2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/drivers/base/memory.c
Reza Arbab a371d9f1cc memory-hotplug: use zone_can_shift() for sysfs valid_zones attribute
Since zone_can_shift() is being used to validate the target zone during
onlining, it should also be used to determine the content of
valid_zones.

Link: http://lkml.kernel.org/r/1462816419-4479-4-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Reviewd-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00

833 lines
20 KiB
C

/*
* Memory subsystem support
*
* Written by Matt Tolentino <matthew.e.tolentino@intel.com>
* Dave Hansen <haveblue@us.ibm.com>
*
* This file provides the necessary infrastructure to represent
* a SPARSEMEM-memory-model system's physical memory in /sysfs.
* All arch-independent code that assumes MEMORY_HOTPLUG requires
* SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
#include <linux/capability.h>
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/stat.h>
#include <linux/slab.h>
#include <linux/atomic.h>
#include <asm/uaccess.h>
static DEFINE_MUTEX(mem_sysfs_mutex);
#define MEMORY_CLASS_NAME "memory"
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
static int sections_per_block;
static inline int base_memory_block_id(int section_nr)
{
return section_nr / sections_per_block;
}
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);
static struct bus_type memory_subsys = {
.name = MEMORY_CLASS_NAME,
.dev_name = MEMORY_CLASS_NAME,
.online = memory_subsys_online,
.offline = memory_subsys_offline,
};
static BLOCKING_NOTIFIER_HEAD(memory_chain);
int register_memory_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&memory_chain, nb);
}
EXPORT_SYMBOL(register_memory_notifier);
void unregister_memory_notifier(struct notifier_block *nb)
{
blocking_notifier_chain_unregister(&memory_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_notifier);
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
int register_memory_isolate_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);
void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);
static void memory_block_release(struct device *dev)
{
struct memory_block *mem = to_memory_block(dev);
kfree(mem);
}
unsigned long __weak memory_block_size_bytes(void)
{
return MIN_MEMORY_BLOCK_SIZE;
}
static unsigned long get_memory_block_size(void)
{
unsigned long block_sz;
block_sz = memory_block_size_bytes();
/* Validate blk_sz is a power of 2 and not less than section size */
if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
WARN_ON(1);
block_sz = MIN_MEMORY_BLOCK_SIZE;
}
return block_sz;
}
/*
* use this as the physical section index that this memsection
* uses.
*/
static ssize_t show_mem_start_phys_index(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct memory_block *mem = to_memory_block(dev);
unsigned long phys_index;
phys_index = mem->start_section_nr / sections_per_block;
return sprintf(buf, "%08lx\n", phys_index);
}
/*
* Show whether the section of memory is likely to be hot-removable
*/
static ssize_t show_mem_removable(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long i, pfn;
int ret = 1;
struct memory_block *mem = to_memory_block(dev);
for (i = 0; i < sections_per_block; i++) {
if (!present_section_nr(mem->start_section_nr + i))
continue;
pfn = section_nr_to_pfn(mem->start_section_nr + i);
ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
}
return sprintf(buf, "%d\n", ret);
}
/*
* online, offline, going offline, etc.
*/
static ssize_t show_mem_state(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct memory_block *mem = to_memory_block(dev);
ssize_t len = 0;
/*
* We can probably put these states in a nice little array
* so that they're not open-coded
*/
switch (mem->state) {
case MEM_ONLINE:
len = sprintf(buf, "online\n");
break;
case MEM_OFFLINE:
len = sprintf(buf, "offline\n");
break;
case MEM_GOING_OFFLINE:
len = sprintf(buf, "going-offline\n");
break;
default:
len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
mem->state);
WARN_ON(1);
break;
}
return len;
}
int memory_notify(unsigned long val, void *v)
{
return blocking_notifier_call_chain(&memory_chain, val, v);
}
int memory_isolate_notify(unsigned long val, void *v)
{
return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}
/*
* The probe routines leave the pages reserved, just as the bootmem code does.
* Make sure they're still that way.
*/
static bool pages_correctly_reserved(unsigned long start_pfn)
{
int i, j;
struct page *page;
unsigned long pfn = start_pfn;
/*
* memmap between sections is not contiguous except with
* SPARSEMEM_VMEMMAP. We lookup the page once per section
* and assume memmap is contiguous within each section
*/
for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
if (WARN_ON_ONCE(!pfn_valid(pfn)))
return false;
page = pfn_to_page(pfn);
for (j = 0; j < PAGES_PER_SECTION; j++) {
if (PageReserved(page + j))
continue;
printk(KERN_WARNING "section number %ld page number %d "
"not reserved, was it already online?\n",
pfn_to_section_nr(pfn), j);
return false;
}
}
return true;
}
/*
* MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
* OK to have direct references to sparsemem variables in here.
* Must already be protected by mem_hotplug_begin().
*/
static int
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
{
unsigned long start_pfn;
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
struct page *first_page;
int ret;
start_pfn = section_nr_to_pfn(phys_index);
first_page = pfn_to_page(start_pfn);
switch (action) {
case MEM_ONLINE:
if (!pages_correctly_reserved(start_pfn))
return -EBUSY;
ret = online_pages(start_pfn, nr_pages, online_type);
break;
case MEM_OFFLINE:
ret = offline_pages(start_pfn, nr_pages);
break;
default:
WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
"%ld\n", __func__, phys_index, action, action);
ret = -EINVAL;
}
return ret;
}
int memory_block_change_state(struct memory_block *mem,
unsigned long to_state, unsigned long from_state_req)
{
int ret = 0;
if (mem->state != from_state_req)
return -EINVAL;
if (to_state == MEM_OFFLINE)
mem->state = MEM_GOING_OFFLINE;
ret = memory_block_action(mem->start_section_nr, to_state,
mem->online_type);
mem->state = ret ? from_state_req : to_state;
return ret;
}
/* The device lock serializes operations on memory_subsys_[online|offline] */
static int memory_subsys_online(struct device *dev)
{
struct memory_block *mem = to_memory_block(dev);
int ret;
if (mem->state == MEM_ONLINE)
return 0;
/*
* If we are called from store_mem_state(), online_type will be
* set >= 0 Otherwise we were called from the device online
* attribute and need to set the online_type.
*/
if (mem->online_type < 0)
mem->online_type = MMOP_ONLINE_KEEP;
/* Already under protection of mem_hotplug_begin() */
ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
/* clear online_type */
mem->online_type = -1;
return ret;
}
static int memory_subsys_offline(struct device *dev)
{
struct memory_block *mem = to_memory_block(dev);
if (mem->state == MEM_OFFLINE)
return 0;
/* Can't offline block with non-present sections */
if (mem->section_count != sections_per_block)
return -EINVAL;
return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
}
static ssize_t
store_mem_state(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct memory_block *mem = to_memory_block(dev);
int ret, online_type;
ret = lock_device_hotplug_sysfs();
if (ret)
return ret;
if (sysfs_streq(buf, "online_kernel"))
online_type = MMOP_ONLINE_KERNEL;
else if (sysfs_streq(buf, "online_movable"))
online_type = MMOP_ONLINE_MOVABLE;
else if (sysfs_streq(buf, "online"))
online_type = MMOP_ONLINE_KEEP;
else if (sysfs_streq(buf, "offline"))
online_type = MMOP_OFFLINE;
else {
ret = -EINVAL;
goto err;
}
/*
* Memory hotplug needs to hold mem_hotplug_begin() for probe to find
* the correct memory block to online before doing device_online(dev),
* which will take dev->mutex. Take the lock early to prevent an
* inversion, memory_subsys_online() callbacks will be implemented by
* assuming it's already protected.
*/
mem_hotplug_begin();
switch (online_type) {
case MMOP_ONLINE_KERNEL:
case MMOP_ONLINE_MOVABLE:
case MMOP_ONLINE_KEEP:
mem->online_type = online_type;
ret = device_online(&mem->dev);
break;
case MMOP_OFFLINE:
ret = device_offline(&mem->dev);
break;
default:
ret = -EINVAL; /* should never happen */
}
mem_hotplug_done();
err:
unlock_device_hotplug();
if (ret)
return ret;
return count;
}
/*
* phys_device is a bad name for this. What I really want
* is a way to differentiate between memory ranges that
* are part of physical devices that constitute
* a complete removable unit or fru.
* i.e. do these ranges belong to the same physical device,
* s.t. if I offline all of these sections I can then
* remove the physical device?
*/
static ssize_t show_phys_device(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct memory_block *mem = to_memory_block(dev);
return sprintf(buf, "%d\n", mem->phys_device);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
static ssize_t show_valid_zones(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct memory_block *mem = to_memory_block(dev);
unsigned long start_pfn, end_pfn;
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
struct page *first_page;
struct zone *zone;
int zone_shift = 0;
start_pfn = section_nr_to_pfn(mem->start_section_nr);
end_pfn = start_pfn + nr_pages;
first_page = pfn_to_page(start_pfn);
/* The block contains more than one zone can not be offlined. */
if (!test_pages_in_a_zone(start_pfn, end_pfn))
return sprintf(buf, "none\n");
zone = page_zone(first_page);
/* MMOP_ONLINE_KEEP */
sprintf(buf, "%s", zone->name);
/* MMOP_ONLINE_KERNEL */
zone_shift = zone_can_shift(start_pfn, nr_pages, ZONE_NORMAL);
if (zone_shift) {
strcat(buf, " ");
strcat(buf, (zone + zone_shift)->name);
}
/* MMOP_ONLINE_MOVABLE */
zone_shift = zone_can_shift(start_pfn, nr_pages, ZONE_MOVABLE);
if (zone_shift) {
strcat(buf, " ");
strcat(buf, (zone + zone_shift)->name);
}
strcat(buf, "\n");
return strlen(buf);
}
static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
#endif
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
/*
* Block size attribute stuff
*/
static ssize_t
print_block_size(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%lx\n", get_memory_block_size());
}
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
/*
* Memory auto online policy.
*/
static ssize_t
show_auto_online_blocks(struct device *dev, struct device_attribute *attr,
char *buf)
{
if (memhp_auto_online)
return sprintf(buf, "online\n");
else
return sprintf(buf, "offline\n");
}
static ssize_t
store_auto_online_blocks(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
if (sysfs_streq(buf, "online"))
memhp_auto_online = true;
else if (sysfs_streq(buf, "offline"))
memhp_auto_online = false;
else
return -EINVAL;
return count;
}
static DEVICE_ATTR(auto_online_blocks, 0644, show_auto_online_blocks,
store_auto_online_blocks);
/*
* Some architectures will have custom drivers to do this, and
* will not need to do it from userspace. The fake hot-add code
* as well as ppc64 will do all of their discovery in userspace
* and will require this interface.
*/
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
memory_probe_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
u64 phys_addr;
int nid, ret;
unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
ret = kstrtoull(buf, 0, &phys_addr);
if (ret)
return ret;
if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
return -EINVAL;
nid = memory_add_physaddr_to_nid(phys_addr);
ret = add_memory(nid, phys_addr,
MIN_MEMORY_BLOCK_SIZE * sections_per_block);
if (ret)
goto out;
ret = count;
out:
return ret;
}
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
#endif
#ifdef CONFIG_MEMORY_FAILURE
/*
* Support for offlining pages of memory
*/
/* Soft offline a page */
static ssize_t
store_soft_offline_page(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
u64 pfn;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (kstrtoull(buf, 0, &pfn) < 0)
return -EINVAL;
pfn >>= PAGE_SHIFT;
if (!pfn_valid(pfn))
return -ENXIO;
ret = soft_offline_page(pfn_to_page(pfn), 0);
return ret == 0 ? count : ret;
}
/* Forcibly offline a page, including killing processes. */
static ssize_t
store_hard_offline_page(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
u64 pfn;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (kstrtoull(buf, 0, &pfn) < 0)
return -EINVAL;
pfn >>= PAGE_SHIFT;
ret = memory_failure(pfn, 0, 0);
return ret ? ret : count;
}
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
#endif
/*
* Note that phys_device is optional. It is here to allow for
* differentiation between which *physical* devices each
* section belongs to...
*/
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
return 0;
}
/*
* A reference for the returned object is held and the reference for the
* hinted object is released.
*/
struct memory_block *find_memory_block_hinted(struct mem_section *section,
struct memory_block *hint)
{
int block_id = base_memory_block_id(__section_nr(section));
struct device *hintdev = hint ? &hint->dev : NULL;
struct device *dev;
dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
if (hint)
put_device(&hint->dev);
if (!dev)
return NULL;
return to_memory_block(dev);
}
/*
* For now, we have a linear search to go find the appropriate
* memory_block corresponding to a particular phys_index. If
* this gets to be a real problem, we can always use a radix
* tree or something here.
*
* This could be made generic for all device subsystems.
*/
struct memory_block *find_memory_block(struct mem_section *section)
{
return find_memory_block_hinted(section, NULL);
}
static struct attribute *memory_memblk_attrs[] = {
&dev_attr_phys_index.attr,
&dev_attr_state.attr,
&dev_attr_phys_device.attr,
&dev_attr_removable.attr,
#ifdef CONFIG_MEMORY_HOTREMOVE
&dev_attr_valid_zones.attr,
#endif
NULL
};
static struct attribute_group memory_memblk_attr_group = {
.attrs = memory_memblk_attrs,
};
static const struct attribute_group *memory_memblk_attr_groups[] = {
&memory_memblk_attr_group,
NULL,
};
/*
* register_memory - Setup a sysfs device for a memory block
*/
static
int register_memory(struct memory_block *memory)
{
memory->dev.bus = &memory_subsys;
memory->dev.id = memory->start_section_nr / sections_per_block;
memory->dev.release = memory_block_release;
memory->dev.groups = memory_memblk_attr_groups;
memory->dev.offline = memory->state == MEM_OFFLINE;
return device_register(&memory->dev);
}
static int init_memory_block(struct memory_block **memory,
struct mem_section *section, unsigned long state)
{
struct memory_block *mem;
unsigned long start_pfn;
int scn_nr;
int ret = 0;
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
if (!mem)
return -ENOMEM;
scn_nr = __section_nr(section);
mem->start_section_nr =
base_memory_block_id(scn_nr) * sections_per_block;
mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
mem->state = state;
start_pfn = section_nr_to_pfn(mem->start_section_nr);
mem->phys_device = arch_get_memory_phys_device(start_pfn);
ret = register_memory(mem);
*memory = mem;
return ret;
}
static int add_memory_block(int base_section_nr)
{
struct memory_block *mem;
int i, ret, section_count = 0, section_nr;
for (i = base_section_nr;
(i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
i++) {
if (!present_section_nr(i))
continue;
if (section_count == 0)
section_nr = i;
section_count++;
}
if (section_count == 0)
return 0;
ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
if (ret)
return ret;
mem->section_count = section_count;
return 0;
}
static bool is_zone_device_section(struct mem_section *ms)
{
struct page *page;
page = sparse_decode_mem_map(ms->section_mem_map, __section_nr(ms));
return is_zone_device_page(page);
}
/*
* need an interface for the VM to add new memory regions,
* but without onlining it.
*/
int register_new_memory(int nid, struct mem_section *section)
{
int ret = 0;
struct memory_block *mem;
if (is_zone_device_section(section))
return 0;
mutex_lock(&mem_sysfs_mutex);
mem = find_memory_block(section);
if (mem) {
mem->section_count++;
put_device(&mem->dev);
} else {
ret = init_memory_block(&mem, section, MEM_OFFLINE);
if (ret)
goto out;
mem->section_count++;
}
if (mem->section_count == sections_per_block)
ret = register_mem_sect_under_node(mem, nid);
out:
mutex_unlock(&mem_sysfs_mutex);
return ret;
}
#ifdef CONFIG_MEMORY_HOTREMOVE
static void
unregister_memory(struct memory_block *memory)
{
BUG_ON(memory->dev.bus != &memory_subsys);
/* drop the ref. we got in remove_memory_block() */
put_device(&memory->dev);
device_unregister(&memory->dev);
}
static int remove_memory_section(unsigned long node_id,
struct mem_section *section, int phys_device)
{
struct memory_block *mem;
if (is_zone_device_section(section))
return 0;
mutex_lock(&mem_sysfs_mutex);
mem = find_memory_block(section);
unregister_mem_sect_under_nodes(mem, __section_nr(section));
mem->section_count--;
if (mem->section_count == 0)
unregister_memory(mem);
else
put_device(&mem->dev);
mutex_unlock(&mem_sysfs_mutex);
return 0;
}
int unregister_memory_section(struct mem_section *section)
{
if (!present_section(section))
return -EINVAL;
return remove_memory_section(0, section, 0);
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
return mem->state == MEM_OFFLINE;
}
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
&dev_attr_probe.attr,
#endif
#ifdef CONFIG_MEMORY_FAILURE
&dev_attr_soft_offline_page.attr,
&dev_attr_hard_offline_page.attr,
#endif
&dev_attr_block_size_bytes.attr,
&dev_attr_auto_online_blocks.attr,
NULL
};
static struct attribute_group memory_root_attr_group = {
.attrs = memory_root_attrs,
};
static const struct attribute_group *memory_root_attr_groups[] = {
&memory_root_attr_group,
NULL,
};
/*
* Initialize the sysfs support for memory devices...
*/
int __init memory_dev_init(void)
{
unsigned int i;
int ret;
int err;
unsigned long block_sz;
ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
if (ret)
goto out;
block_sz = get_memory_block_size();
sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
/*
* Create entries for memory sections that were found
* during boot and have been initialized
*/
mutex_lock(&mem_sysfs_mutex);
for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
err = add_memory_block(i);
if (!ret)
ret = err;
}
mutex_unlock(&mem_sysfs_mutex);
out:
if (ret)
printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
return ret;
}