2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-30 16:13:54 +08:00
linux-next/drivers/scsi/sun_esp.c
Grant Likely 4ebb24f707 dt/sparc: Eliminate users of of_platform_{,un}register_driver
Get rid of old users of of_platform_driver in arch/sparc.  Most
of_platform_driver users can be converted to use the platform_bus
directly.

Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2011-02-28 01:36:39 -07:00

662 lines
14 KiB
C

/* sun_esp.c: ESP front-end for Sparc SBUS systems.
*
* Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/gfp.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <scsi/scsi_host.h>
#include "esp_scsi.h"
#define DRV_MODULE_NAME "sun_esp"
#define PFX DRV_MODULE_NAME ": "
#define DRV_VERSION "1.100"
#define DRV_MODULE_RELDATE "August 27, 2008"
#define dma_read32(REG) \
sbus_readl(esp->dma_regs + (REG))
#define dma_write32(VAL, REG) \
sbus_writel((VAL), esp->dma_regs + (REG))
/* DVMA chip revisions */
enum dvma_rev {
dvmarev0,
dvmaesc1,
dvmarev1,
dvmarev2,
dvmarev3,
dvmarevplus,
dvmahme
};
static int __devinit esp_sbus_setup_dma(struct esp *esp,
struct platform_device *dma_of)
{
esp->dma = dma_of;
esp->dma_regs = of_ioremap(&dma_of->resource[0], 0,
resource_size(&dma_of->resource[0]),
"espdma");
if (!esp->dma_regs)
return -ENOMEM;
switch (dma_read32(DMA_CSR) & DMA_DEVICE_ID) {
case DMA_VERS0:
esp->dmarev = dvmarev0;
break;
case DMA_ESCV1:
esp->dmarev = dvmaesc1;
break;
case DMA_VERS1:
esp->dmarev = dvmarev1;
break;
case DMA_VERS2:
esp->dmarev = dvmarev2;
break;
case DMA_VERHME:
esp->dmarev = dvmahme;
break;
case DMA_VERSPLUS:
esp->dmarev = dvmarevplus;
break;
}
return 0;
}
static int __devinit esp_sbus_map_regs(struct esp *esp, int hme)
{
struct platform_device *op = esp->dev;
struct resource *res;
/* On HME, two reg sets exist, first is DVMA,
* second is ESP registers.
*/
if (hme)
res = &op->resource[1];
else
res = &op->resource[0];
esp->regs = of_ioremap(res, 0, SBUS_ESP_REG_SIZE, "ESP");
if (!esp->regs)
return -ENOMEM;
return 0;
}
static int __devinit esp_sbus_map_command_block(struct esp *esp)
{
struct platform_device *op = esp->dev;
esp->command_block = dma_alloc_coherent(&op->dev, 16,
&esp->command_block_dma,
GFP_ATOMIC);
if (!esp->command_block)
return -ENOMEM;
return 0;
}
static int __devinit esp_sbus_register_irq(struct esp *esp)
{
struct Scsi_Host *host = esp->host;
struct platform_device *op = esp->dev;
host->irq = op->archdata.irqs[0];
return request_irq(host->irq, scsi_esp_intr, IRQF_SHARED, "ESP", esp);
}
static void __devinit esp_get_scsi_id(struct esp *esp, struct platform_device *espdma)
{
struct platform_device *op = esp->dev;
struct device_node *dp;
dp = op->dev.of_node;
esp->scsi_id = of_getintprop_default(dp, "initiator-id", 0xff);
if (esp->scsi_id != 0xff)
goto done;
esp->scsi_id = of_getintprop_default(dp, "scsi-initiator-id", 0xff);
if (esp->scsi_id != 0xff)
goto done;
esp->scsi_id = of_getintprop_default(espdma->dev.of_node,
"scsi-initiator-id", 7);
done:
esp->host->this_id = esp->scsi_id;
esp->scsi_id_mask = (1 << esp->scsi_id);
}
static void __devinit esp_get_differential(struct esp *esp)
{
struct platform_device *op = esp->dev;
struct device_node *dp;
dp = op->dev.of_node;
if (of_find_property(dp, "differential", NULL))
esp->flags |= ESP_FLAG_DIFFERENTIAL;
else
esp->flags &= ~ESP_FLAG_DIFFERENTIAL;
}
static void __devinit esp_get_clock_params(struct esp *esp)
{
struct platform_device *op = esp->dev;
struct device_node *bus_dp, *dp;
int fmhz;
dp = op->dev.of_node;
bus_dp = dp->parent;
fmhz = of_getintprop_default(dp, "clock-frequency", 0);
if (fmhz == 0)
fmhz = of_getintprop_default(bus_dp, "clock-frequency", 0);
esp->cfreq = fmhz;
}
static void __devinit esp_get_bursts(struct esp *esp, struct platform_device *dma_of)
{
struct device_node *dma_dp = dma_of->dev.of_node;
struct platform_device *op = esp->dev;
struct device_node *dp;
u8 bursts, val;
dp = op->dev.of_node;
bursts = of_getintprop_default(dp, "burst-sizes", 0xff);
val = of_getintprop_default(dma_dp, "burst-sizes", 0xff);
if (val != 0xff)
bursts &= val;
val = of_getintprop_default(dma_dp->parent, "burst-sizes", 0xff);
if (val != 0xff)
bursts &= val;
if (bursts == 0xff ||
(bursts & DMA_BURST16) == 0 ||
(bursts & DMA_BURST32) == 0)
bursts = (DMA_BURST32 - 1);
esp->bursts = bursts;
}
static void __devinit esp_sbus_get_props(struct esp *esp, struct platform_device *espdma)
{
esp_get_scsi_id(esp, espdma);
esp_get_differential(esp);
esp_get_clock_params(esp);
esp_get_bursts(esp, espdma);
}
static void sbus_esp_write8(struct esp *esp, u8 val, unsigned long reg)
{
sbus_writeb(val, esp->regs + (reg * 4UL));
}
static u8 sbus_esp_read8(struct esp *esp, unsigned long reg)
{
return sbus_readb(esp->regs + (reg * 4UL));
}
static dma_addr_t sbus_esp_map_single(struct esp *esp, void *buf,
size_t sz, int dir)
{
struct platform_device *op = esp->dev;
return dma_map_single(&op->dev, buf, sz, dir);
}
static int sbus_esp_map_sg(struct esp *esp, struct scatterlist *sg,
int num_sg, int dir)
{
struct platform_device *op = esp->dev;
return dma_map_sg(&op->dev, sg, num_sg, dir);
}
static void sbus_esp_unmap_single(struct esp *esp, dma_addr_t addr,
size_t sz, int dir)
{
struct platform_device *op = esp->dev;
dma_unmap_single(&op->dev, addr, sz, dir);
}
static void sbus_esp_unmap_sg(struct esp *esp, struct scatterlist *sg,
int num_sg, int dir)
{
struct platform_device *op = esp->dev;
dma_unmap_sg(&op->dev, sg, num_sg, dir);
}
static int sbus_esp_irq_pending(struct esp *esp)
{
if (dma_read32(DMA_CSR) & (DMA_HNDL_INTR | DMA_HNDL_ERROR))
return 1;
return 0;
}
static void sbus_esp_reset_dma(struct esp *esp)
{
int can_do_burst16, can_do_burst32, can_do_burst64;
int can_do_sbus64, lim;
struct platform_device *op;
u32 val;
can_do_burst16 = (esp->bursts & DMA_BURST16) != 0;
can_do_burst32 = (esp->bursts & DMA_BURST32) != 0;
can_do_burst64 = 0;
can_do_sbus64 = 0;
op = esp->dev;
if (sbus_can_dma_64bit())
can_do_sbus64 = 1;
if (sbus_can_burst64())
can_do_burst64 = (esp->bursts & DMA_BURST64) != 0;
/* Put the DVMA into a known state. */
if (esp->dmarev != dvmahme) {
val = dma_read32(DMA_CSR);
dma_write32(val | DMA_RST_SCSI, DMA_CSR);
dma_write32(val & ~DMA_RST_SCSI, DMA_CSR);
}
switch (esp->dmarev) {
case dvmahme:
dma_write32(DMA_RESET_FAS366, DMA_CSR);
dma_write32(DMA_RST_SCSI, DMA_CSR);
esp->prev_hme_dmacsr = (DMA_PARITY_OFF | DMA_2CLKS |
DMA_SCSI_DISAB | DMA_INT_ENAB);
esp->prev_hme_dmacsr &= ~(DMA_ENABLE | DMA_ST_WRITE |
DMA_BRST_SZ);
if (can_do_burst64)
esp->prev_hme_dmacsr |= DMA_BRST64;
else if (can_do_burst32)
esp->prev_hme_dmacsr |= DMA_BRST32;
if (can_do_sbus64) {
esp->prev_hme_dmacsr |= DMA_SCSI_SBUS64;
sbus_set_sbus64(&op->dev, esp->bursts);
}
lim = 1000;
while (dma_read32(DMA_CSR) & DMA_PEND_READ) {
if (--lim == 0) {
printk(KERN_ALERT PFX "esp%d: DMA_PEND_READ "
"will not clear!\n",
esp->host->unique_id);
break;
}
udelay(1);
}
dma_write32(0, DMA_CSR);
dma_write32(esp->prev_hme_dmacsr, DMA_CSR);
dma_write32(0, DMA_ADDR);
break;
case dvmarev2:
if (esp->rev != ESP100) {
val = dma_read32(DMA_CSR);
dma_write32(val | DMA_3CLKS, DMA_CSR);
}
break;
case dvmarev3:
val = dma_read32(DMA_CSR);
val &= ~DMA_3CLKS;
val |= DMA_2CLKS;
if (can_do_burst32) {
val &= ~DMA_BRST_SZ;
val |= DMA_BRST32;
}
dma_write32(val, DMA_CSR);
break;
case dvmaesc1:
val = dma_read32(DMA_CSR);
val |= DMA_ADD_ENABLE;
val &= ~DMA_BCNT_ENAB;
if (!can_do_burst32 && can_do_burst16) {
val |= DMA_ESC_BURST;
} else {
val &= ~(DMA_ESC_BURST);
}
dma_write32(val, DMA_CSR);
break;
default:
break;
}
/* Enable interrupts. */
val = dma_read32(DMA_CSR);
dma_write32(val | DMA_INT_ENAB, DMA_CSR);
}
static void sbus_esp_dma_drain(struct esp *esp)
{
u32 csr;
int lim;
if (esp->dmarev == dvmahme)
return;
csr = dma_read32(DMA_CSR);
if (!(csr & DMA_FIFO_ISDRAIN))
return;
if (esp->dmarev != dvmarev3 && esp->dmarev != dvmaesc1)
dma_write32(csr | DMA_FIFO_STDRAIN, DMA_CSR);
lim = 1000;
while (dma_read32(DMA_CSR) & DMA_FIFO_ISDRAIN) {
if (--lim == 0) {
printk(KERN_ALERT PFX "esp%d: DMA will not drain!\n",
esp->host->unique_id);
break;
}
udelay(1);
}
}
static void sbus_esp_dma_invalidate(struct esp *esp)
{
if (esp->dmarev == dvmahme) {
dma_write32(DMA_RST_SCSI, DMA_CSR);
esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr |
(DMA_PARITY_OFF | DMA_2CLKS |
DMA_SCSI_DISAB | DMA_INT_ENAB)) &
~(DMA_ST_WRITE | DMA_ENABLE));
dma_write32(0, DMA_CSR);
dma_write32(esp->prev_hme_dmacsr, DMA_CSR);
/* This is necessary to avoid having the SCSI channel
* engine lock up on us.
*/
dma_write32(0, DMA_ADDR);
} else {
u32 val;
int lim;
lim = 1000;
while ((val = dma_read32(DMA_CSR)) & DMA_PEND_READ) {
if (--lim == 0) {
printk(KERN_ALERT PFX "esp%d: DMA will not "
"invalidate!\n", esp->host->unique_id);
break;
}
udelay(1);
}
val &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BCNT_ENAB);
val |= DMA_FIFO_INV;
dma_write32(val, DMA_CSR);
val &= ~DMA_FIFO_INV;
dma_write32(val, DMA_CSR);
}
}
static void sbus_esp_send_dma_cmd(struct esp *esp, u32 addr, u32 esp_count,
u32 dma_count, int write, u8 cmd)
{
u32 csr;
BUG_ON(!(cmd & ESP_CMD_DMA));
sbus_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW);
sbus_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED);
if (esp->rev == FASHME) {
sbus_esp_write8(esp, (esp_count >> 16) & 0xff, FAS_RLO);
sbus_esp_write8(esp, 0, FAS_RHI);
scsi_esp_cmd(esp, cmd);
csr = esp->prev_hme_dmacsr;
csr |= DMA_SCSI_DISAB | DMA_ENABLE;
if (write)
csr |= DMA_ST_WRITE;
else
csr &= ~DMA_ST_WRITE;
esp->prev_hme_dmacsr = csr;
dma_write32(dma_count, DMA_COUNT);
dma_write32(addr, DMA_ADDR);
dma_write32(csr, DMA_CSR);
} else {
csr = dma_read32(DMA_CSR);
csr |= DMA_ENABLE;
if (write)
csr |= DMA_ST_WRITE;
else
csr &= ~DMA_ST_WRITE;
dma_write32(csr, DMA_CSR);
if (esp->dmarev == dvmaesc1) {
u32 end = PAGE_ALIGN(addr + dma_count + 16U);
dma_write32(end - addr, DMA_COUNT);
}
dma_write32(addr, DMA_ADDR);
scsi_esp_cmd(esp, cmd);
}
}
static int sbus_esp_dma_error(struct esp *esp)
{
u32 csr = dma_read32(DMA_CSR);
if (csr & DMA_HNDL_ERROR)
return 1;
return 0;
}
static const struct esp_driver_ops sbus_esp_ops = {
.esp_write8 = sbus_esp_write8,
.esp_read8 = sbus_esp_read8,
.map_single = sbus_esp_map_single,
.map_sg = sbus_esp_map_sg,
.unmap_single = sbus_esp_unmap_single,
.unmap_sg = sbus_esp_unmap_sg,
.irq_pending = sbus_esp_irq_pending,
.reset_dma = sbus_esp_reset_dma,
.dma_drain = sbus_esp_dma_drain,
.dma_invalidate = sbus_esp_dma_invalidate,
.send_dma_cmd = sbus_esp_send_dma_cmd,
.dma_error = sbus_esp_dma_error,
};
static int __devinit esp_sbus_probe_one(struct platform_device *op,
struct platform_device *espdma,
int hme)
{
struct scsi_host_template *tpnt = &scsi_esp_template;
struct Scsi_Host *host;
struct esp *esp;
int err;
host = scsi_host_alloc(tpnt, sizeof(struct esp));
err = -ENOMEM;
if (!host)
goto fail;
host->max_id = (hme ? 16 : 8);
esp = shost_priv(host);
esp->host = host;
esp->dev = op;
esp->ops = &sbus_esp_ops;
if (hme)
esp->flags |= ESP_FLAG_WIDE_CAPABLE;
err = esp_sbus_setup_dma(esp, espdma);
if (err < 0)
goto fail_unlink;
err = esp_sbus_map_regs(esp, hme);
if (err < 0)
goto fail_unlink;
err = esp_sbus_map_command_block(esp);
if (err < 0)
goto fail_unmap_regs;
err = esp_sbus_register_irq(esp);
if (err < 0)
goto fail_unmap_command_block;
esp_sbus_get_props(esp, espdma);
/* Before we try to touch the ESP chip, ESC1 dma can
* come up with the reset bit set, so make sure that
* is clear first.
*/
if (esp->dmarev == dvmaesc1) {
u32 val = dma_read32(DMA_CSR);
dma_write32(val & ~DMA_RST_SCSI, DMA_CSR);
}
dev_set_drvdata(&op->dev, esp);
err = scsi_esp_register(esp, &op->dev);
if (err)
goto fail_free_irq;
return 0;
fail_free_irq:
free_irq(host->irq, esp);
fail_unmap_command_block:
dma_free_coherent(&op->dev, 16,
esp->command_block,
esp->command_block_dma);
fail_unmap_regs:
of_iounmap(&op->resource[(hme ? 1 : 0)], esp->regs, SBUS_ESP_REG_SIZE);
fail_unlink:
scsi_host_put(host);
fail:
return err;
}
static int __devinit esp_sbus_probe(struct platform_device *op)
{
struct device_node *dma_node = NULL;
struct device_node *dp = op->dev.of_node;
struct platform_device *dma_of = NULL;
int hme = 0;
if (dp->parent &&
(!strcmp(dp->parent->name, "espdma") ||
!strcmp(dp->parent->name, "dma")))
dma_node = dp->parent;
else if (!strcmp(dp->name, "SUNW,fas")) {
dma_node = op->dev.of_node;
hme = 1;
}
if (dma_node)
dma_of = of_find_device_by_node(dma_node);
if (!dma_of)
return -ENODEV;
return esp_sbus_probe_one(op, dma_of, hme);
}
static int __devexit esp_sbus_remove(struct platform_device *op)
{
struct esp *esp = dev_get_drvdata(&op->dev);
struct platform_device *dma_of = esp->dma;
unsigned int irq = esp->host->irq;
bool is_hme;
u32 val;
scsi_esp_unregister(esp);
/* Disable interrupts. */
val = dma_read32(DMA_CSR);
dma_write32(val & ~DMA_INT_ENAB, DMA_CSR);
free_irq(irq, esp);
is_hme = (esp->dmarev == dvmahme);
dma_free_coherent(&op->dev, 16,
esp->command_block,
esp->command_block_dma);
of_iounmap(&op->resource[(is_hme ? 1 : 0)], esp->regs,
SBUS_ESP_REG_SIZE);
of_iounmap(&dma_of->resource[0], esp->dma_regs,
resource_size(&dma_of->resource[0]));
scsi_host_put(esp->host);
dev_set_drvdata(&op->dev, NULL);
return 0;
}
static const struct of_device_id esp_match[] = {
{
.name = "SUNW,esp",
},
{
.name = "SUNW,fas",
},
{
.name = "esp",
},
{},
};
MODULE_DEVICE_TABLE(of, esp_match);
static struct platform_driver esp_sbus_driver = {
.driver = {
.name = "esp",
.owner = THIS_MODULE,
.of_match_table = esp_match,
},
.probe = esp_sbus_probe,
.remove = __devexit_p(esp_sbus_remove),
};
static int __init sunesp_init(void)
{
return platform_driver_register(&esp_sbus_driver);
}
static void __exit sunesp_exit(void)
{
platform_driver_unregister(&esp_sbus_driver);
}
MODULE_DESCRIPTION("Sun ESP SCSI driver");
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
module_init(sunesp_init);
module_exit(sunesp_exit);