mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 07:34:08 +08:00
3d781a0231
drivers/net/skfp/fplustm.c: In function `enable_formac': drivers/net/skfp/fplustm.c:552: warning: large integer implicitly truncated to unsigned type drivers/net/skfp/fplustm.c:555: warning: large integer implicitly truncated to unsigned type These arguments were changed to `const', so the compiler can now see that it's doing and outw(..., 0xffffnnnn). Cast the arg to ushort. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
1492 lines
39 KiB
C
1492 lines
39 KiB
C
/******************************************************************************
|
|
*
|
|
* (C)Copyright 1998,1999 SysKonnect,
|
|
* a business unit of Schneider & Koch & Co. Datensysteme GmbH.
|
|
*
|
|
* See the file "skfddi.c" for further information.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* The information in this file is provided "AS IS" without warranty.
|
|
*
|
|
******************************************************************************/
|
|
|
|
/*
|
|
* FORMAC+ Driver for tag mode
|
|
*/
|
|
|
|
#include "h/types.h"
|
|
#include "h/fddi.h"
|
|
#include "h/smc.h"
|
|
#include "h/supern_2.h"
|
|
#include "can.c"
|
|
|
|
#ifndef lint
|
|
static const char ID_sccs[] = "@(#)fplustm.c 1.32 99/02/23 (C) SK " ;
|
|
#endif
|
|
|
|
#ifndef UNUSED
|
|
#ifdef lint
|
|
#define UNUSED(x) (x) = (x)
|
|
#else
|
|
#define UNUSED(x)
|
|
#endif
|
|
#endif
|
|
|
|
#define FM_ADDRX (FM_ADDET|FM_EXGPA0|FM_EXGPA1)
|
|
#define MS2BCLK(x) ((x)*12500L)
|
|
#define US2BCLK(x) ((x)*1250L)
|
|
|
|
/*
|
|
* prototypes for static function
|
|
*/
|
|
static void build_claim_beacon(struct s_smc *smc, u_long t_request);
|
|
static int init_mac(struct s_smc *smc, int all);
|
|
static void rtm_init(struct s_smc *smc);
|
|
static void smt_split_up_fifo(struct s_smc *smc);
|
|
|
|
#if (!defined(NO_SMT_PANIC) || defined(DEBUG))
|
|
static char write_mdr_warning [] = "E350 write_mdr() FM_SNPPND is set\n";
|
|
static char cam_warning [] = "E_SMT_004: CAM still busy\n";
|
|
#endif
|
|
|
|
#define DUMMY_READ() smc->hw.mc_dummy = (u_short) inp(ADDR(B0_RAP))
|
|
|
|
#define CHECK_NPP() { unsigned k = 10000 ;\
|
|
while ((inpw(FM_A(FM_STMCHN)) & FM_SNPPND) && k) k--;\
|
|
if (!k) { \
|
|
SMT_PANIC(smc,SMT_E0130, SMT_E0130_MSG) ; \
|
|
} \
|
|
}
|
|
|
|
#define CHECK_CAM() { unsigned k = 10 ;\
|
|
while (!(inpw(FM_A(FM_AFSTAT)) & FM_DONE) && k) k--;\
|
|
if (!k) { \
|
|
SMT_PANIC(smc,SMT_E0131, SMT_E0131_MSG) ; \
|
|
} \
|
|
}
|
|
|
|
const struct fddi_addr fddi_broadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}};
|
|
static const struct fddi_addr null_addr = {{0,0,0,0,0,0}};
|
|
static const struct fddi_addr dbeacon_multi = {{0x01,0x80,0xc2,0x00,0x01,0x00}};
|
|
|
|
static const u_short my_said = 0xffff ; /* short address (n.u.) */
|
|
static const u_short my_sagp = 0xffff ; /* short group address (n.u.) */
|
|
|
|
/*
|
|
* define my address
|
|
*/
|
|
#ifdef USE_CAN_ADDR
|
|
#define MA smc->hw.fddi_canon_addr
|
|
#else
|
|
#define MA smc->hw.fddi_home_addr
|
|
#endif
|
|
|
|
|
|
/*
|
|
* useful interrupt bits
|
|
*/
|
|
static const int mac_imsk1u = FM_STXABRS | FM_STXABRA0 | FM_SXMTABT ;
|
|
static const int mac_imsk1l = FM_SQLCKS | FM_SQLCKA0 | FM_SPCEPDS | FM_SPCEPDA0|
|
|
FM_STBURS | FM_STBURA0 ;
|
|
|
|
/* delete FM_SRBFL after tests */
|
|
static const int mac_imsk2u = FM_SERRSF | FM_SNFSLD | FM_SRCVOVR | FM_SRBFL |
|
|
FM_SMYCLM ;
|
|
static const int mac_imsk2l = FM_STRTEXR | FM_SDUPCLM | FM_SFRMCTR |
|
|
FM_SERRCTR | FM_SLSTCTR |
|
|
FM_STRTEXP | FM_SMULTDA | FM_SRNGOP ;
|
|
|
|
static const int mac_imsk3u = FM_SRCVOVR2 | FM_SRBFL2 ;
|
|
static const int mac_imsk3l = FM_SRPERRQ2 | FM_SRPERRQ1 ;
|
|
|
|
static const int mac_beacon_imsk2u = FM_SOTRBEC | FM_SMYBEC | FM_SBEC |
|
|
FM_SLOCLM | FM_SHICLM | FM_SMYCLM | FM_SCLM ;
|
|
|
|
|
|
static u_long mac_get_tneg(struct s_smc *smc)
|
|
{
|
|
u_long tneg ;
|
|
|
|
tneg = (u_long)((long)inpw(FM_A(FM_TNEG))<<5) ;
|
|
return((u_long)((tneg + ((inpw(FM_A(FM_TMRS))>>10)&0x1f)) |
|
|
0xffe00000L)) ;
|
|
}
|
|
|
|
void mac_update_counter(struct s_smc *smc)
|
|
{
|
|
smc->mib.m[MAC0].fddiMACFrame_Ct =
|
|
(smc->mib.m[MAC0].fddiMACFrame_Ct & 0xffff0000L)
|
|
+ (u_short) inpw(FM_A(FM_FCNTR)) ;
|
|
smc->mib.m[MAC0].fddiMACLost_Ct =
|
|
(smc->mib.m[MAC0].fddiMACLost_Ct & 0xffff0000L)
|
|
+ (u_short) inpw(FM_A(FM_LCNTR)) ;
|
|
smc->mib.m[MAC0].fddiMACError_Ct =
|
|
(smc->mib.m[MAC0].fddiMACError_Ct & 0xffff0000L)
|
|
+ (u_short) inpw(FM_A(FM_ECNTR)) ;
|
|
smc->mib.m[MAC0].fddiMACT_Neg = mac_get_tneg(smc) ;
|
|
#ifdef SMT_REAL_TOKEN_CT
|
|
/*
|
|
* If the token counter is emulated it is updated in smt_event.
|
|
*/
|
|
TBD
|
|
#else
|
|
smt_emulate_token_ct( smc, MAC0 );
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* write long value into buffer memory over memory data register (MDR),
|
|
*/
|
|
static void write_mdr(struct s_smc *smc, u_long val)
|
|
{
|
|
CHECK_NPP() ;
|
|
MDRW(val) ;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* read long value from buffer memory over memory data register (MDR),
|
|
*/
|
|
static u_long read_mdr(struct s_smc *smc, unsigned int addr)
|
|
{
|
|
long p ;
|
|
CHECK_NPP() ;
|
|
MARR(addr) ;
|
|
outpw(FM_A(FM_CMDREG1),FM_IRMEMWO) ;
|
|
CHECK_NPP() ; /* needed for PCI to prevent from timeing violations */
|
|
/* p = MDRR() ; */ /* bad read values if the workaround */
|
|
/* smc->hw.mc_dummy = *((short volatile far *)(addr)))*/
|
|
/* is used */
|
|
p = (u_long)inpw(FM_A(FM_MDRU))<<16 ;
|
|
p += (u_long)inpw(FM_A(FM_MDRL)) ;
|
|
return(p) ;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* clear buffer memory
|
|
*/
|
|
static void init_ram(struct s_smc *smc)
|
|
{
|
|
u_short i ;
|
|
|
|
smc->hw.fp.fifo.rbc_ram_start = 0 ;
|
|
smc->hw.fp.fifo.rbc_ram_end =
|
|
smc->hw.fp.fifo.rbc_ram_start + RBC_MEM_SIZE ;
|
|
CHECK_NPP() ;
|
|
MARW(smc->hw.fp.fifo.rbc_ram_start) ;
|
|
for (i = smc->hw.fp.fifo.rbc_ram_start;
|
|
i < (u_short) (smc->hw.fp.fifo.rbc_ram_end-1); i++)
|
|
write_mdr(smc,0L) ;
|
|
/* Erase the last byte too */
|
|
write_mdr(smc,0L) ;
|
|
}
|
|
|
|
/*
|
|
* set receive FIFO pointer
|
|
*/
|
|
static void set_recvptr(struct s_smc *smc)
|
|
{
|
|
/*
|
|
* initialize the pointer for receive queue 1
|
|
*/
|
|
outpw(FM_A(FM_RPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* RPR1 */
|
|
outpw(FM_A(FM_SWPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* SWPR1 */
|
|
outpw(FM_A(FM_WPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* WPR1 */
|
|
outpw(FM_A(FM_EARV1),smc->hw.fp.fifo.tx_s_start-1) ; /* EARV1 */
|
|
|
|
/*
|
|
* initialize the pointer for receive queue 2
|
|
*/
|
|
if (smc->hw.fp.fifo.rx2_fifo_size) {
|
|
outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rx2_fifo_start) ;
|
|
outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rx2_fifo_start) ;
|
|
outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rx2_fifo_start) ;
|
|
outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ;
|
|
}
|
|
else {
|
|
outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rbc_ram_end-1) ;
|
|
outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rbc_ram_end-1) ;
|
|
outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rbc_ram_end-1) ;
|
|
outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* set transmit FIFO pointer
|
|
*/
|
|
static void set_txptr(struct s_smc *smc)
|
|
{
|
|
outpw(FM_A(FM_CMDREG2),FM_IRSTQ) ; /* reset transmit queues */
|
|
|
|
/*
|
|
* initialize the pointer for asynchronous transmit queue
|
|
*/
|
|
outpw(FM_A(FM_RPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* RPXA0 */
|
|
outpw(FM_A(FM_SWPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* SWPXA0 */
|
|
outpw(FM_A(FM_WPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* WPXA0 */
|
|
outpw(FM_A(FM_EAA0),smc->hw.fp.fifo.rx2_fifo_start-1) ; /* EAA0 */
|
|
|
|
/*
|
|
* initialize the pointer for synchronous transmit queue
|
|
*/
|
|
if (smc->hw.fp.fifo.tx_s_size) {
|
|
outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_s_start) ;
|
|
outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_s_start) ;
|
|
outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_s_start) ;
|
|
outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ;
|
|
}
|
|
else {
|
|
outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_a0_start-1) ;
|
|
outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_a0_start-1) ;
|
|
outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_a0_start-1) ;
|
|
outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* init memory buffer management registers
|
|
*/
|
|
static void init_rbc(struct s_smc *smc)
|
|
{
|
|
u_short rbc_ram_addr ;
|
|
|
|
/*
|
|
* set unused pointers or permanent pointers
|
|
*/
|
|
rbc_ram_addr = smc->hw.fp.fifo.rx2_fifo_start - 1 ;
|
|
|
|
outpw(FM_A(FM_RPXA1),rbc_ram_addr) ; /* a1-send pointer */
|
|
outpw(FM_A(FM_WPXA1),rbc_ram_addr) ;
|
|
outpw(FM_A(FM_SWPXA1),rbc_ram_addr) ;
|
|
outpw(FM_A(FM_EAA1),rbc_ram_addr) ;
|
|
|
|
set_recvptr(smc) ;
|
|
set_txptr(smc) ;
|
|
}
|
|
|
|
/*
|
|
* init rx pointer
|
|
*/
|
|
static void init_rx(struct s_smc *smc)
|
|
{
|
|
struct s_smt_rx_queue *queue ;
|
|
|
|
/*
|
|
* init all tx data structures for receive queue 1
|
|
*/
|
|
smc->hw.fp.rx[QUEUE_R1] = queue = &smc->hw.fp.rx_q[QUEUE_R1] ;
|
|
queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R1_CSR) ;
|
|
queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R1_DA) ;
|
|
|
|
/*
|
|
* init all tx data structures for receive queue 2
|
|
*/
|
|
smc->hw.fp.rx[QUEUE_R2] = queue = &smc->hw.fp.rx_q[QUEUE_R2] ;
|
|
queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R2_CSR) ;
|
|
queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R2_DA) ;
|
|
}
|
|
|
|
/*
|
|
* set the TSYNC register of the FORMAC to regulate synchronous transmission
|
|
*/
|
|
void set_formac_tsync(struct s_smc *smc, long sync_bw)
|
|
{
|
|
outpw(FM_A(FM_TSYNC),(unsigned int) (((-sync_bw) >> 5) & 0xffff) ) ;
|
|
}
|
|
|
|
/*
|
|
* init all tx data structures
|
|
*/
|
|
static void init_tx(struct s_smc *smc)
|
|
{
|
|
struct s_smt_tx_queue *queue ;
|
|
|
|
/*
|
|
* init all tx data structures for the synchronous queue
|
|
*/
|
|
smc->hw.fp.tx[QUEUE_S] = queue = &smc->hw.fp.tx_q[QUEUE_S] ;
|
|
queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XS_CSR) ;
|
|
queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XS_DA) ;
|
|
|
|
#ifdef ESS
|
|
set_formac_tsync(smc,smc->ess.sync_bw) ;
|
|
#endif
|
|
|
|
/*
|
|
* init all tx data structures for the asynchronous queue 0
|
|
*/
|
|
smc->hw.fp.tx[QUEUE_A0] = queue = &smc->hw.fp.tx_q[QUEUE_A0] ;
|
|
queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XA_CSR) ;
|
|
queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XA_DA) ;
|
|
|
|
|
|
llc_recover_tx(smc) ;
|
|
}
|
|
|
|
static void mac_counter_init(struct s_smc *smc)
|
|
{
|
|
int i ;
|
|
u_long *ec ;
|
|
|
|
/*
|
|
* clear FORMAC+ frame-, lost- and error counter
|
|
*/
|
|
outpw(FM_A(FM_FCNTR),0) ;
|
|
outpw(FM_A(FM_LCNTR),0) ;
|
|
outpw(FM_A(FM_ECNTR),0) ;
|
|
/*
|
|
* clear internal error counter stucture
|
|
*/
|
|
ec = (u_long *)&smc->hw.fp.err_stats ;
|
|
for (i = (sizeof(struct err_st)/sizeof(long)) ; i ; i--)
|
|
*ec++ = 0L ;
|
|
smc->mib.m[MAC0].fddiMACRingOp_Ct = 0 ;
|
|
}
|
|
|
|
/*
|
|
* set FORMAC address, and t_request
|
|
*/
|
|
static void set_formac_addr(struct s_smc *smc)
|
|
{
|
|
long t_requ = smc->mib.m[MAC0].fddiMACT_Req ;
|
|
|
|
outpw(FM_A(FM_SAID),my_said) ; /* set short address */
|
|
outpw(FM_A(FM_LAIL),(unsigned)((smc->hw.fddi_home_addr.a[4]<<8) +
|
|
smc->hw.fddi_home_addr.a[5])) ;
|
|
outpw(FM_A(FM_LAIC),(unsigned)((smc->hw.fddi_home_addr.a[2]<<8) +
|
|
smc->hw.fddi_home_addr.a[3])) ;
|
|
outpw(FM_A(FM_LAIM),(unsigned)((smc->hw.fddi_home_addr.a[0]<<8) +
|
|
smc->hw.fddi_home_addr.a[1])) ;
|
|
|
|
outpw(FM_A(FM_SAGP),my_sagp) ; /* set short group address */
|
|
|
|
outpw(FM_A(FM_LAGL),(unsigned)((smc->hw.fp.group_addr.a[4]<<8) +
|
|
smc->hw.fp.group_addr.a[5])) ;
|
|
outpw(FM_A(FM_LAGC),(unsigned)((smc->hw.fp.group_addr.a[2]<<8) +
|
|
smc->hw.fp.group_addr.a[3])) ;
|
|
outpw(FM_A(FM_LAGM),(unsigned)((smc->hw.fp.group_addr.a[0]<<8) +
|
|
smc->hw.fp.group_addr.a[1])) ;
|
|
|
|
/* set r_request regs. (MSW & LSW of TRT ) */
|
|
outpw(FM_A(FM_TREQ1),(unsigned)(t_requ>>16)) ;
|
|
outpw(FM_A(FM_TREQ0),(unsigned)t_requ) ;
|
|
}
|
|
|
|
static void set_int(char *p, int l)
|
|
{
|
|
p[0] = (char)(l >> 24) ;
|
|
p[1] = (char)(l >> 16) ;
|
|
p[2] = (char)(l >> 8) ;
|
|
p[3] = (char)(l >> 0) ;
|
|
}
|
|
|
|
/*
|
|
* copy TX descriptor to buffer mem
|
|
* append FC field and MAC frame
|
|
* if more bit is set in descr
|
|
* append pointer to descriptor (endless loop)
|
|
* else
|
|
* append 'end of chain' pointer
|
|
*/
|
|
static void copy_tx_mac(struct s_smc *smc, u_long td, struct fddi_mac *mac,
|
|
unsigned off, int len)
|
|
/* u_long td; transmit descriptor */
|
|
/* struct fddi_mac *mac; mac frame pointer */
|
|
/* unsigned off; start address within buffer memory */
|
|
/* int len ; lenght of the frame including the FC */
|
|
{
|
|
int i ;
|
|
u_int *p ;
|
|
|
|
CHECK_NPP() ;
|
|
MARW(off) ; /* set memory address reg for writes */
|
|
|
|
p = (u_int *) mac ;
|
|
for (i = (len + 3)/4 ; i ; i--) {
|
|
if (i == 1) {
|
|
/* last word, set the tag bit */
|
|
outpw(FM_A(FM_CMDREG2),FM_ISTTB) ;
|
|
}
|
|
write_mdr(smc,MDR_REVERSE(*p)) ;
|
|
p++ ;
|
|
}
|
|
|
|
outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; /* set the tag bit */
|
|
write_mdr(smc,td) ; /* write over memory data reg to buffer */
|
|
}
|
|
|
|
/*
|
|
BEGIN_MANUAL_ENTRY(module;tests;3)
|
|
How to test directed beacon frames
|
|
----------------------------------------------------------------
|
|
|
|
o Insert a break point in the function build_claim_beacon()
|
|
before calling copy_tx_mac() for building the claim frame.
|
|
o Modify the RM3_DETECT case so that the RM6_DETECT state
|
|
will always entered from the RM3_DETECT state (function rmt_fsm(),
|
|
rmt.c)
|
|
o Compile the driver.
|
|
o Set the parameter TREQ in the protocol.ini or net.cfg to a
|
|
small value to make sure your station will win the claim
|
|
process.
|
|
o Start the driver.
|
|
o When you reach the break point, modify the SA and DA address
|
|
of the claim frame (e.g. SA = DA = 10005affffff).
|
|
o When you see RM3_DETECT and RM6_DETECT, observe the direct
|
|
beacon frames on the UPPSLANA.
|
|
|
|
END_MANUAL_ENTRY
|
|
*/
|
|
static void directed_beacon(struct s_smc *smc)
|
|
{
|
|
SK_LOC_DECL(u_int,a[2]) ;
|
|
|
|
/*
|
|
* set UNA in frame
|
|
* enable FORMAC to send endless queue of directed beacon
|
|
* important: the UNA starts at byte 1 (not at byte 0)
|
|
*/
|
|
* (char *) a = (char) ((long)DBEACON_INFO<<24L) ;
|
|
a[1] = 0 ;
|
|
memcpy((char *)a+1,(char *) &smc->mib.m[MAC0].fddiMACUpstreamNbr,6) ;
|
|
|
|
CHECK_NPP() ;
|
|
/* set memory address reg for writes */
|
|
MARW(smc->hw.fp.fifo.rbc_ram_start+DBEACON_FRAME_OFF+4) ;
|
|
write_mdr(smc,MDR_REVERSE(a[0])) ;
|
|
outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; /* set the tag bit */
|
|
write_mdr(smc,MDR_REVERSE(a[1])) ;
|
|
|
|
outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF) ;
|
|
}
|
|
|
|
/*
|
|
setup claim & beacon pointer
|
|
NOTE :
|
|
special frame packets end with a pointer to their own
|
|
descriptor, and the MORE bit is set in the descriptor
|
|
*/
|
|
static void build_claim_beacon(struct s_smc *smc, u_long t_request)
|
|
{
|
|
u_int td ;
|
|
int len ;
|
|
struct fddi_mac_sf *mac ;
|
|
|
|
/*
|
|
* build claim packet
|
|
*/
|
|
len = 17 ;
|
|
td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ;
|
|
mac = &smc->hw.fp.mac_sfb ;
|
|
mac->mac_fc = FC_CLAIM ;
|
|
/* DA == SA in claim frame */
|
|
mac->mac_source = mac->mac_dest = MA ;
|
|
/* 2's complement */
|
|
set_int((char *)mac->mac_info,(int)t_request) ;
|
|
|
|
copy_tx_mac(smc,td,(struct fddi_mac *)mac,
|
|
smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF,len) ;
|
|
/* set CLAIM start pointer */
|
|
outpw(FM_A(FM_SACL),smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF) ;
|
|
|
|
/*
|
|
* build beacon packet
|
|
*/
|
|
len = 17 ;
|
|
td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ;
|
|
mac->mac_fc = FC_BEACON ;
|
|
mac->mac_source = MA ;
|
|
mac->mac_dest = null_addr ; /* DA == 0 in beacon frame */
|
|
set_int((char *) mac->mac_info,((int)BEACON_INFO<<24) + 0 ) ;
|
|
|
|
copy_tx_mac(smc,td,(struct fddi_mac *)mac,
|
|
smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF,len) ;
|
|
/* set beacon start pointer */
|
|
outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF) ;
|
|
|
|
/*
|
|
* build directed beacon packet
|
|
* contains optional UNA
|
|
*/
|
|
len = 23 ;
|
|
td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ;
|
|
mac->mac_fc = FC_BEACON ;
|
|
mac->mac_source = MA ;
|
|
mac->mac_dest = dbeacon_multi ; /* multicast */
|
|
set_int((char *) mac->mac_info,((int)DBEACON_INFO<<24) + 0 ) ;
|
|
set_int((char *) mac->mac_info+4,0) ;
|
|
set_int((char *) mac->mac_info+8,0) ;
|
|
|
|
copy_tx_mac(smc,td,(struct fddi_mac *)mac,
|
|
smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF,len) ;
|
|
|
|
/* end of claim/beacon queue */
|
|
outpw(FM_A(FM_EACB),smc->hw.fp.fifo.rx1_fifo_start-1) ;
|
|
|
|
outpw(FM_A(FM_WPXSF),0) ;
|
|
outpw(FM_A(FM_RPXSF),0) ;
|
|
}
|
|
|
|
static void formac_rcv_restart(struct s_smc *smc)
|
|
{
|
|
/* enable receive function */
|
|
SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ;
|
|
|
|
outpw(FM_A(FM_CMDREG1),FM_ICLLR) ; /* clear receive lock */
|
|
}
|
|
|
|
void formac_tx_restart(struct s_smc *smc)
|
|
{
|
|
outpw(FM_A(FM_CMDREG1),FM_ICLLS) ; /* clear s-frame lock */
|
|
outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ; /* clear a-frame lock */
|
|
}
|
|
|
|
static void enable_formac(struct s_smc *smc)
|
|
{
|
|
/* set formac IMSK : 0 enables irq */
|
|
outpw(FM_A(FM_IMSK1U),(unsigned short)~mac_imsk1u);
|
|
outpw(FM_A(FM_IMSK1L),(unsigned short)~mac_imsk1l);
|
|
outpw(FM_A(FM_IMSK2U),(unsigned short)~mac_imsk2u);
|
|
outpw(FM_A(FM_IMSK2L),(unsigned short)~mac_imsk2l);
|
|
outpw(FM_A(FM_IMSK3U),(unsigned short)~mac_imsk3u);
|
|
outpw(FM_A(FM_IMSK3L),(unsigned short)~mac_imsk3l);
|
|
}
|
|
|
|
#if 0 /* Removed because the driver should use the ASICs TX complete IRQ. */
|
|
/* The FORMACs tx complete IRQ should be used any longer */
|
|
|
|
/*
|
|
BEGIN_MANUAL_ENTRY(if,func;others;4)
|
|
|
|
void enable_tx_irq(smc, queue)
|
|
struct s_smc *smc ;
|
|
u_short queue ;
|
|
|
|
Function DOWNCALL (SMT, fplustm.c)
|
|
enable_tx_irq() enables the FORMACs transmit complete
|
|
interrupt of the queue.
|
|
|
|
Para queue = QUEUE_S: synchronous queue
|
|
= QUEUE_A0: asynchronous queue
|
|
|
|
Note After any ring operational change the transmit complete
|
|
interrupts are disabled.
|
|
The operating system dependent module must enable
|
|
the transmit complete interrupt of a queue,
|
|
- when it queues the first frame,
|
|
because of no transmit resources are beeing
|
|
available and
|
|
- when it escapes from the function llc_restart_tx
|
|
while some frames are still queued.
|
|
|
|
END_MANUAL_ENTRY
|
|
*/
|
|
void enable_tx_irq(struct s_smc *smc, u_short queue)
|
|
/* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */
|
|
{
|
|
u_short imask ;
|
|
|
|
imask = ~(inpw(FM_A(FM_IMSK1U))) ;
|
|
|
|
if (queue == 0) {
|
|
outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMS)) ;
|
|
}
|
|
if (queue == 1) {
|
|
outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMA0)) ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
BEGIN_MANUAL_ENTRY(if,func;others;4)
|
|
|
|
void disable_tx_irq(smc, queue)
|
|
struct s_smc *smc ;
|
|
u_short queue ;
|
|
|
|
Function DOWNCALL (SMT, fplustm.c)
|
|
disable_tx_irq disables the FORMACs transmit complete
|
|
interrupt of the queue
|
|
|
|
Para queue = QUEUE_S: synchronous queue
|
|
= QUEUE_A0: asynchronous queue
|
|
|
|
Note The operating system dependent module should disable
|
|
the transmit complete interrupts if it escapes from the
|
|
function llc_restart_tx and no frames are queued.
|
|
|
|
END_MANUAL_ENTRY
|
|
*/
|
|
void disable_tx_irq(struct s_smc *smc, u_short queue)
|
|
/* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */
|
|
{
|
|
u_short imask ;
|
|
|
|
imask = ~(inpw(FM_A(FM_IMSK1U))) ;
|
|
|
|
if (queue == 0) {
|
|
outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMS)) ;
|
|
}
|
|
if (queue == 1) {
|
|
outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMA0)) ;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void disable_formac(struct s_smc *smc)
|
|
{
|
|
/* clear formac IMSK : 1 disables irq */
|
|
outpw(FM_A(FM_IMSK1U),MW) ;
|
|
outpw(FM_A(FM_IMSK1L),MW) ;
|
|
outpw(FM_A(FM_IMSK2U),MW) ;
|
|
outpw(FM_A(FM_IMSK2L),MW) ;
|
|
outpw(FM_A(FM_IMSK3U),MW) ;
|
|
outpw(FM_A(FM_IMSK3L),MW) ;
|
|
}
|
|
|
|
|
|
static void mac_ring_up(struct s_smc *smc, int up)
|
|
{
|
|
if (up) {
|
|
formac_rcv_restart(smc) ; /* enable receive function */
|
|
smc->hw.mac_ring_is_up = TRUE ;
|
|
llc_restart_tx(smc) ; /* TX queue */
|
|
}
|
|
else {
|
|
/* disable receive function */
|
|
SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ;
|
|
|
|
/* abort current transmit activity */
|
|
outpw(FM_A(FM_CMDREG2),FM_IACTR) ;
|
|
|
|
smc->hw.mac_ring_is_up = FALSE ;
|
|
}
|
|
}
|
|
|
|
/*--------------------------- ISR handling ----------------------------------*/
|
|
/*
|
|
* mac1_irq is in drvfbi.c
|
|
*/
|
|
|
|
/*
|
|
* mac2_irq: status bits for the receive queue 1, and ring status
|
|
* ring status indication bits
|
|
*/
|
|
void mac2_irq(struct s_smc *smc, u_short code_s2u, u_short code_s2l)
|
|
{
|
|
u_short change_s2l ;
|
|
u_short change_s2u ;
|
|
|
|
/* (jd) 22-Feb-1999
|
|
* Restart 2_DMax Timer after end of claiming or beaconing
|
|
*/
|
|
if (code_s2u & (FM_SCLM|FM_SHICLM|FM_SBEC|FM_SOTRBEC)) {
|
|
queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ;
|
|
}
|
|
else if (code_s2l & (FM_STKISS)) {
|
|
queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ;
|
|
}
|
|
|
|
/*
|
|
* XOR current st bits with the last to avoid useless RMT event queuing
|
|
*/
|
|
change_s2l = smc->hw.fp.s2l ^ code_s2l ;
|
|
change_s2u = smc->hw.fp.s2u ^ code_s2u ;
|
|
|
|
if ((change_s2l & FM_SRNGOP) ||
|
|
(!smc->hw.mac_ring_is_up && ((code_s2l & FM_SRNGOP)))) {
|
|
if (code_s2l & FM_SRNGOP) {
|
|
mac_ring_up(smc,1) ;
|
|
queue_event(smc,EVENT_RMT,RM_RING_OP) ;
|
|
smc->mib.m[MAC0].fddiMACRingOp_Ct++ ;
|
|
}
|
|
else {
|
|
mac_ring_up(smc,0) ;
|
|
queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ;
|
|
}
|
|
goto mac2_end ;
|
|
}
|
|
if (code_s2l & FM_SMISFRM) { /* missed frame */
|
|
smc->mib.m[MAC0].fddiMACNotCopied_Ct++ ;
|
|
}
|
|
if (code_s2u & (FM_SRCVOVR | /* recv. FIFO overflow */
|
|
FM_SRBFL)) { /* recv. buffer full */
|
|
smc->hw.mac_ct.mac_r_restart_counter++ ;
|
|
/* formac_rcv_restart(smc) ; */
|
|
smt_stat_counter(smc,1) ;
|
|
/* goto mac2_end ; */
|
|
}
|
|
if (code_s2u & FM_SOTRBEC)
|
|
queue_event(smc,EVENT_RMT,RM_OTHER_BEACON) ;
|
|
if (code_s2u & FM_SMYBEC)
|
|
queue_event(smc,EVENT_RMT,RM_MY_BEACON) ;
|
|
if (change_s2u & code_s2u & FM_SLOCLM) {
|
|
DB_RMTN(2,"RMT : lower claim received\n",0,0) ;
|
|
}
|
|
if ((code_s2u & FM_SMYCLM) && !(code_s2l & FM_SDUPCLM)) {
|
|
/*
|
|
* This is my claim and that claim is not detected as a
|
|
* duplicate one.
|
|
*/
|
|
queue_event(smc,EVENT_RMT,RM_MY_CLAIM) ;
|
|
}
|
|
if (code_s2l & FM_SDUPCLM) {
|
|
/*
|
|
* If a duplicate claim frame (same SA but T_Bid != T_Req)
|
|
* this flag will be set.
|
|
* In the RMT state machine we need a RM_VALID_CLAIM event
|
|
* to do the appropriate state change.
|
|
* RM(34c)
|
|
*/
|
|
queue_event(smc,EVENT_RMT,RM_VALID_CLAIM) ;
|
|
}
|
|
if (change_s2u & code_s2u & FM_SHICLM) {
|
|
DB_RMTN(2,"RMT : higher claim received\n",0,0) ;
|
|
}
|
|
if ( (code_s2l & FM_STRTEXP) ||
|
|
(code_s2l & FM_STRTEXR) )
|
|
queue_event(smc,EVENT_RMT,RM_TRT_EXP) ;
|
|
if (code_s2l & FM_SMULTDA) {
|
|
/*
|
|
* The MAC has found a 2. MAC with the same address.
|
|
* Signal dup_addr_test = failed to RMT state machine.
|
|
* RM(25)
|
|
*/
|
|
smc->r.dup_addr_test = DA_FAILED ;
|
|
queue_event(smc,EVENT_RMT,RM_DUP_ADDR) ;
|
|
}
|
|
if (code_s2u & FM_SBEC)
|
|
smc->hw.fp.err_stats.err_bec_stat++ ;
|
|
if (code_s2u & FM_SCLM)
|
|
smc->hw.fp.err_stats.err_clm_stat++ ;
|
|
if (code_s2l & FM_STVXEXP)
|
|
smc->mib.m[MAC0].fddiMACTvxExpired_Ct++ ;
|
|
if ((code_s2u & (FM_SBEC|FM_SCLM))) {
|
|
if (!(change_s2l & FM_SRNGOP) && (smc->hw.fp.s2l & FM_SRNGOP)) {
|
|
mac_ring_up(smc,0) ;
|
|
queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ;
|
|
|
|
mac_ring_up(smc,1) ;
|
|
queue_event(smc,EVENT_RMT,RM_RING_OP) ;
|
|
smc->mib.m[MAC0].fddiMACRingOp_Ct++ ;
|
|
}
|
|
}
|
|
if (code_s2l & FM_SPHINV)
|
|
smc->hw.fp.err_stats.err_phinv++ ;
|
|
if (code_s2l & FM_SSIFG)
|
|
smc->hw.fp.err_stats.err_sifg_det++ ;
|
|
if (code_s2l & FM_STKISS)
|
|
smc->hw.fp.err_stats.err_tkiss++ ;
|
|
if (code_s2l & FM_STKERR)
|
|
smc->hw.fp.err_stats.err_tkerr++ ;
|
|
if (code_s2l & FM_SFRMCTR)
|
|
smc->mib.m[MAC0].fddiMACFrame_Ct += 0x10000L ;
|
|
if (code_s2l & FM_SERRCTR)
|
|
smc->mib.m[MAC0].fddiMACError_Ct += 0x10000L ;
|
|
if (code_s2l & FM_SLSTCTR)
|
|
smc->mib.m[MAC0].fddiMACLost_Ct += 0x10000L ;
|
|
if (code_s2u & FM_SERRSF) {
|
|
SMT_PANIC(smc,SMT_E0114, SMT_E0114_MSG) ;
|
|
}
|
|
mac2_end:
|
|
/* notice old status */
|
|
smc->hw.fp.s2l = code_s2l ;
|
|
smc->hw.fp.s2u = code_s2u ;
|
|
outpw(FM_A(FM_IMSK2U),~mac_imsk2u) ;
|
|
}
|
|
|
|
/*
|
|
* mac3_irq: receive queue 2 bits and address detection bits
|
|
*/
|
|
void mac3_irq(struct s_smc *smc, u_short code_s3u, u_short code_s3l)
|
|
{
|
|
UNUSED(code_s3l) ;
|
|
|
|
if (code_s3u & (FM_SRCVOVR2 | /* recv. FIFO overflow */
|
|
FM_SRBFL2)) { /* recv. buffer full */
|
|
smc->hw.mac_ct.mac_r_restart_counter++ ;
|
|
smt_stat_counter(smc,1);
|
|
}
|
|
|
|
|
|
if (code_s3u & FM_SRPERRQ2) { /* parity error receive queue 2 */
|
|
SMT_PANIC(smc,SMT_E0115, SMT_E0115_MSG) ;
|
|
}
|
|
if (code_s3u & FM_SRPERRQ1) { /* parity error receive queue 2 */
|
|
SMT_PANIC(smc,SMT_E0116, SMT_E0116_MSG) ;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* take formac offline
|
|
*/
|
|
static void formac_offline(struct s_smc *smc)
|
|
{
|
|
outpw(FM_A(FM_CMDREG2),FM_IACTR) ;/* abort current transmit activity */
|
|
|
|
/* disable receive function */
|
|
SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ;
|
|
|
|
/* FORMAC+ 'Initialize Mode' */
|
|
SETMASK(FM_A(FM_MDREG1),FM_MINIT,FM_MMODE) ;
|
|
|
|
disable_formac(smc) ;
|
|
smc->hw.mac_ring_is_up = FALSE ;
|
|
smc->hw.hw_state = STOPPED ;
|
|
}
|
|
|
|
/*
|
|
* bring formac online
|
|
*/
|
|
static void formac_online(struct s_smc *smc)
|
|
{
|
|
enable_formac(smc) ;
|
|
SETMASK(FM_A(FM_MDREG1),FM_MONLINE | FM_SELRA | MDR1INIT |
|
|
smc->hw.fp.rx_mode, FM_MMODE | FM_SELRA | FM_ADDRX) ;
|
|
}
|
|
|
|
/*
|
|
* FORMAC+ full init. (tx, rx, timer, counter, claim & beacon)
|
|
*/
|
|
int init_fplus(struct s_smc *smc)
|
|
{
|
|
smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ;
|
|
smc->hw.fp.rx_mode = FM_MDAMA ;
|
|
smc->hw.fp.group_addr = fddi_broadcast ;
|
|
smc->hw.fp.func_addr = 0 ;
|
|
smc->hw.fp.frselreg_init = 0 ;
|
|
|
|
init_driver_fplus(smc) ;
|
|
if (smc->s.sas == SMT_DAS)
|
|
smc->hw.fp.mdr3init |= FM_MENDAS ;
|
|
|
|
smc->hw.mac_ct.mac_nobuf_counter = 0 ;
|
|
smc->hw.mac_ct.mac_r_restart_counter = 0 ;
|
|
|
|
smc->hw.fp.fm_st1u = (HW_PTR) ADDR(B0_ST1U) ;
|
|
smc->hw.fp.fm_st1l = (HW_PTR) ADDR(B0_ST1L) ;
|
|
smc->hw.fp.fm_st2u = (HW_PTR) ADDR(B0_ST2U) ;
|
|
smc->hw.fp.fm_st2l = (HW_PTR) ADDR(B0_ST2L) ;
|
|
smc->hw.fp.fm_st3u = (HW_PTR) ADDR(B0_ST3U) ;
|
|
smc->hw.fp.fm_st3l = (HW_PTR) ADDR(B0_ST3L) ;
|
|
|
|
smc->hw.fp.s2l = smc->hw.fp.s2u = 0 ;
|
|
smc->hw.mac_ring_is_up = 0 ;
|
|
|
|
mac_counter_init(smc) ;
|
|
|
|
/* convert BCKL units to symbol time */
|
|
smc->hw.mac_pa.t_neg = (u_long)0 ;
|
|
smc->hw.mac_pa.t_pri = (u_long)0 ;
|
|
|
|
/* make sure all PCI settings are correct */
|
|
mac_do_pci_fix(smc) ;
|
|
|
|
return(init_mac(smc,1)) ;
|
|
/* enable_formac(smc) ; */
|
|
}
|
|
|
|
static int init_mac(struct s_smc *smc, int all)
|
|
{
|
|
u_short t_max,x ;
|
|
u_long time=0 ;
|
|
|
|
/*
|
|
* clear memory
|
|
*/
|
|
outpw(FM_A(FM_MDREG1),FM_MINIT) ; /* FORMAC+ init mode */
|
|
set_formac_addr(smc) ;
|
|
outpw(FM_A(FM_MDREG1),FM_MMEMACT) ; /* FORMAC+ memory activ mode */
|
|
/* Note: Mode register 2 is set here, incase parity is enabled. */
|
|
outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ;
|
|
|
|
if (all) {
|
|
init_ram(smc) ;
|
|
}
|
|
else {
|
|
/*
|
|
* reset the HPI, the Master and the BMUs
|
|
*/
|
|
outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
|
|
time = hwt_quick_read(smc) ;
|
|
}
|
|
|
|
/*
|
|
* set all pointers, frames etc
|
|
*/
|
|
smt_split_up_fifo(smc) ;
|
|
|
|
init_tx(smc) ;
|
|
init_rx(smc) ;
|
|
init_rbc(smc) ;
|
|
|
|
build_claim_beacon(smc,smc->mib.m[MAC0].fddiMACT_Req) ;
|
|
|
|
/* set RX threshold */
|
|
/* see Errata #SN2 Phantom receive overflow */
|
|
outpw(FM_A(FM_FRMTHR),14<<12) ; /* switch on */
|
|
|
|
/* set formac work mode */
|
|
outpw(FM_A(FM_MDREG1),MDR1INIT | FM_SELRA | smc->hw.fp.rx_mode) ;
|
|
outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ;
|
|
outpw(FM_A(FM_MDREG3),smc->hw.fp.mdr3init) ;
|
|
outpw(FM_A(FM_FRSELREG),smc->hw.fp.frselreg_init) ;
|
|
|
|
/* set timer */
|
|
/*
|
|
* errata #22 fplus:
|
|
* T_MAX must not be FFFE
|
|
* or one of FFDF, FFB8, FF91 (-0x27 etc..)
|
|
*/
|
|
t_max = (u_short)(smc->mib.m[MAC0].fddiMACT_Max/32) ;
|
|
x = t_max/0x27 ;
|
|
x *= 0x27 ;
|
|
if ((t_max == 0xfffe) || (t_max - x == 0x16))
|
|
t_max-- ;
|
|
outpw(FM_A(FM_TMAX),(u_short)t_max) ;
|
|
|
|
/* BugFix for report #10204 */
|
|
if (smc->mib.m[MAC0].fddiMACTvxValue < (u_long) (- US2BCLK(52))) {
|
|
outpw(FM_A(FM_TVX), (u_short) (- US2BCLK(52))/255 & MB) ;
|
|
} else {
|
|
outpw(FM_A(FM_TVX),
|
|
(u_short)((smc->mib.m[MAC0].fddiMACTvxValue/255) & MB)) ;
|
|
}
|
|
|
|
outpw(FM_A(FM_CMDREG1),FM_ICLLS) ; /* clear s-frame lock */
|
|
outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ; /* clear a-frame lock */
|
|
outpw(FM_A(FM_CMDREG1),FM_ICLLR); /* clear receive lock */
|
|
|
|
/* Auto unlock receice threshold for receive queue 1 and 2 */
|
|
outpw(FM_A(FM_UNLCKDLY),(0xff|(0xff<<8))) ;
|
|
|
|
rtm_init(smc) ; /* RT-Monitor */
|
|
|
|
if (!all) {
|
|
/*
|
|
* after 10ms, reset the BMUs and repair the rings
|
|
*/
|
|
hwt_wait_time(smc,time,MS2BCLK(10)) ;
|
|
outpd(ADDR(B0_R1_CSR),CSR_SET_RESET) ;
|
|
outpd(ADDR(B0_XA_CSR),CSR_SET_RESET) ;
|
|
outpd(ADDR(B0_XS_CSR),CSR_SET_RESET) ;
|
|
outp(ADDR(B0_CTRL), CTRL_HPI_CLR) ;
|
|
outpd(ADDR(B0_R1_CSR),CSR_CLR_RESET) ;
|
|
outpd(ADDR(B0_XA_CSR),CSR_CLR_RESET) ;
|
|
outpd(ADDR(B0_XS_CSR),CSR_CLR_RESET) ;
|
|
if (!smc->hw.hw_is_64bit) {
|
|
outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
|
|
outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
|
|
outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
|
|
}
|
|
smc->hw.hw_state = STOPPED ;
|
|
mac_drv_repair_descr(smc) ;
|
|
}
|
|
smc->hw.hw_state = STARTED ;
|
|
|
|
return(0) ;
|
|
}
|
|
|
|
|
|
/*
|
|
* called by CFM
|
|
*/
|
|
void config_mux(struct s_smc *smc, int mux)
|
|
{
|
|
plc_config_mux(smc,mux) ;
|
|
|
|
SETMASK(FM_A(FM_MDREG1),FM_SELRA,FM_SELRA) ;
|
|
}
|
|
|
|
/*
|
|
* called by RMT
|
|
* enable CLAIM/BEACON interrupts
|
|
* (only called if these events are of interest, e.g. in DETECT state
|
|
* the interrupt must not be permanently enabled
|
|
* RMT calls this function periodically (timer driven polling)
|
|
*/
|
|
void sm_mac_check_beacon_claim(struct s_smc *smc)
|
|
{
|
|
/* set formac IMSK : 0 enables irq */
|
|
outpw(FM_A(FM_IMSK2U),~(mac_imsk2u | mac_beacon_imsk2u)) ;
|
|
/* the driver must receive the directed beacons */
|
|
formac_rcv_restart(smc) ;
|
|
process_receive(smc) ;
|
|
}
|
|
|
|
/*-------------------------- interface functions ----------------------------*/
|
|
/*
|
|
* control MAC layer (called by RMT)
|
|
*/
|
|
void sm_ma_control(struct s_smc *smc, int mode)
|
|
{
|
|
switch(mode) {
|
|
case MA_OFFLINE :
|
|
/* Add to make the MAC offline in RM0_ISOLATED state */
|
|
formac_offline(smc) ;
|
|
break ;
|
|
case MA_RESET :
|
|
(void)init_mac(smc,0) ;
|
|
break ;
|
|
case MA_BEACON :
|
|
formac_online(smc) ;
|
|
break ;
|
|
case MA_DIRECTED :
|
|
directed_beacon(smc) ;
|
|
break ;
|
|
case MA_TREQ :
|
|
/*
|
|
* no actions necessary, TREQ is already set
|
|
*/
|
|
break ;
|
|
}
|
|
}
|
|
|
|
int sm_mac_get_tx_state(struct s_smc *smc)
|
|
{
|
|
return((inpw(FM_A(FM_STMCHN))>>4)&7) ;
|
|
}
|
|
|
|
/*
|
|
* multicast functions
|
|
*/
|
|
|
|
static struct s_fpmc* mac_get_mc_table(struct s_smc *smc,
|
|
struct fddi_addr *user,
|
|
struct fddi_addr *own,
|
|
int del, int can)
|
|
{
|
|
struct s_fpmc *tb ;
|
|
struct s_fpmc *slot ;
|
|
u_char *p ;
|
|
int i ;
|
|
|
|
/*
|
|
* set own = can(user)
|
|
*/
|
|
*own = *user ;
|
|
if (can) {
|
|
p = own->a ;
|
|
for (i = 0 ; i < 6 ; i++, p++)
|
|
*p = canonical[*p] ;
|
|
}
|
|
slot = NULL;
|
|
for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){
|
|
if (!tb->n) { /* not used */
|
|
if (!del && !slot) /* if !del save first free */
|
|
slot = tb ;
|
|
continue ;
|
|
}
|
|
if (memcmp((char *)&tb->a,(char *)own,6))
|
|
continue ;
|
|
return(tb) ;
|
|
}
|
|
return(slot) ; /* return first free or NULL */
|
|
}
|
|
|
|
/*
|
|
BEGIN_MANUAL_ENTRY(if,func;others;2)
|
|
|
|
void mac_clear_multicast(smc)
|
|
struct s_smc *smc ;
|
|
|
|
Function DOWNCALL (SMT, fplustm.c)
|
|
Clear all multicast entries
|
|
|
|
END_MANUAL_ENTRY()
|
|
*/
|
|
void mac_clear_multicast(struct s_smc *smc)
|
|
{
|
|
struct s_fpmc *tb ;
|
|
int i ;
|
|
|
|
smc->hw.fp.os_slots_used = 0 ; /* note the SMT addresses */
|
|
/* will not be deleted */
|
|
for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){
|
|
if (!tb->perm) {
|
|
tb->n = 0 ;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
BEGIN_MANUAL_ENTRY(if,func;others;2)
|
|
|
|
int mac_add_multicast(smc,addr,can)
|
|
struct s_smc *smc ;
|
|
struct fddi_addr *addr ;
|
|
int can ;
|
|
|
|
Function DOWNCALL (SMC, fplustm.c)
|
|
Add an entry to the multicast table
|
|
|
|
Para addr pointer to a multicast address
|
|
can = 0: the multicast address has the physical format
|
|
= 1: the multicast address has the canonical format
|
|
| 0x80 permanent
|
|
|
|
Returns 0: success
|
|
1: address table full
|
|
|
|
Note After a 'driver reset' or a 'station set address' all
|
|
entries of the multicast table are cleared.
|
|
In this case the driver has to fill the multicast table again.
|
|
After the operating system dependent module filled
|
|
the multicast table it must call mac_update_multicast
|
|
to activate the new multicast addresses!
|
|
|
|
END_MANUAL_ENTRY()
|
|
*/
|
|
int mac_add_multicast(struct s_smc *smc, struct fddi_addr *addr, int can)
|
|
{
|
|
SK_LOC_DECL(struct fddi_addr,own) ;
|
|
struct s_fpmc *tb ;
|
|
|
|
/*
|
|
* check if there are free table entries
|
|
*/
|
|
if (can & 0x80) {
|
|
if (smc->hw.fp.smt_slots_used >= SMT_MAX_MULTI) {
|
|
return(1) ;
|
|
}
|
|
}
|
|
else {
|
|
if (smc->hw.fp.os_slots_used >= FPMAX_MULTICAST-SMT_MAX_MULTI) {
|
|
return(1) ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* find empty slot
|
|
*/
|
|
if (!(tb = mac_get_mc_table(smc,addr,&own,0,can & ~0x80)))
|
|
return(1) ;
|
|
tb->n++ ;
|
|
tb->a = own ;
|
|
tb->perm = (can & 0x80) ? 1 : 0 ;
|
|
|
|
if (can & 0x80)
|
|
smc->hw.fp.smt_slots_used++ ;
|
|
else
|
|
smc->hw.fp.os_slots_used++ ;
|
|
|
|
return(0) ;
|
|
}
|
|
|
|
/*
|
|
* mode
|
|
*/
|
|
|
|
#define RX_MODE_PROM 0x1
|
|
#define RX_MODE_ALL_MULTI 0x2
|
|
|
|
/*
|
|
BEGIN_MANUAL_ENTRY(if,func;others;2)
|
|
|
|
void mac_update_multicast(smc)
|
|
struct s_smc *smc ;
|
|
|
|
Function DOWNCALL (SMT, fplustm.c)
|
|
Update FORMAC multicast registers
|
|
|
|
END_MANUAL_ENTRY()
|
|
*/
|
|
void mac_update_multicast(struct s_smc *smc)
|
|
{
|
|
struct s_fpmc *tb ;
|
|
u_char *fu ;
|
|
int i ;
|
|
|
|
/*
|
|
* invalidate the CAM
|
|
*/
|
|
outpw(FM_A(FM_AFCMD),FM_IINV_CAM) ;
|
|
|
|
/*
|
|
* set the functional address
|
|
*/
|
|
if (smc->hw.fp.func_addr) {
|
|
fu = (u_char *) &smc->hw.fp.func_addr ;
|
|
outpw(FM_A(FM_AFMASK2),0xffff) ;
|
|
outpw(FM_A(FM_AFMASK1),(u_short) ~((fu[0] << 8) + fu[1])) ;
|
|
outpw(FM_A(FM_AFMASK0),(u_short) ~((fu[2] << 8) + fu[3])) ;
|
|
outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ;
|
|
outpw(FM_A(FM_AFCOMP2), 0xc000) ;
|
|
outpw(FM_A(FM_AFCOMP1), 0x0000) ;
|
|
outpw(FM_A(FM_AFCOMP0), 0x0000) ;
|
|
outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ;
|
|
}
|
|
|
|
/*
|
|
* set the mask and the personality register(s)
|
|
*/
|
|
outpw(FM_A(FM_AFMASK0),0xffff) ;
|
|
outpw(FM_A(FM_AFMASK1),0xffff) ;
|
|
outpw(FM_A(FM_AFMASK2),0xffff) ;
|
|
outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ;
|
|
|
|
for (i = 0, tb = smc->hw.fp.mc.table; i < FPMAX_MULTICAST; i++, tb++) {
|
|
if (tb->n) {
|
|
CHECK_CAM() ;
|
|
|
|
/*
|
|
* write the multicast address into the CAM
|
|
*/
|
|
outpw(FM_A(FM_AFCOMP2),
|
|
(u_short)((tb->a.a[0]<<8)+tb->a.a[1])) ;
|
|
outpw(FM_A(FM_AFCOMP1),
|
|
(u_short)((tb->a.a[2]<<8)+tb->a.a[3])) ;
|
|
outpw(FM_A(FM_AFCOMP0),
|
|
(u_short)((tb->a.a[4]<<8)+tb->a.a[5])) ;
|
|
outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
BEGIN_MANUAL_ENTRY(if,func;others;3)
|
|
|
|
void mac_set_rx_mode(smc,mode)
|
|
struct s_smc *smc ;
|
|
int mode ;
|
|
|
|
Function DOWNCALL/INTERN (SMT, fplustm.c)
|
|
This function enables / disables the selected receive.
|
|
Don't call this function if the hardware module is
|
|
used -- use mac_drv_rx_mode() instead of.
|
|
|
|
Para mode = 1 RX_ENABLE_ALLMULTI enable all multicasts
|
|
2 RX_DISABLE_ALLMULTI disable "enable all multicasts"
|
|
3 RX_ENABLE_PROMISC enable promiscous
|
|
4 RX_DISABLE_PROMISC disable promiscous
|
|
5 RX_ENABLE_NSA enable reception of NSA frames
|
|
6 RX_DISABLE_NSA disable reception of NSA frames
|
|
|
|
Note The selected receive modes will be lost after 'driver reset'
|
|
or 'set station address'
|
|
|
|
END_MANUAL_ENTRY
|
|
*/
|
|
void mac_set_rx_mode(struct s_smc *smc, int mode)
|
|
{
|
|
switch (mode) {
|
|
case RX_ENABLE_ALLMULTI :
|
|
smc->hw.fp.rx_prom |= RX_MODE_ALL_MULTI ;
|
|
break ;
|
|
case RX_DISABLE_ALLMULTI :
|
|
smc->hw.fp.rx_prom &= ~RX_MODE_ALL_MULTI ;
|
|
break ;
|
|
case RX_ENABLE_PROMISC :
|
|
smc->hw.fp.rx_prom |= RX_MODE_PROM ;
|
|
break ;
|
|
case RX_DISABLE_PROMISC :
|
|
smc->hw.fp.rx_prom &= ~RX_MODE_PROM ;
|
|
break ;
|
|
case RX_ENABLE_NSA :
|
|
smc->hw.fp.nsa_mode = FM_MDAMA ;
|
|
smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) |
|
|
smc->hw.fp.nsa_mode ;
|
|
break ;
|
|
case RX_DISABLE_NSA :
|
|
smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ;
|
|
smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) |
|
|
smc->hw.fp.nsa_mode ;
|
|
break ;
|
|
}
|
|
if (smc->hw.fp.rx_prom & RX_MODE_PROM) {
|
|
smc->hw.fp.rx_mode = FM_MLIMPROM ;
|
|
}
|
|
else if (smc->hw.fp.rx_prom & RX_MODE_ALL_MULTI) {
|
|
smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode | FM_EXGPA0 ;
|
|
}
|
|
else
|
|
smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode ;
|
|
SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ;
|
|
mac_update_multicast(smc) ;
|
|
}
|
|
|
|
/*
|
|
BEGIN_MANUAL_ENTRY(module;tests;3)
|
|
How to test the Restricted Token Monitor
|
|
----------------------------------------------------------------
|
|
|
|
o Insert a break point in the function rtm_irq()
|
|
o Remove all stations with a restricted token monitor from the
|
|
network.
|
|
o Connect a UPPS ISA or EISA station to the network.
|
|
o Give the FORMAC of UPPS station the command to send
|
|
restricted tokens until the ring becomes instable.
|
|
o Now connect your test test client.
|
|
o The restricted token monitor should detect the restricted token,
|
|
and your break point will be reached.
|
|
o You can ovserve how the station will clean the ring.
|
|
|
|
END_MANUAL_ENTRY
|
|
*/
|
|
void rtm_irq(struct s_smc *smc)
|
|
{
|
|
outpw(ADDR(B2_RTM_CRTL),TIM_CL_IRQ) ; /* clear IRQ */
|
|
if (inpw(ADDR(B2_RTM_CRTL)) & TIM_RES_TOK) {
|
|
outpw(FM_A(FM_CMDREG1),FM_ICL) ; /* force claim */
|
|
DB_RMT("RMT: fddiPATHT_Rmode expired\n",0,0) ;
|
|
AIX_EVENT(smc, (u_long) FDDI_RING_STATUS,
|
|
(u_long) FDDI_SMT_EVENT,
|
|
(u_long) FDDI_RTT, smt_get_event_word(smc));
|
|
}
|
|
outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable RTM monitoring */
|
|
}
|
|
|
|
static void rtm_init(struct s_smc *smc)
|
|
{
|
|
outpd(ADDR(B2_RTM_INI),0) ; /* timer = 0 */
|
|
outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable IRQ */
|
|
}
|
|
|
|
void rtm_set_timer(struct s_smc *smc)
|
|
{
|
|
/*
|
|
* MIB timer and hardware timer have the same resolution of 80nS
|
|
*/
|
|
DB_RMT("RMT: setting new fddiPATHT_Rmode, t = %d ns \n",
|
|
(int) smc->mib.a[PATH0].fddiPATHT_Rmode,0) ;
|
|
outpd(ADDR(B2_RTM_INI),smc->mib.a[PATH0].fddiPATHT_Rmode) ;
|
|
}
|
|
|
|
static void smt_split_up_fifo(struct s_smc *smc)
|
|
{
|
|
|
|
/*
|
|
BEGIN_MANUAL_ENTRY(module;mem;1)
|
|
-------------------------------------------------------------
|
|
RECEIVE BUFFER MEMORY DIVERSION
|
|
-------------------------------------------------------------
|
|
|
|
R1_RxD == SMT_R1_RXD_COUNT
|
|
R2_RxD == SMT_R2_RXD_COUNT
|
|
|
|
SMT_R1_RXD_COUNT must be unequal zero
|
|
|
|
| R1_RxD R2_RxD |R1_RxD R2_RxD | R1_RxD R2_RxD
|
|
| x 0 | x 1-3 | x < 3
|
|
----------------------------------------------------------------------
|
|
| 63,75 kB | 54,75 | R1_RxD
|
|
rx queue 1 | RX_FIFO_SPACE | RX_LARGE_FIFO| ------------- * 63,75 kB
|
|
| | | R1_RxD+R2_RxD
|
|
----------------------------------------------------------------------
|
|
| | 9 kB | R2_RxD
|
|
rx queue 2 | 0 kB | RX_SMALL_FIFO| ------------- * 63,75 kB
|
|
| (not used) | | R1_RxD+R2_RxD
|
|
|
|
END_MANUAL_ENTRY
|
|
*/
|
|
|
|
if (SMT_R1_RXD_COUNT == 0) {
|
|
SMT_PANIC(smc,SMT_E0117, SMT_E0117_MSG) ;
|
|
}
|
|
|
|
switch(SMT_R2_RXD_COUNT) {
|
|
case 0:
|
|
smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE ;
|
|
smc->hw.fp.fifo.rx2_fifo_size = 0 ;
|
|
break ;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
smc->hw.fp.fifo.rx1_fifo_size = RX_LARGE_FIFO ;
|
|
smc->hw.fp.fifo.rx2_fifo_size = RX_SMALL_FIFO ;
|
|
break ;
|
|
default: /* this is not the real defaule */
|
|
smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE *
|
|
SMT_R1_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ;
|
|
smc->hw.fp.fifo.rx2_fifo_size = RX_FIFO_SPACE *
|
|
SMT_R2_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ;
|
|
break ;
|
|
}
|
|
|
|
/*
|
|
BEGIN_MANUAL_ENTRY(module;mem;1)
|
|
-------------------------------------------------------------
|
|
TRANSMIT BUFFER MEMORY DIVERSION
|
|
-------------------------------------------------------------
|
|
|
|
|
|
| no sync bw | sync bw available and | sync bw available and
|
|
| available | SynchTxMode = SPLIT | SynchTxMode = ALL
|
|
-----------------------------------------------------------------------
|
|
sync tx | 0 kB | 32 kB | 55 kB
|
|
queue | | TX_MEDIUM_FIFO | TX_LARGE_FIFO
|
|
-----------------------------------------------------------------------
|
|
async tx | 64 kB | 32 kB | 9 k
|
|
queue | TX_FIFO_SPACE| TX_MEDIUM_FIFO | TX_SMALL_FIFO
|
|
|
|
END_MANUAL_ENTRY
|
|
*/
|
|
|
|
/*
|
|
* set the tx mode bits
|
|
*/
|
|
if (smc->mib.a[PATH0].fddiPATHSbaPayload) {
|
|
#ifdef ESS
|
|
smc->hw.fp.fifo.fifo_config_mode |=
|
|
smc->mib.fddiESSSynchTxMode | SYNC_TRAFFIC_ON ;
|
|
#endif
|
|
}
|
|
else {
|
|
smc->hw.fp.fifo.fifo_config_mode &=
|
|
~(SEND_ASYNC_AS_SYNC|SYNC_TRAFFIC_ON) ;
|
|
}
|
|
|
|
/*
|
|
* split up the FIFO
|
|
*/
|
|
if (smc->hw.fp.fifo.fifo_config_mode & SYNC_TRAFFIC_ON) {
|
|
if (smc->hw.fp.fifo.fifo_config_mode & SEND_ASYNC_AS_SYNC) {
|
|
smc->hw.fp.fifo.tx_s_size = TX_LARGE_FIFO ;
|
|
smc->hw.fp.fifo.tx_a0_size = TX_SMALL_FIFO ;
|
|
}
|
|
else {
|
|
smc->hw.fp.fifo.tx_s_size = TX_MEDIUM_FIFO ;
|
|
smc->hw.fp.fifo.tx_a0_size = TX_MEDIUM_FIFO ;
|
|
}
|
|
}
|
|
else {
|
|
smc->hw.fp.fifo.tx_s_size = 0 ;
|
|
smc->hw.fp.fifo.tx_a0_size = TX_FIFO_SPACE ;
|
|
}
|
|
|
|
smc->hw.fp.fifo.rx1_fifo_start = smc->hw.fp.fifo.rbc_ram_start +
|
|
RX_FIFO_OFF ;
|
|
smc->hw.fp.fifo.tx_s_start = smc->hw.fp.fifo.rx1_fifo_start +
|
|
smc->hw.fp.fifo.rx1_fifo_size ;
|
|
smc->hw.fp.fifo.tx_a0_start = smc->hw.fp.fifo.tx_s_start +
|
|
smc->hw.fp.fifo.tx_s_size ;
|
|
smc->hw.fp.fifo.rx2_fifo_start = smc->hw.fp.fifo.tx_a0_start +
|
|
smc->hw.fp.fifo.tx_a0_size ;
|
|
|
|
DB_SMT("FIFO split: mode = %x\n",smc->hw.fp.fifo.fifo_config_mode,0) ;
|
|
DB_SMT("rbc_ram_start = %x rbc_ram_end = %x\n",
|
|
smc->hw.fp.fifo.rbc_ram_start, smc->hw.fp.fifo.rbc_ram_end) ;
|
|
DB_SMT("rx1_fifo_start = %x tx_s_start = %x\n",
|
|
smc->hw.fp.fifo.rx1_fifo_start, smc->hw.fp.fifo.tx_s_start) ;
|
|
DB_SMT("tx_a0_start = %x rx2_fifo_start = %x\n",
|
|
smc->hw.fp.fifo.tx_a0_start, smc->hw.fp.fifo.rx2_fifo_start) ;
|
|
}
|
|
|
|
void formac_reinit_tx(struct s_smc *smc)
|
|
{
|
|
/*
|
|
* Split up the FIFO and reinitialize the MAC if synchronous
|
|
* bandwidth becomes available but no synchronous queue is
|
|
* configured.
|
|
*/
|
|
if (!smc->hw.fp.fifo.tx_s_size && smc->mib.a[PATH0].fddiPATHSbaPayload){
|
|
(void)init_mac(smc,0) ;
|
|
}
|
|
}
|
|
|