mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-27 14:43:58 +08:00
7b57976da4
The bitmap accessed by bitops must have enough size to hold the required numbers of bits rounded up to a multiple of BITS_PER_LONG. And the bitmap must not be zeroed by memset() if the number of bits cleared is not a multiple of BITS_PER_LONG. This fixes incorrect zeroing and allocation size for frontswap_map. The incorrect zeroing part doesn't cause any problem because frontswap_map is freed just after zeroing. But the wrongly calculated allocation size may cause the problem. For 32bit systems, the allocation size of frontswap_map is about twice as large as required size. For 64bit systems, the allocation size is smaller than requeired if the number of bits is not a multiple of BITS_PER_LONG. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
461 lines
14 KiB
C
461 lines
14 KiB
C
/*
|
|
* Frontswap frontend
|
|
*
|
|
* This code provides the generic "frontend" layer to call a matching
|
|
* "backend" driver implementation of frontswap. See
|
|
* Documentation/vm/frontswap.txt for more information.
|
|
*
|
|
* Copyright (C) 2009-2012 Oracle Corp. All rights reserved.
|
|
* Author: Dan Magenheimer
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2.
|
|
*/
|
|
|
|
#include <linux/mman.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/security.h>
|
|
#include <linux/module.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/frontswap.h>
|
|
#include <linux/swapfile.h>
|
|
|
|
/*
|
|
* frontswap_ops is set by frontswap_register_ops to contain the pointers
|
|
* to the frontswap "backend" implementation functions.
|
|
*/
|
|
static struct frontswap_ops *frontswap_ops __read_mostly;
|
|
|
|
/*
|
|
* If enabled, frontswap_store will return failure even on success. As
|
|
* a result, the swap subsystem will always write the page to swap, in
|
|
* effect converting frontswap into a writethrough cache. In this mode,
|
|
* there is no direct reduction in swap writes, but a frontswap backend
|
|
* can unilaterally "reclaim" any pages in use with no data loss, thus
|
|
* providing increases control over maximum memory usage due to frontswap.
|
|
*/
|
|
static bool frontswap_writethrough_enabled __read_mostly;
|
|
|
|
/*
|
|
* If enabled, the underlying tmem implementation is capable of doing
|
|
* exclusive gets, so frontswap_load, on a successful tmem_get must
|
|
* mark the page as no longer in frontswap AND mark it dirty.
|
|
*/
|
|
static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
/*
|
|
* Counters available via /sys/kernel/debug/frontswap (if debugfs is
|
|
* properly configured). These are for information only so are not protected
|
|
* against increment races.
|
|
*/
|
|
static u64 frontswap_loads;
|
|
static u64 frontswap_succ_stores;
|
|
static u64 frontswap_failed_stores;
|
|
static u64 frontswap_invalidates;
|
|
|
|
static inline void inc_frontswap_loads(void) {
|
|
frontswap_loads++;
|
|
}
|
|
static inline void inc_frontswap_succ_stores(void) {
|
|
frontswap_succ_stores++;
|
|
}
|
|
static inline void inc_frontswap_failed_stores(void) {
|
|
frontswap_failed_stores++;
|
|
}
|
|
static inline void inc_frontswap_invalidates(void) {
|
|
frontswap_invalidates++;
|
|
}
|
|
#else
|
|
static inline void inc_frontswap_loads(void) { }
|
|
static inline void inc_frontswap_succ_stores(void) { }
|
|
static inline void inc_frontswap_failed_stores(void) { }
|
|
static inline void inc_frontswap_invalidates(void) { }
|
|
#endif
|
|
|
|
/*
|
|
* Due to the asynchronous nature of the backends loading potentially
|
|
* _after_ the swap system has been activated, we have chokepoints
|
|
* on all frontswap functions to not call the backend until the backend
|
|
* has registered.
|
|
*
|
|
* Specifically when no backend is registered (nobody called
|
|
* frontswap_register_ops) all calls to frontswap_init (which is done via
|
|
* swapon -> enable_swap_info -> frontswap_init) are registered and remembered
|
|
* (via the setting of need_init bitmap) but fail to create tmem_pools. When a
|
|
* backend registers with frontswap at some later point the previous
|
|
* calls to frontswap_init are executed (by iterating over the need_init
|
|
* bitmap) to create tmem_pools and set the respective poolids. All of that is
|
|
* guarded by us using atomic bit operations on the 'need_init' bitmap.
|
|
*
|
|
* This would not guards us against the user deciding to call swapoff right as
|
|
* we are calling the backend to initialize (so swapon is in action).
|
|
* Fortunatly for us, the swapon_mutex has been taked by the callee so we are
|
|
* OK. The other scenario where calls to frontswap_store (called via
|
|
* swap_writepage) is racing with frontswap_invalidate_area (called via
|
|
* swapoff) is again guarded by the swap subsystem.
|
|
*
|
|
* While no backend is registered all calls to frontswap_[store|load|
|
|
* invalidate_area|invalidate_page] are ignored or fail.
|
|
*
|
|
* The time between the backend being registered and the swap file system
|
|
* calling the backend (via the frontswap_* functions) is indeterminate as
|
|
* frontswap_ops is not atomic_t (or a value guarded by a spinlock).
|
|
* That is OK as we are comfortable missing some of these calls to the newly
|
|
* registered backend.
|
|
*
|
|
* Obviously the opposite (unloading the backend) must be done after all
|
|
* the frontswap_[store|load|invalidate_area|invalidate_page] start
|
|
* ignorning or failing the requests - at which point frontswap_ops
|
|
* would have to be made in some fashion atomic.
|
|
*/
|
|
static DECLARE_BITMAP(need_init, MAX_SWAPFILES);
|
|
|
|
/*
|
|
* Register operations for frontswap, returning previous thus allowing
|
|
* detection of multiple backends and possible nesting.
|
|
*/
|
|
struct frontswap_ops *frontswap_register_ops(struct frontswap_ops *ops)
|
|
{
|
|
struct frontswap_ops *old = frontswap_ops;
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_SWAPFILES; i++) {
|
|
if (test_and_clear_bit(i, need_init)) {
|
|
struct swap_info_struct *sis = swap_info[i];
|
|
/* __frontswap_init _should_ have set it! */
|
|
if (!sis->frontswap_map)
|
|
return ERR_PTR(-EINVAL);
|
|
ops->init(i);
|
|
}
|
|
}
|
|
/*
|
|
* We MUST have frontswap_ops set _after_ the frontswap_init's
|
|
* have been called. Otherwise __frontswap_store might fail. Hence
|
|
* the barrier to make sure compiler does not re-order us.
|
|
*/
|
|
barrier();
|
|
frontswap_ops = ops;
|
|
return old;
|
|
}
|
|
EXPORT_SYMBOL(frontswap_register_ops);
|
|
|
|
/*
|
|
* Enable/disable frontswap writethrough (see above).
|
|
*/
|
|
void frontswap_writethrough(bool enable)
|
|
{
|
|
frontswap_writethrough_enabled = enable;
|
|
}
|
|
EXPORT_SYMBOL(frontswap_writethrough);
|
|
|
|
/*
|
|
* Enable/disable frontswap exclusive gets (see above).
|
|
*/
|
|
void frontswap_tmem_exclusive_gets(bool enable)
|
|
{
|
|
frontswap_tmem_exclusive_gets_enabled = enable;
|
|
}
|
|
EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
|
|
|
|
/*
|
|
* Called when a swap device is swapon'd.
|
|
*/
|
|
void __frontswap_init(unsigned type, unsigned long *map)
|
|
{
|
|
struct swap_info_struct *sis = swap_info[type];
|
|
|
|
BUG_ON(sis == NULL);
|
|
|
|
/*
|
|
* p->frontswap is a bitmap that we MUST have to figure out which page
|
|
* has gone in frontswap. Without it there is no point of continuing.
|
|
*/
|
|
if (WARN_ON(!map))
|
|
return;
|
|
/*
|
|
* Irregardless of whether the frontswap backend has been loaded
|
|
* before this function or it will be later, we _MUST_ have the
|
|
* p->frontswap set to something valid to work properly.
|
|
*/
|
|
frontswap_map_set(sis, map);
|
|
if (frontswap_ops)
|
|
frontswap_ops->init(type);
|
|
else {
|
|
BUG_ON(type > MAX_SWAPFILES);
|
|
set_bit(type, need_init);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__frontswap_init);
|
|
|
|
bool __frontswap_test(struct swap_info_struct *sis,
|
|
pgoff_t offset)
|
|
{
|
|
bool ret = false;
|
|
|
|
if (frontswap_ops && sis->frontswap_map)
|
|
ret = test_bit(offset, sis->frontswap_map);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__frontswap_test);
|
|
|
|
static inline void __frontswap_clear(struct swap_info_struct *sis,
|
|
pgoff_t offset)
|
|
{
|
|
clear_bit(offset, sis->frontswap_map);
|
|
atomic_dec(&sis->frontswap_pages);
|
|
}
|
|
|
|
/*
|
|
* "Store" data from a page to frontswap and associate it with the page's
|
|
* swaptype and offset. Page must be locked and in the swap cache.
|
|
* If frontswap already contains a page with matching swaptype and
|
|
* offset, the frontswap implementation may either overwrite the data and
|
|
* return success or invalidate the page from frontswap and return failure.
|
|
*/
|
|
int __frontswap_store(struct page *page)
|
|
{
|
|
int ret = -1, dup = 0;
|
|
swp_entry_t entry = { .val = page_private(page), };
|
|
int type = swp_type(entry);
|
|
struct swap_info_struct *sis = swap_info[type];
|
|
pgoff_t offset = swp_offset(entry);
|
|
|
|
/*
|
|
* Return if no backend registed.
|
|
* Don't need to inc frontswap_failed_stores here.
|
|
*/
|
|
if (!frontswap_ops)
|
|
return ret;
|
|
|
|
BUG_ON(!PageLocked(page));
|
|
BUG_ON(sis == NULL);
|
|
if (__frontswap_test(sis, offset))
|
|
dup = 1;
|
|
ret = frontswap_ops->store(type, offset, page);
|
|
if (ret == 0) {
|
|
set_bit(offset, sis->frontswap_map);
|
|
inc_frontswap_succ_stores();
|
|
if (!dup)
|
|
atomic_inc(&sis->frontswap_pages);
|
|
} else {
|
|
/*
|
|
failed dup always results in automatic invalidate of
|
|
the (older) page from frontswap
|
|
*/
|
|
inc_frontswap_failed_stores();
|
|
if (dup)
|
|
__frontswap_clear(sis, offset);
|
|
}
|
|
if (frontswap_writethrough_enabled)
|
|
/* report failure so swap also writes to swap device */
|
|
ret = -1;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__frontswap_store);
|
|
|
|
/*
|
|
* "Get" data from frontswap associated with swaptype and offset that were
|
|
* specified when the data was put to frontswap and use it to fill the
|
|
* specified page with data. Page must be locked and in the swap cache.
|
|
*/
|
|
int __frontswap_load(struct page *page)
|
|
{
|
|
int ret = -1;
|
|
swp_entry_t entry = { .val = page_private(page), };
|
|
int type = swp_type(entry);
|
|
struct swap_info_struct *sis = swap_info[type];
|
|
pgoff_t offset = swp_offset(entry);
|
|
|
|
BUG_ON(!PageLocked(page));
|
|
BUG_ON(sis == NULL);
|
|
/*
|
|
* __frontswap_test() will check whether there is backend registered
|
|
*/
|
|
if (__frontswap_test(sis, offset))
|
|
ret = frontswap_ops->load(type, offset, page);
|
|
if (ret == 0) {
|
|
inc_frontswap_loads();
|
|
if (frontswap_tmem_exclusive_gets_enabled) {
|
|
SetPageDirty(page);
|
|
__frontswap_clear(sis, offset);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__frontswap_load);
|
|
|
|
/*
|
|
* Invalidate any data from frontswap associated with the specified swaptype
|
|
* and offset so that a subsequent "get" will fail.
|
|
*/
|
|
void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
|
|
{
|
|
struct swap_info_struct *sis = swap_info[type];
|
|
|
|
BUG_ON(sis == NULL);
|
|
/*
|
|
* __frontswap_test() will check whether there is backend registered
|
|
*/
|
|
if (__frontswap_test(sis, offset)) {
|
|
frontswap_ops->invalidate_page(type, offset);
|
|
__frontswap_clear(sis, offset);
|
|
inc_frontswap_invalidates();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__frontswap_invalidate_page);
|
|
|
|
/*
|
|
* Invalidate all data from frontswap associated with all offsets for the
|
|
* specified swaptype.
|
|
*/
|
|
void __frontswap_invalidate_area(unsigned type)
|
|
{
|
|
struct swap_info_struct *sis = swap_info[type];
|
|
|
|
if (frontswap_ops) {
|
|
BUG_ON(sis == NULL);
|
|
if (sis->frontswap_map == NULL)
|
|
return;
|
|
frontswap_ops->invalidate_area(type);
|
|
atomic_set(&sis->frontswap_pages, 0);
|
|
bitmap_zero(sis->frontswap_map, sis->max);
|
|
}
|
|
clear_bit(type, need_init);
|
|
}
|
|
EXPORT_SYMBOL(__frontswap_invalidate_area);
|
|
|
|
static unsigned long __frontswap_curr_pages(void)
|
|
{
|
|
int type;
|
|
unsigned long totalpages = 0;
|
|
struct swap_info_struct *si = NULL;
|
|
|
|
assert_spin_locked(&swap_lock);
|
|
for (type = swap_list.head; type >= 0; type = si->next) {
|
|
si = swap_info[type];
|
|
totalpages += atomic_read(&si->frontswap_pages);
|
|
}
|
|
return totalpages;
|
|
}
|
|
|
|
static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
|
|
int *swapid)
|
|
{
|
|
int ret = -EINVAL;
|
|
struct swap_info_struct *si = NULL;
|
|
int si_frontswap_pages;
|
|
unsigned long total_pages_to_unuse = total;
|
|
unsigned long pages = 0, pages_to_unuse = 0;
|
|
int type;
|
|
|
|
assert_spin_locked(&swap_lock);
|
|
for (type = swap_list.head; type >= 0; type = si->next) {
|
|
si = swap_info[type];
|
|
si_frontswap_pages = atomic_read(&si->frontswap_pages);
|
|
if (total_pages_to_unuse < si_frontswap_pages) {
|
|
pages = pages_to_unuse = total_pages_to_unuse;
|
|
} else {
|
|
pages = si_frontswap_pages;
|
|
pages_to_unuse = 0; /* unuse all */
|
|
}
|
|
/* ensure there is enough RAM to fetch pages from frontswap */
|
|
if (security_vm_enough_memory_mm(current->mm, pages)) {
|
|
ret = -ENOMEM;
|
|
continue;
|
|
}
|
|
vm_unacct_memory(pages);
|
|
*unused = pages_to_unuse;
|
|
*swapid = type;
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Used to check if it's necessory and feasible to unuse pages.
|
|
* Return 1 when nothing to do, 0 when need to shink pages,
|
|
* error code when there is an error.
|
|
*/
|
|
static int __frontswap_shrink(unsigned long target_pages,
|
|
unsigned long *pages_to_unuse,
|
|
int *type)
|
|
{
|
|
unsigned long total_pages = 0, total_pages_to_unuse;
|
|
|
|
assert_spin_locked(&swap_lock);
|
|
|
|
total_pages = __frontswap_curr_pages();
|
|
if (total_pages <= target_pages) {
|
|
/* Nothing to do */
|
|
*pages_to_unuse = 0;
|
|
return 1;
|
|
}
|
|
total_pages_to_unuse = total_pages - target_pages;
|
|
return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
|
|
}
|
|
|
|
/*
|
|
* Frontswap, like a true swap device, may unnecessarily retain pages
|
|
* under certain circumstances; "shrink" frontswap is essentially a
|
|
* "partial swapoff" and works by calling try_to_unuse to attempt to
|
|
* unuse enough frontswap pages to attempt to -- subject to memory
|
|
* constraints -- reduce the number of pages in frontswap to the
|
|
* number given in the parameter target_pages.
|
|
*/
|
|
void frontswap_shrink(unsigned long target_pages)
|
|
{
|
|
unsigned long pages_to_unuse = 0;
|
|
int uninitialized_var(type), ret;
|
|
|
|
/*
|
|
* we don't want to hold swap_lock while doing a very
|
|
* lengthy try_to_unuse, but swap_list may change
|
|
* so restart scan from swap_list.head each time
|
|
*/
|
|
spin_lock(&swap_lock);
|
|
ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
|
|
spin_unlock(&swap_lock);
|
|
if (ret == 0)
|
|
try_to_unuse(type, true, pages_to_unuse);
|
|
return;
|
|
}
|
|
EXPORT_SYMBOL(frontswap_shrink);
|
|
|
|
/*
|
|
* Count and return the number of frontswap pages across all
|
|
* swap devices. This is exported so that backend drivers can
|
|
* determine current usage without reading debugfs.
|
|
*/
|
|
unsigned long frontswap_curr_pages(void)
|
|
{
|
|
unsigned long totalpages = 0;
|
|
|
|
spin_lock(&swap_lock);
|
|
totalpages = __frontswap_curr_pages();
|
|
spin_unlock(&swap_lock);
|
|
|
|
return totalpages;
|
|
}
|
|
EXPORT_SYMBOL(frontswap_curr_pages);
|
|
|
|
static int __init init_frontswap(void)
|
|
{
|
|
#ifdef CONFIG_DEBUG_FS
|
|
struct dentry *root = debugfs_create_dir("frontswap", NULL);
|
|
if (root == NULL)
|
|
return -ENXIO;
|
|
debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
|
|
debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
|
|
debugfs_create_u64("failed_stores", S_IRUGO, root,
|
|
&frontswap_failed_stores);
|
|
debugfs_create_u64("invalidates", S_IRUGO,
|
|
root, &frontswap_invalidates);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
module_init(init_frontswap);
|