are pretty sure this task is interesting.
* Make sure it doesn't get reaped out from under us while we
* give up the lock and then examine it below. We don't want to
* keep holding onto the tasklist_lock while we call getrusage and
* possibly take page faults for user memory.
*/
get_task_struct(p);
pid = task_pid_vnr(p);
why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
read_unlock(&tasklist_lock);
sched_annotate_sleep();
if (unlikely(wo->wo_flags & WNOWAIT))
return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
retval = wo->wo_rusage
? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
if (!retval && wo->wo_stat)
retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
infop = wo->wo_info;
if (!retval && infop)
retval = put_user(SIGCHLD, &infop->si_signo);
if (!retval && infop)
retval = put_user(0, &infop->si_errno);
if (!retval && infop)
retval = put_user((short)why, &infop->si_code);
if (!retval && infop)
retval = put_user(exit_code, &infop->si_status);
if (!retval && infop)
retval = put_user(pid, &infop->si_pid);
if (!retval && infop)
retval = put_user(uid, &infop->si_uid);
if (!retval)
retval = pid;
put_task_struct(p);
BUG_ON(!retval);
return retval;
}
/*
* Handle do_wait work for one task in a live, non-stopped state.
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
* the lock and this task is uninteresting. If we return nonzero, we have
* released the lock and the system call should return.
*/
static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
{
int retval;
pid_t pid;
uid_t uid;
if (!unlikely(wo->wo_flags & WCONTINUED))
return 0;
if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
return 0;
spin_lock_irq(&p->sighand->siglock);
/* Re-check with the lock held. */
if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
spin_unlock_irq(&p->sighand->siglock);
return 0;
}
if (!unlikely(wo->wo_flags & WNOWAIT))
p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
uid = from_kuid_munged(current_user_ns(), task_uid(p));
spin_unlock_irq(&p->sighand->siglock);
pid = task_pid_vnr(p);
get_task_struct(p);
read_unlock(&tasklist_lock);
sched_annotate_sleep();
if (!wo->wo_info) {
retval = wo->wo_rusage
? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
put_task_struct(p);
if (!retval && wo->wo_stat)
retval = put_user(0xffff, wo->wo_stat);
if (!retval)
retval = pid;
} else {
retval = wait_noreap_copyout(wo, p, pid, uid,
CLD_CONTINUED, SIGCONT);
BUG_ON(retval == 0);
}
return retval;
}
/*
* Consider @p for a wait by @parent.
*
* -ECHILD should be in ->notask_error before the first call.
* Returns nonzero for a final return, when we have unlocked tasklist_lock.
* Returns zero if the search for a child should continue;
* then ->notask_error is 0 if @p is an eligible child,
* or another error from security_task_wait(), or still -ECHILD.
*/
static int wait_consider_task(struct wait_opts *wo, int ptrace,
struct task_struct *p)
{
/*
* We can race with wait_task_zombie() from another thread.
* Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
* can't confuse the checks below.
*/
int exit_state = ACCESS_ONCE(p->exit_state);
int ret;
if (unlikely(exit_state == EXIT_DEAD))
return 0;
ret = eligible_child(wo, p);
if (!ret)
return ret;
ret = security_task_wait(p);
if (unlikely(ret < 0)) {
/*
* If we have not yet seen any eligible child,
* then let this error code replace -ECHILD.
* A permission error will give the user a clue
* to look for security policy problems, rather
* than for mysterious wait bugs.
*/
if (wo->notask_error)
wo->notask_error = ret;
return 0;
}
if (unlikely(exit_state == EXIT_TRACE)) {
/*
* ptrace == 0 means we are the natural parent. In this case
* we should clear notask_error, debugger will notify us.
*/
if (likely(!ptrace))
wo->notask_error = 0;
return 0;
}
if (likely(!ptrace) && unlikely(p->ptrace)) {
/*
* If it is traced by its real parent's group, just pretend
* the caller is ptrace_do_wait() and reap this child if it
* is zombie.
*
* This also hides group stop state from real parent; otherwise
* a single stop can be reported twice as group and ptrace stop.
* If a ptracer wants to distinguish these two events for its
* own children it should create a separate process which takes
* the role of real parent.
*/
if (!ptrace_reparented(p))
ptrace = 1;
}
/* slay zombie? */
if (exit_state == EXIT_ZOMBIE) {
/* we don't reap group leaders with subthreads */
if (!delay_group_leader(p)) {
/*
* A zombie ptracee is only visible to its ptracer.
* Notification and reaping will be cascaded to the
* real parent when the ptracer detaches.
*/
if (unlikely(ptrace) || likely(!p->ptrace))
return wait_task_zombie(wo, p);
}
/*
* Allow access to stopped/continued state via zombie by
* falling through. Clearing of notask_error is complex.
*
* When !@ptrace:
*
* If WEXITED is set, notask_error should naturally be
* cleared. If not, subset of WSTOPPED|WCONTINUED is set,
* so, if there are live subthreads, there are events to
* wait for. If all subthreads are dead, it's still safe
* to clear - this function will be called again in finite
* amount time once all the subthreads are released and
* will then return without clearing.
*
* When @ptrace:
*
* Stopped state is per-task and thus can't change once the
* target task dies. Only continued and exited can happen.
* Clear notask_error if WCONTINUED | WEXITED.
*/
if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
wo->notask_error = 0;
} else {
/*
* @p is alive and it's gonna stop, continue or exit, so
* there always is something to wait for.
*/
wo->notask_error = 0;
}
/*
* Wait for stopped. Depending on @ptrace, different stopped state
* is used and the two don't interact with each other.
*/
ret = wait_task_stopped(wo, ptrace, p);
if (ret)
return ret;
/*
* Wait for continued. There's only one continued state and the
* ptracer can consume it which can confuse the real parent. Don't
* use WCONTINUED from ptracer. You don't need or want it.
*/
return wait_task_continued(wo, p);
}
/*
* Do the work of do_wait() for one thread in the group, @tsk.
*
* -ECHILD should be in ->notask_error before the first call.
* Returns nonzero for a final return, when we have unlocked tasklist_lock.
* Returns zero if the search for a child should continue; then
* ->notask_error is 0 if there were any eligible children,
* or another error from security_task_wait(), or still -ECHILD.
*/
static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
{
struct task_struct *p;
list_for_each_entry(p, &tsk->children, sibling) {
int ret = wait_consider_task(wo, 0, p);
if (ret)
return ret;
}
return 0;
}
static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
{
struct task_struct *p;
list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
int ret = wait_consider_task(wo, 1, p);
if (ret)
return ret;
}
return 0;
}
static int child_wait_callback(wait_queue_t *wait, unsigned mode,
int sync, void *key)
{
struct wait_opts *wo = container_of(wait, struct wait_opts,
child_wait);
struct task_struct *p = key;
if (!eligible_pid(wo, p))
return 0;
if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
return 0;
return default_wake_function(wait, mode, sync, key);
}
void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
{
__wake_up_sync_key(&parent->signal->wait_chldexit,
TASK_INTERRUPTIBLE, 1, p);
}
static long do_wait(struct wait_opts *wo)
{
struct task_struct *tsk;
int retval;
trace_sched_process_wait(wo->wo_pid);
init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
wo->child_wait.private = current;
add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
repeat:
/*
* If there is nothing that can match our criteria, just get out.
* We will clear ->notask_error to zero if we see any child that
* might later match our criteria, even if we are not able to reap
* it yet.
*/
wo->notask_error = -ECHILD;
if ((wo->wo_type < PIDTYPE_MAX) &&
(!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
goto notask;
set_current_state(TASK_INTERRUPTIBLE);
read_lock(&tasklist_lock);
tsk = current;
do {
retval = do_wait_thread(wo, tsk);
if (retval)
goto end;
retval = ptrace_do_wait(wo, tsk);
if (retval)
goto end;
if (wo->wo_flags & __WNOTHREAD)
break;
} while_each_thread(current, tsk);
read_unlock(&tasklist_lock);
notask:
retval = wo->notask_error;
if (!retval && !(wo->wo_flags & WNOHANG)) {
retval = -ERESTARTSYS;
if (!signal_pending(current)) {
schedule();
goto repeat;
}
}
end:
__set_current_state(TASK_RUNNING);
remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
return retval;
}
SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
infop, int, options, struct rusage __user *, ru)
{
struct wait_opts wo;
struct pid *pid = NULL;
enum pid_type type;
long ret;
if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
return -EINVAL;
if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
return -EINVAL;
switch (which) {
case P_ALL:
type = PIDTYPE_MAX;
break;
case P_PID:
type = PIDTYPE_PID;
if (upid <= 0)
return -EINVAL;
break;
case P_PGID:
type = PIDTYPE_PGID;
if (upid <= 0)
return -EINVAL;
break;
default:
return -EINVAL;
}
if (type < PIDTYPE_MAX)
pid = find_get_pid(upid);
wo.wo_type = type;
wo.wo_pid = pid;
wo.wo_flags = options;
wo.wo_info = infop;
wo.wo_stat = NULL;
wo.wo_rusage = ru;
ret = do_wait(&wo);
if (ret > 0) {
ret = 0;
} else if (infop) {
/*
* For a WNOHANG return, clear out all the fields
* we would set so the user can easily tell the
* difference.
*/
if (!ret)
ret = put_user(0, &infop->si_signo);
if (!ret)
ret = put_user(0, &infop->si_errno);
if (!ret)
ret = put_user(0, &infop->si_code);
if (!ret)
ret = put_user(0, &infop->si_pid);
if (!ret)
ret = put_user(0, &infop->si_uid);
if (!ret)
ret = put_user(0, &infop->si_status);
}
put_pid(pid);
return ret;
}
SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
int, options, struct rusage __user *, ru)
{
struct wait_opts wo;
struct pid *pid = NULL;
enum pid_type type;
long ret;
if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
__WNOTHREAD|__WCLONE|__WALL))
return -EINVAL;
if (upid == -1)
type = PIDTYPE_MAX;
else if (upid < 0) {
type = PIDTYPE_PGID;
pid = find_get_pid(-upid);
} else if (upid == 0) {
type = PIDTYPE_PGID;
pid = get_task_pid(current, PIDTYPE_PGID);
} else /* upid > 0 */ {
type = PIDTYPE_PID;
pid = find_get_pid(upid);
}
wo.wo_type = type;
wo.wo_pid = pid;
wo.wo_flags = options | WEXITED;
wo.wo_info = NULL;
wo.wo_stat = stat_addr;
wo.wo_rusage = ru;
ret = do_wait(&wo);
put_pid(pid);
return ret;
}
#ifdef __ARCH_WANT_SYS_WAITPID
/*
* sys_waitpid() remains for compatibility. waitpid() should be
* implemented by calling sys_wait4() from libc.a.
*/
SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
{
return sys_wait4(pid, stat_addr, options, NULL);
}
#endif