2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 10:13:58 +08:00
linux-next/sound/pci/bt87x.c
Leon Romanovsky 6417f03132 module: remove never implemented MODULE_SUPPORTED_DEVICE
MODULE_SUPPORTED_DEVICE was added in pre-git era and never was
implemented. We can safely remove it, because the kernel has grown
to have many more reliable mechanisms to determine if device is
supported or not.

Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-03-17 13:16:18 -07:00

967 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* bt87x.c - Brooktree Bt878/Bt879 driver for ALSA
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
*
* based on btaudio.c by Gerd Knorr <kraxel@bytesex.org>
*/
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/control.h>
#include <sound/initval.h>
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_DESCRIPTION("Brooktree Bt87x audio driver");
MODULE_LICENSE("GPL");
static int index[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = -2}; /* Exclude the first card */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
static int digital_rate[SNDRV_CARDS]; /* digital input rate */
static bool load_all; /* allow to load cards not the allowlist */
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for Bt87x soundcard");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for Bt87x soundcard");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable Bt87x soundcard");
module_param_array(digital_rate, int, NULL, 0444);
MODULE_PARM_DESC(digital_rate, "Digital input rate for Bt87x soundcard");
module_param(load_all, bool, 0444);
MODULE_PARM_DESC(load_all, "Allow to load cards not on the allowlist");
/* register offsets */
#define REG_INT_STAT 0x100 /* interrupt status */
#define REG_INT_MASK 0x104 /* interrupt mask */
#define REG_GPIO_DMA_CTL 0x10c /* audio control */
#define REG_PACKET_LEN 0x110 /* audio packet lengths */
#define REG_RISC_STRT_ADD 0x114 /* RISC program start address */
#define REG_RISC_COUNT 0x120 /* RISC program counter */
/* interrupt bits */
#define INT_OFLOW (1 << 3) /* audio A/D overflow */
#define INT_RISCI (1 << 11) /* RISC instruction IRQ bit set */
#define INT_FBUS (1 << 12) /* FIFO overrun due to bus access latency */
#define INT_FTRGT (1 << 13) /* FIFO overrun due to target latency */
#define INT_FDSR (1 << 14) /* FIFO data stream resynchronization */
#define INT_PPERR (1 << 15) /* PCI parity error */
#define INT_RIPERR (1 << 16) /* RISC instruction parity error */
#define INT_PABORT (1 << 17) /* PCI master or target abort */
#define INT_OCERR (1 << 18) /* invalid opcode */
#define INT_SCERR (1 << 19) /* sync counter overflow */
#define INT_RISC_EN (1 << 27) /* DMA controller running */
#define INT_RISCS_SHIFT 28 /* RISC status bits */
/* audio control bits */
#define CTL_FIFO_ENABLE (1 << 0) /* enable audio data FIFO */
#define CTL_RISC_ENABLE (1 << 1) /* enable audio DMA controller */
#define CTL_PKTP_4 (0 << 2) /* packet mode FIFO trigger point - 4 DWORDs */
#define CTL_PKTP_8 (1 << 2) /* 8 DWORDs */
#define CTL_PKTP_16 (2 << 2) /* 16 DWORDs */
#define CTL_ACAP_EN (1 << 4) /* enable audio capture */
#define CTL_DA_APP (1 << 5) /* GPIO input */
#define CTL_DA_IOM_AFE (0 << 6) /* audio A/D input */
#define CTL_DA_IOM_DA (1 << 6) /* digital audio input */
#define CTL_DA_SDR_SHIFT 8 /* DDF first stage decimation rate */
#define CTL_DA_SDR_MASK (0xf<< 8)
#define CTL_DA_LMT (1 << 12) /* limit audio data values */
#define CTL_DA_ES2 (1 << 13) /* enable DDF stage 2 */
#define CTL_DA_SBR (1 << 14) /* samples rounded to 8 bits */
#define CTL_DA_DPM (1 << 15) /* data packet mode */
#define CTL_DA_LRD_SHIFT 16 /* ALRCK delay */
#define CTL_DA_MLB (1 << 21) /* MSB/LSB format */
#define CTL_DA_LRI (1 << 22) /* left/right indication */
#define CTL_DA_SCE (1 << 23) /* sample clock edge */
#define CTL_A_SEL_STV (0 << 24) /* TV tuner audio input */
#define CTL_A_SEL_SFM (1 << 24) /* FM audio input */
#define CTL_A_SEL_SML (2 << 24) /* mic/line audio input */
#define CTL_A_SEL_SMXC (3 << 24) /* MUX bypass */
#define CTL_A_SEL_SHIFT 24
#define CTL_A_SEL_MASK (3 << 24)
#define CTL_A_PWRDN (1 << 26) /* analog audio power-down */
#define CTL_A_G2X (1 << 27) /* audio gain boost */
#define CTL_A_GAIN_SHIFT 28 /* audio input gain */
#define CTL_A_GAIN_MASK (0xf<<28)
/* RISC instruction opcodes */
#define RISC_WRITE (0x1 << 28) /* write FIFO data to memory at address */
#define RISC_WRITEC (0x5 << 28) /* write FIFO data to memory at current address */
#define RISC_SKIP (0x2 << 28) /* skip FIFO data */
#define RISC_JUMP (0x7 << 28) /* jump to address */
#define RISC_SYNC (0x8 << 28) /* synchronize with FIFO */
/* RISC instruction bits */
#define RISC_BYTES_ENABLE (0xf << 12) /* byte enable bits */
#define RISC_RESYNC ( 1 << 15) /* disable FDSR errors */
#define RISC_SET_STATUS_SHIFT 16 /* set status bits */
#define RISC_RESET_STATUS_SHIFT 20 /* clear status bits */
#define RISC_IRQ ( 1 << 24) /* interrupt */
#define RISC_EOL ( 1 << 26) /* end of line */
#define RISC_SOL ( 1 << 27) /* start of line */
/* SYNC status bits values */
#define RISC_SYNC_FM1 0x6
#define RISC_SYNC_VRO 0xc
#define ANALOG_CLOCK 1792000
#ifdef CONFIG_SND_BT87X_OVERCLOCK
#define CLOCK_DIV_MIN 1
#else
#define CLOCK_DIV_MIN 4
#endif
#define CLOCK_DIV_MAX 15
#define ERROR_INTERRUPTS (INT_FBUS | INT_FTRGT | INT_PPERR | \
INT_RIPERR | INT_PABORT | INT_OCERR)
#define MY_INTERRUPTS (INT_RISCI | ERROR_INTERRUPTS)
/* SYNC, one WRITE per line, one extra WRITE per page boundary, SYNC, JUMP */
#define MAX_RISC_SIZE ((1 + 255 + (PAGE_ALIGN(255 * 4092) / PAGE_SIZE - 1) + 1 + 1) * 8)
/* Cards with configuration information */
enum snd_bt87x_boardid {
SND_BT87X_BOARD_UNKNOWN,
SND_BT87X_BOARD_GENERIC, /* both an & dig interfaces, 32kHz */
SND_BT87X_BOARD_ANALOG, /* board with no external A/D */
SND_BT87X_BOARD_OSPREY2x0,
SND_BT87X_BOARD_OSPREY440,
SND_BT87X_BOARD_AVPHONE98,
};
/* Card configuration */
struct snd_bt87x_board {
int dig_rate; /* Digital input sampling rate */
u32 digital_fmt; /* Register settings for digital input */
unsigned no_analog:1; /* No analog input */
unsigned no_digital:1; /* No digital input */
};
static const struct snd_bt87x_board snd_bt87x_boards[] = {
[SND_BT87X_BOARD_UNKNOWN] = {
.dig_rate = 32000, /* just a guess */
},
[SND_BT87X_BOARD_GENERIC] = {
.dig_rate = 32000,
},
[SND_BT87X_BOARD_ANALOG] = {
.no_digital = 1,
},
[SND_BT87X_BOARD_OSPREY2x0] = {
.dig_rate = 44100,
.digital_fmt = CTL_DA_LRI | (1 << CTL_DA_LRD_SHIFT),
},
[SND_BT87X_BOARD_OSPREY440] = {
.dig_rate = 32000,
.digital_fmt = CTL_DA_LRI | (1 << CTL_DA_LRD_SHIFT),
.no_analog = 1,
},
[SND_BT87X_BOARD_AVPHONE98] = {
.dig_rate = 48000,
},
};
struct snd_bt87x {
struct snd_card *card;
struct pci_dev *pci;
struct snd_bt87x_board board;
void __iomem *mmio;
int irq;
spinlock_t reg_lock;
unsigned long opened;
struct snd_pcm_substream *substream;
struct snd_dma_buffer dma_risc;
unsigned int line_bytes;
unsigned int lines;
u32 reg_control;
u32 interrupt_mask;
int current_line;
int pci_parity_errors;
};
enum { DEVICE_DIGITAL, DEVICE_ANALOG };
static inline u32 snd_bt87x_readl(struct snd_bt87x *chip, u32 reg)
{
return readl(chip->mmio + reg);
}
static inline void snd_bt87x_writel(struct snd_bt87x *chip, u32 reg, u32 value)
{
writel(value, chip->mmio + reg);
}
static int snd_bt87x_create_risc(struct snd_bt87x *chip, struct snd_pcm_substream *substream,
unsigned int periods, unsigned int period_bytes)
{
unsigned int i, offset;
__le32 *risc;
if (chip->dma_risc.area == NULL) {
if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev,
PAGE_ALIGN(MAX_RISC_SIZE), &chip->dma_risc) < 0)
return -ENOMEM;
}
risc = (__le32 *)chip->dma_risc.area;
offset = 0;
*risc++ = cpu_to_le32(RISC_SYNC | RISC_SYNC_FM1);
*risc++ = cpu_to_le32(0);
for (i = 0; i < periods; ++i) {
u32 rest;
rest = period_bytes;
do {
u32 cmd, len;
unsigned int addr;
len = PAGE_SIZE - (offset % PAGE_SIZE);
if (len > rest)
len = rest;
cmd = RISC_WRITE | len;
if (rest == period_bytes) {
u32 block = i * 16 / periods;
cmd |= RISC_SOL;
cmd |= block << RISC_SET_STATUS_SHIFT;
cmd |= (~block & 0xf) << RISC_RESET_STATUS_SHIFT;
}
if (len == rest)
cmd |= RISC_EOL | RISC_IRQ;
*risc++ = cpu_to_le32(cmd);
addr = snd_pcm_sgbuf_get_addr(substream, offset);
*risc++ = cpu_to_le32(addr);
offset += len;
rest -= len;
} while (rest > 0);
}
*risc++ = cpu_to_le32(RISC_SYNC | RISC_SYNC_VRO);
*risc++ = cpu_to_le32(0);
*risc++ = cpu_to_le32(RISC_JUMP);
*risc++ = cpu_to_le32(chip->dma_risc.addr);
chip->line_bytes = period_bytes;
chip->lines = periods;
return 0;
}
static void snd_bt87x_free_risc(struct snd_bt87x *chip)
{
if (chip->dma_risc.area) {
snd_dma_free_pages(&chip->dma_risc);
chip->dma_risc.area = NULL;
}
}
static void snd_bt87x_pci_error(struct snd_bt87x *chip, unsigned int status)
{
int pci_status = pci_status_get_and_clear_errors(chip->pci);
if (pci_status != PCI_STATUS_DETECTED_PARITY)
dev_err(chip->card->dev,
"Aieee - PCI error! status %#08x, PCI status %#04x\n",
status & ERROR_INTERRUPTS, pci_status);
else {
dev_err(chip->card->dev,
"Aieee - PCI parity error detected!\n");
/* error 'handling' similar to aic7xxx_pci.c: */
chip->pci_parity_errors++;
if (chip->pci_parity_errors > 20) {
dev_err(chip->card->dev,
"Too many PCI parity errors observed.\n");
dev_err(chip->card->dev,
"Some device on this bus is generating bad parity.\n");
dev_err(chip->card->dev,
"This is an error *observed by*, not *generated by*, this card.\n");
dev_err(chip->card->dev,
"PCI parity error checking has been disabled.\n");
chip->interrupt_mask &= ~(INT_PPERR | INT_RIPERR);
snd_bt87x_writel(chip, REG_INT_MASK, chip->interrupt_mask);
}
}
}
static irqreturn_t snd_bt87x_interrupt(int irq, void *dev_id)
{
struct snd_bt87x *chip = dev_id;
unsigned int status, irq_status;
status = snd_bt87x_readl(chip, REG_INT_STAT);
irq_status = status & chip->interrupt_mask;
if (!irq_status)
return IRQ_NONE;
snd_bt87x_writel(chip, REG_INT_STAT, irq_status);
if (irq_status & ERROR_INTERRUPTS) {
if (irq_status & (INT_FBUS | INT_FTRGT))
dev_warn(chip->card->dev,
"FIFO overrun, status %#08x\n", status);
if (irq_status & INT_OCERR)
dev_err(chip->card->dev,
"internal RISC error, status %#08x\n", status);
if (irq_status & (INT_PPERR | INT_RIPERR | INT_PABORT))
snd_bt87x_pci_error(chip, irq_status);
}
if ((irq_status & INT_RISCI) && (chip->reg_control & CTL_ACAP_EN)) {
int current_block, irq_block;
/* assume that exactly one line has been recorded */
chip->current_line = (chip->current_line + 1) % chip->lines;
/* but check if some interrupts have been skipped */
current_block = chip->current_line * 16 / chip->lines;
irq_block = status >> INT_RISCS_SHIFT;
if (current_block != irq_block)
chip->current_line = DIV_ROUND_UP(irq_block * chip->lines,
16);
snd_pcm_period_elapsed(chip->substream);
}
return IRQ_HANDLED;
}
static const struct snd_pcm_hardware snd_bt87x_digital_hw = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = 0, /* set at runtime */
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 255 * 4092,
.period_bytes_min = 32,
.period_bytes_max = 4092,
.periods_min = 2,
.periods_max = 255,
};
static const struct snd_pcm_hardware snd_bt87x_analog_hw = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8,
.rates = SNDRV_PCM_RATE_KNOT,
.rate_min = ANALOG_CLOCK / CLOCK_DIV_MAX,
.rate_max = ANALOG_CLOCK / CLOCK_DIV_MIN,
.channels_min = 1,
.channels_max = 1,
.buffer_bytes_max = 255 * 4092,
.period_bytes_min = 32,
.period_bytes_max = 4092,
.periods_min = 2,
.periods_max = 255,
};
static int snd_bt87x_set_digital_hw(struct snd_bt87x *chip, struct snd_pcm_runtime *runtime)
{
chip->reg_control |= CTL_DA_IOM_DA | CTL_A_PWRDN;
runtime->hw = snd_bt87x_digital_hw;
runtime->hw.rates = snd_pcm_rate_to_rate_bit(chip->board.dig_rate);
runtime->hw.rate_min = chip->board.dig_rate;
runtime->hw.rate_max = chip->board.dig_rate;
return 0;
}
static int snd_bt87x_set_analog_hw(struct snd_bt87x *chip, struct snd_pcm_runtime *runtime)
{
static const struct snd_ratnum analog_clock = {
.num = ANALOG_CLOCK,
.den_min = CLOCK_DIV_MIN,
.den_max = CLOCK_DIV_MAX,
.den_step = 1
};
static const struct snd_pcm_hw_constraint_ratnums constraint_rates = {
.nrats = 1,
.rats = &analog_clock
};
chip->reg_control &= ~(CTL_DA_IOM_DA | CTL_A_PWRDN);
runtime->hw = snd_bt87x_analog_hw;
return snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&constraint_rates);
}
static int snd_bt87x_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
if (test_and_set_bit(0, &chip->opened))
return -EBUSY;
if (substream->pcm->device == DEVICE_DIGITAL)
err = snd_bt87x_set_digital_hw(chip, runtime);
else
err = snd_bt87x_set_analog_hw(chip, runtime);
if (err < 0)
goto _error;
err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
if (err < 0)
goto _error;
chip->substream = substream;
return 0;
_error:
clear_bit(0, &chip->opened);
smp_mb__after_atomic();
return err;
}
static int snd_bt87x_close(struct snd_pcm_substream *substream)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
spin_lock_irq(&chip->reg_lock);
chip->reg_control |= CTL_A_PWRDN;
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
spin_unlock_irq(&chip->reg_lock);
chip->substream = NULL;
clear_bit(0, &chip->opened);
smp_mb__after_atomic();
return 0;
}
static int snd_bt87x_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
return snd_bt87x_create_risc(chip, substream,
params_periods(hw_params),
params_period_bytes(hw_params));
}
static int snd_bt87x_hw_free(struct snd_pcm_substream *substream)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
snd_bt87x_free_risc(chip);
return 0;
}
static int snd_bt87x_prepare(struct snd_pcm_substream *substream)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int decimation;
spin_lock_irq(&chip->reg_lock);
chip->reg_control &= ~(CTL_DA_SDR_MASK | CTL_DA_SBR);
decimation = (ANALOG_CLOCK + runtime->rate / 4) / runtime->rate;
chip->reg_control |= decimation << CTL_DA_SDR_SHIFT;
if (runtime->format == SNDRV_PCM_FORMAT_S8)
chip->reg_control |= CTL_DA_SBR;
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_bt87x_start(struct snd_bt87x *chip)
{
spin_lock(&chip->reg_lock);
chip->current_line = 0;
chip->reg_control |= CTL_FIFO_ENABLE | CTL_RISC_ENABLE | CTL_ACAP_EN;
snd_bt87x_writel(chip, REG_RISC_STRT_ADD, chip->dma_risc.addr);
snd_bt87x_writel(chip, REG_PACKET_LEN,
chip->line_bytes | (chip->lines << 16));
snd_bt87x_writel(chip, REG_INT_MASK, chip->interrupt_mask);
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
spin_unlock(&chip->reg_lock);
return 0;
}
static int snd_bt87x_stop(struct snd_bt87x *chip)
{
spin_lock(&chip->reg_lock);
chip->reg_control &= ~(CTL_FIFO_ENABLE | CTL_RISC_ENABLE | CTL_ACAP_EN);
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
snd_bt87x_writel(chip, REG_INT_MASK, 0);
snd_bt87x_writel(chip, REG_INT_STAT, MY_INTERRUPTS);
spin_unlock(&chip->reg_lock);
return 0;
}
static int snd_bt87x_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
return snd_bt87x_start(chip);
case SNDRV_PCM_TRIGGER_STOP:
return snd_bt87x_stop(chip);
default:
return -EINVAL;
}
}
static snd_pcm_uframes_t snd_bt87x_pointer(struct snd_pcm_substream *substream)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
return (snd_pcm_uframes_t)bytes_to_frames(runtime, chip->current_line * chip->line_bytes);
}
static const struct snd_pcm_ops snd_bt87x_pcm_ops = {
.open = snd_bt87x_pcm_open,
.close = snd_bt87x_close,
.hw_params = snd_bt87x_hw_params,
.hw_free = snd_bt87x_hw_free,
.prepare = snd_bt87x_prepare,
.trigger = snd_bt87x_trigger,
.pointer = snd_bt87x_pointer,
};
static int snd_bt87x_capture_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 1;
info->value.integer.min = 0;
info->value.integer.max = 15;
return 0;
}
static int snd_bt87x_capture_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
value->value.integer.value[0] = (chip->reg_control & CTL_A_GAIN_MASK) >> CTL_A_GAIN_SHIFT;
return 0;
}
static int snd_bt87x_capture_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
u32 old_control;
int changed;
spin_lock_irq(&chip->reg_lock);
old_control = chip->reg_control;
chip->reg_control = (chip->reg_control & ~CTL_A_GAIN_MASK)
| (value->value.integer.value[0] << CTL_A_GAIN_SHIFT);
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
changed = old_control != chip->reg_control;
spin_unlock_irq(&chip->reg_lock);
return changed;
}
static const struct snd_kcontrol_new snd_bt87x_capture_volume = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Volume",
.info = snd_bt87x_capture_volume_info,
.get = snd_bt87x_capture_volume_get,
.put = snd_bt87x_capture_volume_put,
};
#define snd_bt87x_capture_boost_info snd_ctl_boolean_mono_info
static int snd_bt87x_capture_boost_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
value->value.integer.value[0] = !! (chip->reg_control & CTL_A_G2X);
return 0;
}
static int snd_bt87x_capture_boost_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
u32 old_control;
int changed;
spin_lock_irq(&chip->reg_lock);
old_control = chip->reg_control;
chip->reg_control = (chip->reg_control & ~CTL_A_G2X)
| (value->value.integer.value[0] ? CTL_A_G2X : 0);
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
changed = chip->reg_control != old_control;
spin_unlock_irq(&chip->reg_lock);
return changed;
}
static const struct snd_kcontrol_new snd_bt87x_capture_boost = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Boost",
.info = snd_bt87x_capture_boost_info,
.get = snd_bt87x_capture_boost_get,
.put = snd_bt87x_capture_boost_put,
};
static int snd_bt87x_capture_source_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *info)
{
static const char *const texts[3] = {"TV Tuner", "FM", "Mic/Line"};
return snd_ctl_enum_info(info, 1, 3, texts);
}
static int snd_bt87x_capture_source_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
value->value.enumerated.item[0] = (chip->reg_control & CTL_A_SEL_MASK) >> CTL_A_SEL_SHIFT;
return 0;
}
static int snd_bt87x_capture_source_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
u32 old_control;
int changed;
spin_lock_irq(&chip->reg_lock);
old_control = chip->reg_control;
chip->reg_control = (chip->reg_control & ~CTL_A_SEL_MASK)
| (value->value.enumerated.item[0] << CTL_A_SEL_SHIFT);
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
changed = chip->reg_control != old_control;
spin_unlock_irq(&chip->reg_lock);
return changed;
}
static const struct snd_kcontrol_new snd_bt87x_capture_source = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.info = snd_bt87x_capture_source_info,
.get = snd_bt87x_capture_source_get,
.put = snd_bt87x_capture_source_put,
};
static int snd_bt87x_free(struct snd_bt87x *chip)
{
if (chip->mmio)
snd_bt87x_stop(chip);
if (chip->irq >= 0)
free_irq(chip->irq, chip);
iounmap(chip->mmio);
pci_release_regions(chip->pci);
pci_disable_device(chip->pci);
kfree(chip);
return 0;
}
static int snd_bt87x_dev_free(struct snd_device *device)
{
struct snd_bt87x *chip = device->device_data;
return snd_bt87x_free(chip);
}
static int snd_bt87x_pcm(struct snd_bt87x *chip, int device, char *name)
{
int err;
struct snd_pcm *pcm;
err = snd_pcm_new(chip->card, name, device, 0, 1, &pcm);
if (err < 0)
return err;
pcm->private_data = chip;
strcpy(pcm->name, name);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_bt87x_pcm_ops);
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
&chip->pci->dev,
128 * 1024,
ALIGN(255 * 4092, 1024));
return 0;
}
static int snd_bt87x_create(struct snd_card *card,
struct pci_dev *pci,
struct snd_bt87x **rchip)
{
struct snd_bt87x *chip;
int err;
static const struct snd_device_ops ops = {
.dev_free = snd_bt87x_dev_free
};
*rchip = NULL;
err = pci_enable_device(pci);
if (err < 0)
return err;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (!chip) {
pci_disable_device(pci);
return -ENOMEM;
}
chip->card = card;
chip->pci = pci;
chip->irq = -1;
spin_lock_init(&chip->reg_lock);
if ((err = pci_request_regions(pci, "Bt87x audio")) < 0) {
kfree(chip);
pci_disable_device(pci);
return err;
}
chip->mmio = pci_ioremap_bar(pci, 0);
if (!chip->mmio) {
dev_err(card->dev, "cannot remap io memory\n");
err = -ENOMEM;
goto fail;
}
chip->reg_control = CTL_A_PWRDN | CTL_DA_ES2 |
CTL_PKTP_16 | (15 << CTL_DA_SDR_SHIFT);
chip->interrupt_mask = MY_INTERRUPTS;
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
snd_bt87x_writel(chip, REG_INT_MASK, 0);
snd_bt87x_writel(chip, REG_INT_STAT, MY_INTERRUPTS);
err = request_irq(pci->irq, snd_bt87x_interrupt, IRQF_SHARED,
KBUILD_MODNAME, chip);
if (err < 0) {
dev_err(card->dev, "cannot grab irq %d\n", pci->irq);
goto fail;
}
chip->irq = pci->irq;
card->sync_irq = chip->irq;
pci_set_master(pci);
err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
if (err < 0)
goto fail;
*rchip = chip;
return 0;
fail:
snd_bt87x_free(chip);
return err;
}
#define BT_DEVICE(chip, subvend, subdev, id) \
{ .vendor = PCI_VENDOR_ID_BROOKTREE, \
.device = chip, \
.subvendor = subvend, .subdevice = subdev, \
.driver_data = SND_BT87X_BOARD_ ## id }
/* driver_data is the card id for that device */
static const struct pci_device_id snd_bt87x_ids[] = {
/* Hauppauge WinTV series */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0x13eb, GENERIC),
/* Hauppauge WinTV series */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_879, 0x0070, 0x13eb, GENERIC),
/* Viewcast Osprey 200 */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0xff01, OSPREY2x0),
/* Viewcast Osprey 440 (rate is configurable via gpio) */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0xff07, OSPREY440),
/* ATI TV-Wonder */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x1002, 0x0001, GENERIC),
/* Leadtek Winfast tv 2000xp delux */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x107d, 0x6606, GENERIC),
/* Pinnacle PCTV */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x11bd, 0x0012, GENERIC),
/* Voodoo TV 200 */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x121a, 0x3000, GENERIC),
/* Askey Computer Corp. MagicTView'99 */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x144f, 0x3000, GENERIC),
/* AVerMedia Studio No. 103, 203, ...? */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x1461, 0x0003, AVPHONE98),
/* Prolink PixelView PV-M4900 */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x1554, 0x4011, GENERIC),
/* Pinnacle Studio PCTV rave */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0xbd11, 0x1200, GENERIC),
{ }
};
MODULE_DEVICE_TABLE(pci, snd_bt87x_ids);
/* cards known not to have audio
* (DVB cards use the audio function to transfer MPEG data) */
static struct {
unsigned short subvendor, subdevice;
} denylist[] = {
{0x0071, 0x0101}, /* Nebula Electronics DigiTV */
{0x11bd, 0x001c}, /* Pinnacle PCTV Sat */
{0x11bd, 0x0026}, /* Pinnacle PCTV SAT CI */
{0x1461, 0x0761}, /* AVermedia AverTV DVB-T */
{0x1461, 0x0771}, /* AVermedia DVB-T 771 */
{0x1822, 0x0001}, /* Twinhan VisionPlus DVB-T */
{0x18ac, 0xd500}, /* DVICO FusionHDTV 5 Lite */
{0x18ac, 0xdb10}, /* DVICO FusionHDTV DVB-T Lite */
{0x18ac, 0xdb11}, /* Ultraview DVB-T Lite */
{0x270f, 0xfc00}, /* Chaintech Digitop DST-1000 DVB-S */
{0x7063, 0x2000}, /* pcHDTV HD-2000 TV */
};
static struct pci_driver driver;
/* return the id of the card, or a negative value if it's on the denylist */
static int snd_bt87x_detect_card(struct pci_dev *pci)
{
int i;
const struct pci_device_id *supported;
supported = pci_match_id(snd_bt87x_ids, pci);
if (supported && supported->driver_data > 0)
return supported->driver_data;
for (i = 0; i < ARRAY_SIZE(denylist); ++i)
if (denylist[i].subvendor == pci->subsystem_vendor &&
denylist[i].subdevice == pci->subsystem_device) {
dev_dbg(&pci->dev,
"card %#04x-%#04x:%#04x has no audio\n",
pci->device, pci->subsystem_vendor, pci->subsystem_device);
return -EBUSY;
}
dev_info(&pci->dev, "unknown card %#04x-%#04x:%#04x\n",
pci->device, pci->subsystem_vendor, pci->subsystem_device);
dev_info(&pci->dev, "please mail id, board name, and, "
"if it works, the correct digital_rate option to "
"<alsa-devel@alsa-project.org>\n");
return SND_BT87X_BOARD_UNKNOWN;
}
static int snd_bt87x_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct snd_bt87x *chip;
int err;
enum snd_bt87x_boardid boardid;
if (!pci_id->driver_data) {
err = snd_bt87x_detect_card(pci);
if (err < 0)
return -ENODEV;
boardid = err;
} else
boardid = pci_id->driver_data;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
++dev;
return -ENOENT;
}
err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
0, &card);
if (err < 0)
return err;
err = snd_bt87x_create(card, pci, &chip);
if (err < 0)
goto _error;
memcpy(&chip->board, &snd_bt87x_boards[boardid], sizeof(chip->board));
if (!chip->board.no_digital) {
if (digital_rate[dev] > 0)
chip->board.dig_rate = digital_rate[dev];
chip->reg_control |= chip->board.digital_fmt;
err = snd_bt87x_pcm(chip, DEVICE_DIGITAL, "Bt87x Digital");
if (err < 0)
goto _error;
}
if (!chip->board.no_analog) {
err = snd_bt87x_pcm(chip, DEVICE_ANALOG, "Bt87x Analog");
if (err < 0)
goto _error;
err = snd_ctl_add(card, snd_ctl_new1(
&snd_bt87x_capture_volume, chip));
if (err < 0)
goto _error;
err = snd_ctl_add(card, snd_ctl_new1(
&snd_bt87x_capture_boost, chip));
if (err < 0)
goto _error;
err = snd_ctl_add(card, snd_ctl_new1(
&snd_bt87x_capture_source, chip));
if (err < 0)
goto _error;
}
dev_info(card->dev, "bt87x%d: Using board %d, %sanalog, %sdigital "
"(rate %d Hz)\n", dev, boardid,
chip->board.no_analog ? "no " : "",
chip->board.no_digital ? "no " : "", chip->board.dig_rate);
strcpy(card->driver, "Bt87x");
sprintf(card->shortname, "Brooktree Bt%x", pci->device);
sprintf(card->longname, "%s at %#llx, irq %i",
card->shortname, (unsigned long long)pci_resource_start(pci, 0),
chip->irq);
strcpy(card->mixername, "Bt87x");
err = snd_card_register(card);
if (err < 0)
goto _error;
pci_set_drvdata(pci, card);
++dev;
return 0;
_error:
snd_card_free(card);
return err;
}
static void snd_bt87x_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
}
/* default entries for all Bt87x cards - it's not exported */
/* driver_data is set to 0 to call detection */
static const struct pci_device_id snd_bt87x_default_ids[] = {
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, PCI_ANY_ID, PCI_ANY_ID, UNKNOWN),
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_879, PCI_ANY_ID, PCI_ANY_ID, UNKNOWN),
{ }
};
static struct pci_driver driver = {
.name = KBUILD_MODNAME,
.id_table = snd_bt87x_ids,
.probe = snd_bt87x_probe,
.remove = snd_bt87x_remove,
};
static int __init alsa_card_bt87x_init(void)
{
if (load_all)
driver.id_table = snd_bt87x_default_ids;
return pci_register_driver(&driver);
}
static void __exit alsa_card_bt87x_exit(void)
{
pci_unregister_driver(&driver);
}
module_init(alsa_card_bt87x_init)
module_exit(alsa_card_bt87x_exit)