2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 23:54:19 +08:00
linux-next/fs/mount.h
Eric W. Biederman d29216842a mnt: Add a per mount namespace limit on the number of mounts
CAI Qian <caiqian@redhat.com> pointed out that the semantics
of shared subtrees make it possible to create an exponentially
increasing number of mounts in a mount namespace.

    mkdir /tmp/1 /tmp/2
    mount --make-rshared /
    for i in $(seq 1 20) ; do mount --bind /tmp/1 /tmp/2 ; done

Will create create 2^20 or 1048576 mounts, which is a practical problem
as some people have managed to hit this by accident.

As such CVE-2016-6213 was assigned.

Ian Kent <raven@themaw.net> described the situation for autofs users
as follows:

> The number of mounts for direct mount maps is usually not very large because of
> the way they are implemented, large direct mount maps can have performance
> problems. There can be anywhere from a few (likely case a few hundred) to less
> than 10000, plus mounts that have been triggered and not yet expired.
>
> Indirect mounts have one autofs mount at the root plus the number of mounts that
> have been triggered and not yet expired.
>
> The number of autofs indirect map entries can range from a few to the common
> case of several thousand and in rare cases up to between 30000 and 50000. I've
> not heard of people with maps larger than 50000 entries.
>
> The larger the number of map entries the greater the possibility for a large
> number of active mounts so it's not hard to expect cases of a 1000 or somewhat
> more active mounts.

So I am setting the default number of mounts allowed per mount
namespace at 100,000.  This is more than enough for any use case I
know of, but small enough to quickly stop an exponential increase
in mounts.  Which should be perfect to catch misconfigurations and
malfunctioning programs.

For anyone who needs a higher limit this can be changed by writing
to the new /proc/sys/fs/mount-max sysctl.

Tested-by: CAI Qian <caiqian@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-09-30 12:46:48 -05:00

142 lines
3.6 KiB
C

#include <linux/mount.h>
#include <linux/seq_file.h>
#include <linux/poll.h>
#include <linux/ns_common.h>
#include <linux/fs_pin.h>
struct mnt_namespace {
atomic_t count;
struct ns_common ns;
struct mount * root;
struct list_head list;
struct user_namespace *user_ns;
struct ucounts *ucounts;
u64 seq; /* Sequence number to prevent loops */
wait_queue_head_t poll;
u64 event;
unsigned int mounts; /* # of mounts in the namespace */
unsigned int pending_mounts;
};
struct mnt_pcp {
int mnt_count;
int mnt_writers;
};
struct mountpoint {
struct hlist_node m_hash;
struct dentry *m_dentry;
struct hlist_head m_list;
int m_count;
};
struct mount {
struct hlist_node mnt_hash;
struct mount *mnt_parent;
struct dentry *mnt_mountpoint;
struct vfsmount mnt;
union {
struct rcu_head mnt_rcu;
struct llist_node mnt_llist;
};
#ifdef CONFIG_SMP
struct mnt_pcp __percpu *mnt_pcp;
#else
int mnt_count;
int mnt_writers;
#endif
struct list_head mnt_mounts; /* list of children, anchored here */
struct list_head mnt_child; /* and going through their mnt_child */
struct list_head mnt_instance; /* mount instance on sb->s_mounts */
const char *mnt_devname; /* Name of device e.g. /dev/dsk/hda1 */
struct list_head mnt_list;
struct list_head mnt_expire; /* link in fs-specific expiry list */
struct list_head mnt_share; /* circular list of shared mounts */
struct list_head mnt_slave_list;/* list of slave mounts */
struct list_head mnt_slave; /* slave list entry */
struct mount *mnt_master; /* slave is on master->mnt_slave_list */
struct mnt_namespace *mnt_ns; /* containing namespace */
struct mountpoint *mnt_mp; /* where is it mounted */
struct hlist_node mnt_mp_list; /* list mounts with the same mountpoint */
#ifdef CONFIG_FSNOTIFY
struct hlist_head mnt_fsnotify_marks;
__u32 mnt_fsnotify_mask;
#endif
int mnt_id; /* mount identifier */
int mnt_group_id; /* peer group identifier */
int mnt_expiry_mark; /* true if marked for expiry */
struct hlist_head mnt_pins;
struct fs_pin mnt_umount;
struct dentry *mnt_ex_mountpoint;
};
#define MNT_NS_INTERNAL ERR_PTR(-EINVAL) /* distinct from any mnt_namespace */
static inline struct mount *real_mount(struct vfsmount *mnt)
{
return container_of(mnt, struct mount, mnt);
}
static inline int mnt_has_parent(struct mount *mnt)
{
return mnt != mnt->mnt_parent;
}
static inline int is_mounted(struct vfsmount *mnt)
{
/* neither detached nor internal? */
return !IS_ERR_OR_NULL(real_mount(mnt)->mnt_ns);
}
extern struct mount *__lookup_mnt(struct vfsmount *, struct dentry *);
extern struct mount *__lookup_mnt_last(struct vfsmount *, struct dentry *);
extern int __legitimize_mnt(struct vfsmount *, unsigned);
extern bool legitimize_mnt(struct vfsmount *, unsigned);
extern void __detach_mounts(struct dentry *dentry);
static inline void detach_mounts(struct dentry *dentry)
{
if (!d_mountpoint(dentry))
return;
__detach_mounts(dentry);
}
static inline void get_mnt_ns(struct mnt_namespace *ns)
{
atomic_inc(&ns->count);
}
extern seqlock_t mount_lock;
static inline void lock_mount_hash(void)
{
write_seqlock(&mount_lock);
}
static inline void unlock_mount_hash(void)
{
write_sequnlock(&mount_lock);
}
struct proc_mounts {
struct mnt_namespace *ns;
struct path root;
int (*show)(struct seq_file *, struct vfsmount *);
void *cached_mount;
u64 cached_event;
loff_t cached_index;
};
extern const struct seq_operations mounts_op;
extern bool __is_local_mountpoint(struct dentry *dentry);
static inline bool is_local_mountpoint(struct dentry *dentry)
{
if (!d_mountpoint(dentry))
return false;
return __is_local_mountpoint(dentry);
}