2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 03:33:59 +08:00
linux-next/drivers/net/wireless/mwl8k.c

5913 lines
142 KiB
C

/*
* drivers/net/wireless/mwl8k.c
* Driver for Marvell TOPDOG 802.11 Wireless cards
*
* Copyright (C) 2008, 2009, 2010 Marvell Semiconductor Inc.
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/etherdevice.h>
#include <linux/slab.h>
#include <net/mac80211.h>
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#include <linux/workqueue.h>
#define MWL8K_DESC "Marvell TOPDOG(R) 802.11 Wireless Network Driver"
#define MWL8K_NAME KBUILD_MODNAME
#define MWL8K_VERSION "0.13"
/* Module parameters */
static bool ap_mode_default;
module_param(ap_mode_default, bool, 0);
MODULE_PARM_DESC(ap_mode_default,
"Set to 1 to make ap mode the default instead of sta mode");
/* Register definitions */
#define MWL8K_HIU_GEN_PTR 0x00000c10
#define MWL8K_MODE_STA 0x0000005a
#define MWL8K_MODE_AP 0x000000a5
#define MWL8K_HIU_INT_CODE 0x00000c14
#define MWL8K_FWSTA_READY 0xf0f1f2f4
#define MWL8K_FWAP_READY 0xf1f2f4a5
#define MWL8K_INT_CODE_CMD_FINISHED 0x00000005
#define MWL8K_HIU_SCRATCH 0x00000c40
/* Host->device communications */
#define MWL8K_HIU_H2A_INTERRUPT_EVENTS 0x00000c18
#define MWL8K_HIU_H2A_INTERRUPT_STATUS 0x00000c1c
#define MWL8K_HIU_H2A_INTERRUPT_MASK 0x00000c20
#define MWL8K_HIU_H2A_INTERRUPT_CLEAR_SEL 0x00000c24
#define MWL8K_HIU_H2A_INTERRUPT_STATUS_MASK 0x00000c28
#define MWL8K_H2A_INT_DUMMY (1 << 20)
#define MWL8K_H2A_INT_RESET (1 << 15)
#define MWL8K_H2A_INT_DOORBELL (1 << 1)
#define MWL8K_H2A_INT_PPA_READY (1 << 0)
/* Device->host communications */
#define MWL8K_HIU_A2H_INTERRUPT_EVENTS 0x00000c2c
#define MWL8K_HIU_A2H_INTERRUPT_STATUS 0x00000c30
#define MWL8K_HIU_A2H_INTERRUPT_MASK 0x00000c34
#define MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL 0x00000c38
#define MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK 0x00000c3c
#define MWL8K_A2H_INT_DUMMY (1 << 20)
#define MWL8K_A2H_INT_BA_WATCHDOG (1 << 14)
#define MWL8K_A2H_INT_CHNL_SWITCHED (1 << 11)
#define MWL8K_A2H_INT_QUEUE_EMPTY (1 << 10)
#define MWL8K_A2H_INT_RADAR_DETECT (1 << 7)
#define MWL8K_A2H_INT_RADIO_ON (1 << 6)
#define MWL8K_A2H_INT_RADIO_OFF (1 << 5)
#define MWL8K_A2H_INT_MAC_EVENT (1 << 3)
#define MWL8K_A2H_INT_OPC_DONE (1 << 2)
#define MWL8K_A2H_INT_RX_READY (1 << 1)
#define MWL8K_A2H_INT_TX_DONE (1 << 0)
/* HW micro second timer register
* located at offset 0xA600. This
* will be used to timestamp tx
* packets.
*/
#define MWL8K_HW_TIMER_REGISTER 0x0000a600
#define MWL8K_A2H_EVENTS (MWL8K_A2H_INT_DUMMY | \
MWL8K_A2H_INT_CHNL_SWITCHED | \
MWL8K_A2H_INT_QUEUE_EMPTY | \
MWL8K_A2H_INT_RADAR_DETECT | \
MWL8K_A2H_INT_RADIO_ON | \
MWL8K_A2H_INT_RADIO_OFF | \
MWL8K_A2H_INT_MAC_EVENT | \
MWL8K_A2H_INT_OPC_DONE | \
MWL8K_A2H_INT_RX_READY | \
MWL8K_A2H_INT_TX_DONE | \
MWL8K_A2H_INT_BA_WATCHDOG)
#define MWL8K_RX_QUEUES 1
#define MWL8K_TX_WMM_QUEUES 4
#define MWL8K_MAX_AMPDU_QUEUES 8
#define MWL8K_MAX_TX_QUEUES (MWL8K_TX_WMM_QUEUES + MWL8K_MAX_AMPDU_QUEUES)
#define mwl8k_tx_queues(priv) (MWL8K_TX_WMM_QUEUES + (priv)->num_ampdu_queues)
struct rxd_ops {
int rxd_size;
void (*rxd_init)(void *rxd, dma_addr_t next_dma_addr);
void (*rxd_refill)(void *rxd, dma_addr_t addr, int len);
int (*rxd_process)(void *rxd, struct ieee80211_rx_status *status,
__le16 *qos, s8 *noise);
};
struct mwl8k_device_info {
char *part_name;
char *helper_image;
char *fw_image_sta;
char *fw_image_ap;
struct rxd_ops *ap_rxd_ops;
u32 fw_api_ap;
};
struct mwl8k_rx_queue {
int rxd_count;
/* hw receives here */
int head;
/* refill descs here */
int tail;
void *rxd;
dma_addr_t rxd_dma;
struct {
struct sk_buff *skb;
DEFINE_DMA_UNMAP_ADDR(dma);
} *buf;
};
struct mwl8k_tx_queue {
/* hw transmits here */
int head;
/* sw appends here */
int tail;
unsigned int len;
struct mwl8k_tx_desc *txd;
dma_addr_t txd_dma;
struct sk_buff **skb;
};
enum {
AMPDU_NO_STREAM,
AMPDU_STREAM_NEW,
AMPDU_STREAM_IN_PROGRESS,
AMPDU_STREAM_ACTIVE,
};
struct mwl8k_ampdu_stream {
struct ieee80211_sta *sta;
u8 tid;
u8 state;
u8 idx;
u8 txq_idx; /* index of this stream in priv->txq */
};
struct mwl8k_priv {
struct ieee80211_hw *hw;
struct pci_dev *pdev;
int irq;
struct mwl8k_device_info *device_info;
void __iomem *sram;
void __iomem *regs;
/* firmware */
const struct firmware *fw_helper;
const struct firmware *fw_ucode;
/* hardware/firmware parameters */
bool ap_fw;
struct rxd_ops *rxd_ops;
struct ieee80211_supported_band band_24;
struct ieee80211_channel channels_24[14];
struct ieee80211_rate rates_24[14];
struct ieee80211_supported_band band_50;
struct ieee80211_channel channels_50[4];
struct ieee80211_rate rates_50[9];
u32 ap_macids_supported;
u32 sta_macids_supported;
/* Ampdu stream information */
u8 num_ampdu_queues;
spinlock_t stream_lock;
struct mwl8k_ampdu_stream ampdu[MWL8K_MAX_AMPDU_QUEUES];
struct work_struct watchdog_ba_handle;
/* firmware access */
struct mutex fw_mutex;
struct task_struct *fw_mutex_owner;
struct task_struct *hw_restart_owner;
int fw_mutex_depth;
struct completion *hostcmd_wait;
/* lock held over TX and TX reap */
spinlock_t tx_lock;
/* TX quiesce completion, protected by fw_mutex and tx_lock */
struct completion *tx_wait;
/* List of interfaces. */
u32 macids_used;
struct list_head vif_list;
/* power management status cookie from firmware */
u32 *cookie;
dma_addr_t cookie_dma;
u16 num_mcaddrs;
u8 hw_rev;
u32 fw_rev;
/*
* Running count of TX packets in flight, to avoid
* iterating over the transmit rings each time.
*/
int pending_tx_pkts;
struct mwl8k_rx_queue rxq[MWL8K_RX_QUEUES];
struct mwl8k_tx_queue txq[MWL8K_MAX_TX_QUEUES];
u32 txq_offset[MWL8K_MAX_TX_QUEUES];
bool radio_on;
bool radio_short_preamble;
bool sniffer_enabled;
bool wmm_enabled;
/* XXX need to convert this to handle multiple interfaces */
bool capture_beacon;
u8 capture_bssid[ETH_ALEN];
struct sk_buff *beacon_skb;
/*
* This FJ worker has to be global as it is scheduled from the
* RX handler. At this point we don't know which interface it
* belongs to until the list of bssids waiting to complete join
* is checked.
*/
struct work_struct finalize_join_worker;
/* Tasklet to perform TX reclaim. */
struct tasklet_struct poll_tx_task;
/* Tasklet to perform RX. */
struct tasklet_struct poll_rx_task;
/* Most recently reported noise in dBm */
s8 noise;
/*
* preserve the queue configurations so they can be restored if/when
* the firmware image is swapped.
*/
struct ieee80211_tx_queue_params wmm_params[MWL8K_TX_WMM_QUEUES];
/* To perform the task of reloading the firmware */
struct work_struct fw_reload;
bool hw_restart_in_progress;
/* async firmware loading state */
unsigned fw_state;
char *fw_pref;
char *fw_alt;
struct completion firmware_loading_complete;
};
#define MAX_WEP_KEY_LEN 13
#define NUM_WEP_KEYS 4
/* Per interface specific private data */
struct mwl8k_vif {
struct list_head list;
struct ieee80211_vif *vif;
/* Firmware macid for this vif. */
int macid;
/* Non AMPDU sequence number assigned by driver. */
u16 seqno;
/* Saved WEP keys */
struct {
u8 enabled;
u8 key[sizeof(struct ieee80211_key_conf) + MAX_WEP_KEY_LEN];
} wep_key_conf[NUM_WEP_KEYS];
/* BSSID */
u8 bssid[ETH_ALEN];
/* A flag to indicate is HW crypto is enabled for this bssid */
bool is_hw_crypto_enabled;
};
#define MWL8K_VIF(_vif) ((struct mwl8k_vif *)&((_vif)->drv_priv))
#define IEEE80211_KEY_CONF(_u8) ((struct ieee80211_key_conf *)(_u8))
struct tx_traffic_info {
u32 start_time;
u32 pkts;
};
#define MWL8K_MAX_TID 8
struct mwl8k_sta {
/* Index into station database. Returned by UPDATE_STADB. */
u8 peer_id;
u8 is_ampdu_allowed;
struct tx_traffic_info tx_stats[MWL8K_MAX_TID];
};
#define MWL8K_STA(_sta) ((struct mwl8k_sta *)&((_sta)->drv_priv))
static const struct ieee80211_channel mwl8k_channels_24[] = {
{ .center_freq = 2412, .hw_value = 1, },
{ .center_freq = 2417, .hw_value = 2, },
{ .center_freq = 2422, .hw_value = 3, },
{ .center_freq = 2427, .hw_value = 4, },
{ .center_freq = 2432, .hw_value = 5, },
{ .center_freq = 2437, .hw_value = 6, },
{ .center_freq = 2442, .hw_value = 7, },
{ .center_freq = 2447, .hw_value = 8, },
{ .center_freq = 2452, .hw_value = 9, },
{ .center_freq = 2457, .hw_value = 10, },
{ .center_freq = 2462, .hw_value = 11, },
{ .center_freq = 2467, .hw_value = 12, },
{ .center_freq = 2472, .hw_value = 13, },
{ .center_freq = 2484, .hw_value = 14, },
};
static const struct ieee80211_rate mwl8k_rates_24[] = {
{ .bitrate = 10, .hw_value = 2, },
{ .bitrate = 20, .hw_value = 4, },
{ .bitrate = 55, .hw_value = 11, },
{ .bitrate = 110, .hw_value = 22, },
{ .bitrate = 220, .hw_value = 44, },
{ .bitrate = 60, .hw_value = 12, },
{ .bitrate = 90, .hw_value = 18, },
{ .bitrate = 120, .hw_value = 24, },
{ .bitrate = 180, .hw_value = 36, },
{ .bitrate = 240, .hw_value = 48, },
{ .bitrate = 360, .hw_value = 72, },
{ .bitrate = 480, .hw_value = 96, },
{ .bitrate = 540, .hw_value = 108, },
{ .bitrate = 720, .hw_value = 144, },
};
static const struct ieee80211_channel mwl8k_channels_50[] = {
{ .center_freq = 5180, .hw_value = 36, },
{ .center_freq = 5200, .hw_value = 40, },
{ .center_freq = 5220, .hw_value = 44, },
{ .center_freq = 5240, .hw_value = 48, },
};
static const struct ieee80211_rate mwl8k_rates_50[] = {
{ .bitrate = 60, .hw_value = 12, },
{ .bitrate = 90, .hw_value = 18, },
{ .bitrate = 120, .hw_value = 24, },
{ .bitrate = 180, .hw_value = 36, },
{ .bitrate = 240, .hw_value = 48, },
{ .bitrate = 360, .hw_value = 72, },
{ .bitrate = 480, .hw_value = 96, },
{ .bitrate = 540, .hw_value = 108, },
{ .bitrate = 720, .hw_value = 144, },
};
/* Set or get info from Firmware */
#define MWL8K_CMD_GET 0x0000
#define MWL8K_CMD_SET 0x0001
#define MWL8K_CMD_SET_LIST 0x0002
/* Firmware command codes */
#define MWL8K_CMD_CODE_DNLD 0x0001
#define MWL8K_CMD_GET_HW_SPEC 0x0003
#define MWL8K_CMD_SET_HW_SPEC 0x0004
#define MWL8K_CMD_MAC_MULTICAST_ADR 0x0010
#define MWL8K_CMD_GET_STAT 0x0014
#define MWL8K_CMD_RADIO_CONTROL 0x001c
#define MWL8K_CMD_RF_TX_POWER 0x001e
#define MWL8K_CMD_TX_POWER 0x001f
#define MWL8K_CMD_RF_ANTENNA 0x0020
#define MWL8K_CMD_SET_BEACON 0x0100 /* per-vif */
#define MWL8K_CMD_SET_PRE_SCAN 0x0107
#define MWL8K_CMD_SET_POST_SCAN 0x0108
#define MWL8K_CMD_SET_RF_CHANNEL 0x010a
#define MWL8K_CMD_SET_AID 0x010d
#define MWL8K_CMD_SET_RATE 0x0110
#define MWL8K_CMD_SET_FINALIZE_JOIN 0x0111
#define MWL8K_CMD_RTS_THRESHOLD 0x0113
#define MWL8K_CMD_SET_SLOT 0x0114
#define MWL8K_CMD_SET_EDCA_PARAMS 0x0115
#define MWL8K_CMD_SET_WMM_MODE 0x0123
#define MWL8K_CMD_MIMO_CONFIG 0x0125
#define MWL8K_CMD_USE_FIXED_RATE 0x0126
#define MWL8K_CMD_ENABLE_SNIFFER 0x0150
#define MWL8K_CMD_SET_MAC_ADDR 0x0202 /* per-vif */
#define MWL8K_CMD_SET_RATEADAPT_MODE 0x0203
#define MWL8K_CMD_GET_WATCHDOG_BITMAP 0x0205
#define MWL8K_CMD_DEL_MAC_ADDR 0x0206 /* per-vif */
#define MWL8K_CMD_BSS_START 0x1100 /* per-vif */
#define MWL8K_CMD_SET_NEW_STN 0x1111 /* per-vif */
#define MWL8K_CMD_UPDATE_ENCRYPTION 0x1122 /* per-vif */
#define MWL8K_CMD_UPDATE_STADB 0x1123
#define MWL8K_CMD_BASTREAM 0x1125
static const char *mwl8k_cmd_name(__le16 cmd, char *buf, int bufsize)
{
u16 command = le16_to_cpu(cmd);
#define MWL8K_CMDNAME(x) case MWL8K_CMD_##x: do {\
snprintf(buf, bufsize, "%s", #x);\
return buf;\
} while (0)
switch (command & ~0x8000) {
MWL8K_CMDNAME(CODE_DNLD);
MWL8K_CMDNAME(GET_HW_SPEC);
MWL8K_CMDNAME(SET_HW_SPEC);
MWL8K_CMDNAME(MAC_MULTICAST_ADR);
MWL8K_CMDNAME(GET_STAT);
MWL8K_CMDNAME(RADIO_CONTROL);
MWL8K_CMDNAME(RF_TX_POWER);
MWL8K_CMDNAME(TX_POWER);
MWL8K_CMDNAME(RF_ANTENNA);
MWL8K_CMDNAME(SET_BEACON);
MWL8K_CMDNAME(SET_PRE_SCAN);
MWL8K_CMDNAME(SET_POST_SCAN);
MWL8K_CMDNAME(SET_RF_CHANNEL);
MWL8K_CMDNAME(SET_AID);
MWL8K_CMDNAME(SET_RATE);
MWL8K_CMDNAME(SET_FINALIZE_JOIN);
MWL8K_CMDNAME(RTS_THRESHOLD);
MWL8K_CMDNAME(SET_SLOT);
MWL8K_CMDNAME(SET_EDCA_PARAMS);
MWL8K_CMDNAME(SET_WMM_MODE);
MWL8K_CMDNAME(MIMO_CONFIG);
MWL8K_CMDNAME(USE_FIXED_RATE);
MWL8K_CMDNAME(ENABLE_SNIFFER);
MWL8K_CMDNAME(SET_MAC_ADDR);
MWL8K_CMDNAME(SET_RATEADAPT_MODE);
MWL8K_CMDNAME(BSS_START);
MWL8K_CMDNAME(SET_NEW_STN);
MWL8K_CMDNAME(UPDATE_ENCRYPTION);
MWL8K_CMDNAME(UPDATE_STADB);
MWL8K_CMDNAME(BASTREAM);
MWL8K_CMDNAME(GET_WATCHDOG_BITMAP);
default:
snprintf(buf, bufsize, "0x%x", cmd);
}
#undef MWL8K_CMDNAME
return buf;
}
/* Hardware and firmware reset */
static void mwl8k_hw_reset(struct mwl8k_priv *priv)
{
iowrite32(MWL8K_H2A_INT_RESET,
priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
iowrite32(MWL8K_H2A_INT_RESET,
priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
msleep(20);
}
/* Release fw image */
static void mwl8k_release_fw(const struct firmware **fw)
{
if (*fw == NULL)
return;
release_firmware(*fw);
*fw = NULL;
}
static void mwl8k_release_firmware(struct mwl8k_priv *priv)
{
mwl8k_release_fw(&priv->fw_ucode);
mwl8k_release_fw(&priv->fw_helper);
}
/* states for asynchronous f/w loading */
static void mwl8k_fw_state_machine(const struct firmware *fw, void *context);
enum {
FW_STATE_INIT = 0,
FW_STATE_LOADING_PREF,
FW_STATE_LOADING_ALT,
FW_STATE_ERROR,
};
/* Request fw image */
static int mwl8k_request_fw(struct mwl8k_priv *priv,
const char *fname, const struct firmware **fw,
bool nowait)
{
/* release current image */
if (*fw != NULL)
mwl8k_release_fw(fw);
if (nowait)
return request_firmware_nowait(THIS_MODULE, 1, fname,
&priv->pdev->dev, GFP_KERNEL,
priv, mwl8k_fw_state_machine);
else
return request_firmware(fw, fname, &priv->pdev->dev);
}
static int mwl8k_request_firmware(struct mwl8k_priv *priv, char *fw_image,
bool nowait)
{
struct mwl8k_device_info *di = priv->device_info;
int rc;
if (di->helper_image != NULL) {
if (nowait)
rc = mwl8k_request_fw(priv, di->helper_image,
&priv->fw_helper, true);
else
rc = mwl8k_request_fw(priv, di->helper_image,
&priv->fw_helper, false);
if (rc)
printk(KERN_ERR "%s: Error requesting helper fw %s\n",
pci_name(priv->pdev), di->helper_image);
if (rc || nowait)
return rc;
}
if (nowait) {
/*
* if we get here, no helper image is needed. Skip the
* FW_STATE_INIT state.
*/
priv->fw_state = FW_STATE_LOADING_PREF;
rc = mwl8k_request_fw(priv, fw_image,
&priv->fw_ucode,
true);
} else
rc = mwl8k_request_fw(priv, fw_image,
&priv->fw_ucode, false);
if (rc) {
printk(KERN_ERR "%s: Error requesting firmware file %s\n",
pci_name(priv->pdev), fw_image);
mwl8k_release_fw(&priv->fw_helper);
return rc;
}
return 0;
}
struct mwl8k_cmd_pkt {
__le16 code;
__le16 length;
__u8 seq_num;
__u8 macid;
__le16 result;
char payload[0];
} __packed;
/*
* Firmware loading.
*/
static int
mwl8k_send_fw_load_cmd(struct mwl8k_priv *priv, void *data, int length)
{
void __iomem *regs = priv->regs;
dma_addr_t dma_addr;
int loops;
dma_addr = pci_map_single(priv->pdev, data, length, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(priv->pdev, dma_addr))
return -ENOMEM;
iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR);
iowrite32(0, regs + MWL8K_HIU_INT_CODE);
iowrite32(MWL8K_H2A_INT_DOORBELL,
regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
iowrite32(MWL8K_H2A_INT_DUMMY,
regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
loops = 1000;
do {
u32 int_code;
int_code = ioread32(regs + MWL8K_HIU_INT_CODE);
if (int_code == MWL8K_INT_CODE_CMD_FINISHED) {
iowrite32(0, regs + MWL8K_HIU_INT_CODE);
break;
}
cond_resched();
udelay(1);
} while (--loops);
pci_unmap_single(priv->pdev, dma_addr, length, PCI_DMA_TODEVICE);
return loops ? 0 : -ETIMEDOUT;
}
static int mwl8k_load_fw_image(struct mwl8k_priv *priv,
const u8 *data, size_t length)
{
struct mwl8k_cmd_pkt *cmd;
int done;
int rc = 0;
cmd = kmalloc(sizeof(*cmd) + 256, GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->code = cpu_to_le16(MWL8K_CMD_CODE_DNLD);
cmd->seq_num = 0;
cmd->macid = 0;
cmd->result = 0;
done = 0;
while (length) {
int block_size = length > 256 ? 256 : length;
memcpy(cmd->payload, data + done, block_size);
cmd->length = cpu_to_le16(block_size);
rc = mwl8k_send_fw_load_cmd(priv, cmd,
sizeof(*cmd) + block_size);
if (rc)
break;
done += block_size;
length -= block_size;
}
if (!rc) {
cmd->length = 0;
rc = mwl8k_send_fw_load_cmd(priv, cmd, sizeof(*cmd));
}
kfree(cmd);
return rc;
}
static int mwl8k_feed_fw_image(struct mwl8k_priv *priv,
const u8 *data, size_t length)
{
unsigned char *buffer;
int may_continue, rc = 0;
u32 done, prev_block_size;
buffer = kmalloc(1024, GFP_KERNEL);
if (buffer == NULL)
return -ENOMEM;
done = 0;
prev_block_size = 0;
may_continue = 1000;
while (may_continue > 0) {
u32 block_size;
block_size = ioread32(priv->regs + MWL8K_HIU_SCRATCH);
if (block_size & 1) {
block_size &= ~1;
may_continue--;
} else {
done += prev_block_size;
length -= prev_block_size;
}
if (block_size > 1024 || block_size > length) {
rc = -EOVERFLOW;
break;
}
if (length == 0) {
rc = 0;
break;
}
if (block_size == 0) {
rc = -EPROTO;
may_continue--;
udelay(1);
continue;
}
prev_block_size = block_size;
memcpy(buffer, data + done, block_size);
rc = mwl8k_send_fw_load_cmd(priv, buffer, block_size);
if (rc)
break;
}
if (!rc && length != 0)
rc = -EREMOTEIO;
kfree(buffer);
return rc;
}
static int mwl8k_load_firmware(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
const struct firmware *fw = priv->fw_ucode;
int rc;
int loops;
if (!memcmp(fw->data, "\x01\x00\x00\x00", 4)) {
const struct firmware *helper = priv->fw_helper;
if (helper == NULL) {
printk(KERN_ERR "%s: helper image needed but none "
"given\n", pci_name(priv->pdev));
return -EINVAL;
}
rc = mwl8k_load_fw_image(priv, helper->data, helper->size);
if (rc) {
printk(KERN_ERR "%s: unable to load firmware "
"helper image\n", pci_name(priv->pdev));
return rc;
}
msleep(20);
rc = mwl8k_feed_fw_image(priv, fw->data, fw->size);
} else {
rc = mwl8k_load_fw_image(priv, fw->data, fw->size);
}
if (rc) {
printk(KERN_ERR "%s: unable to load firmware image\n",
pci_name(priv->pdev));
return rc;
}
iowrite32(MWL8K_MODE_STA, priv->regs + MWL8K_HIU_GEN_PTR);
loops = 500000;
do {
u32 ready_code;
ready_code = ioread32(priv->regs + MWL8K_HIU_INT_CODE);
if (ready_code == MWL8K_FWAP_READY) {
priv->ap_fw = true;
break;
} else if (ready_code == MWL8K_FWSTA_READY) {
priv->ap_fw = false;
break;
}
cond_resched();
udelay(1);
} while (--loops);
return loops ? 0 : -ETIMEDOUT;
}
/* DMA header used by firmware and hardware. */
struct mwl8k_dma_data {
__le16 fwlen;
struct ieee80211_hdr wh;
char data[0];
} __packed;
/* Routines to add/remove DMA header from skb. */
static inline void mwl8k_remove_dma_header(struct sk_buff *skb, __le16 qos)
{
struct mwl8k_dma_data *tr;
int hdrlen;
tr = (struct mwl8k_dma_data *)skb->data;
hdrlen = ieee80211_hdrlen(tr->wh.frame_control);
if (hdrlen != sizeof(tr->wh)) {
if (ieee80211_is_data_qos(tr->wh.frame_control)) {
memmove(tr->data - hdrlen, &tr->wh, hdrlen - 2);
*((__le16 *)(tr->data - 2)) = qos;
} else {
memmove(tr->data - hdrlen, &tr->wh, hdrlen);
}
}
if (hdrlen != sizeof(*tr))
skb_pull(skb, sizeof(*tr) - hdrlen);
}
#define REDUCED_TX_HEADROOM 8
static void
mwl8k_add_dma_header(struct mwl8k_priv *priv, struct sk_buff *skb,
int head_pad, int tail_pad)
{
struct ieee80211_hdr *wh;
int hdrlen;
int reqd_hdrlen;
struct mwl8k_dma_data *tr;
/*
* Add a firmware DMA header; the firmware requires that we
* present a 2-byte payload length followed by a 4-address
* header (without QoS field), followed (optionally) by any
* WEP/ExtIV header (but only filled in for CCMP).
*/
wh = (struct ieee80211_hdr *)skb->data;
hdrlen = ieee80211_hdrlen(wh->frame_control);
/*
* Check if skb_resize is required because of
* tx_headroom adjustment.
*/
if (priv->ap_fw && (hdrlen < (sizeof(struct ieee80211_cts)
+ REDUCED_TX_HEADROOM))) {
if (pskb_expand_head(skb, REDUCED_TX_HEADROOM, 0, GFP_ATOMIC)) {
wiphy_err(priv->hw->wiphy,
"Failed to reallocate TX buffer\n");
return;
}
skb->truesize += REDUCED_TX_HEADROOM;
}
reqd_hdrlen = sizeof(*tr) + head_pad;
if (hdrlen != reqd_hdrlen)
skb_push(skb, reqd_hdrlen - hdrlen);
if (ieee80211_is_data_qos(wh->frame_control))
hdrlen -= IEEE80211_QOS_CTL_LEN;
tr = (struct mwl8k_dma_data *)skb->data;
if (wh != &tr->wh)
memmove(&tr->wh, wh, hdrlen);
if (hdrlen != sizeof(tr->wh))
memset(((void *)&tr->wh) + hdrlen, 0, sizeof(tr->wh) - hdrlen);
/*
* Firmware length is the length of the fully formed "802.11
* payload". That is, everything except for the 802.11 header.
* This includes all crypto material including the MIC.
*/
tr->fwlen = cpu_to_le16(skb->len - sizeof(*tr) + tail_pad);
}
static void mwl8k_encapsulate_tx_frame(struct mwl8k_priv *priv,
struct sk_buff *skb)
{
struct ieee80211_hdr *wh;
struct ieee80211_tx_info *tx_info;
struct ieee80211_key_conf *key_conf;
int data_pad;
int head_pad = 0;
wh = (struct ieee80211_hdr *)skb->data;
tx_info = IEEE80211_SKB_CB(skb);
key_conf = NULL;
if (ieee80211_is_data(wh->frame_control))
key_conf = tx_info->control.hw_key;
/*
* Make sure the packet header is in the DMA header format (4-address
* without QoS), and add head & tail padding when HW crypto is enabled.
*
* We have the following trailer padding requirements:
* - WEP: 4 trailer bytes (ICV)
* - TKIP: 12 trailer bytes (8 MIC + 4 ICV)
* - CCMP: 8 trailer bytes (MIC)
*/
data_pad = 0;
if (key_conf != NULL) {
head_pad = key_conf->iv_len;
switch (key_conf->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
data_pad = 4;
break;
case WLAN_CIPHER_SUITE_TKIP:
data_pad = 12;
break;
case WLAN_CIPHER_SUITE_CCMP:
data_pad = 8;
break;
}
}
mwl8k_add_dma_header(priv, skb, head_pad, data_pad);
}
/*
* Packet reception for 88w8366 AP firmware.
*/
struct mwl8k_rxd_8366_ap {
__le16 pkt_len;
__u8 sq2;
__u8 rate;
__le32 pkt_phys_addr;
__le32 next_rxd_phys_addr;
__le16 qos_control;
__le16 htsig2;
__le32 hw_rssi_info;
__le32 hw_noise_floor_info;
__u8 noise_floor;
__u8 pad0[3];
__u8 rssi;
__u8 rx_status;
__u8 channel;
__u8 rx_ctrl;
} __packed;
#define MWL8K_8366_AP_RATE_INFO_MCS_FORMAT 0x80
#define MWL8K_8366_AP_RATE_INFO_40MHZ 0x40
#define MWL8K_8366_AP_RATE_INFO_RATEID(x) ((x) & 0x3f)
#define MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST 0x80
/* 8366 AP rx_status bits */
#define MWL8K_8366_AP_RXSTAT_DECRYPT_ERR_MASK 0x80
#define MWL8K_8366_AP_RXSTAT_GENERAL_DECRYPT_ERR 0xFF
#define MWL8K_8366_AP_RXSTAT_TKIP_DECRYPT_MIC_ERR 0x02
#define MWL8K_8366_AP_RXSTAT_WEP_DECRYPT_ICV_ERR 0x04
#define MWL8K_8366_AP_RXSTAT_TKIP_DECRYPT_ICV_ERR 0x08
static void mwl8k_rxd_8366_ap_init(void *_rxd, dma_addr_t next_dma_addr)
{
struct mwl8k_rxd_8366_ap *rxd = _rxd;
rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr);
rxd->rx_ctrl = MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST;
}
static void mwl8k_rxd_8366_ap_refill(void *_rxd, dma_addr_t addr, int len)
{
struct mwl8k_rxd_8366_ap *rxd = _rxd;
rxd->pkt_len = cpu_to_le16(len);
rxd->pkt_phys_addr = cpu_to_le32(addr);
wmb();
rxd->rx_ctrl = 0;
}
static int
mwl8k_rxd_8366_ap_process(void *_rxd, struct ieee80211_rx_status *status,
__le16 *qos, s8 *noise)
{
struct mwl8k_rxd_8366_ap *rxd = _rxd;
if (!(rxd->rx_ctrl & MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST))
return -1;
rmb();
memset(status, 0, sizeof(*status));
status->signal = -rxd->rssi;
*noise = -rxd->noise_floor;
if (rxd->rate & MWL8K_8366_AP_RATE_INFO_MCS_FORMAT) {
status->flag |= RX_FLAG_HT;
if (rxd->rate & MWL8K_8366_AP_RATE_INFO_40MHZ)
status->flag |= RX_FLAG_40MHZ;
status->rate_idx = MWL8K_8366_AP_RATE_INFO_RATEID(rxd->rate);
} else {
int i;
for (i = 0; i < ARRAY_SIZE(mwl8k_rates_24); i++) {
if (mwl8k_rates_24[i].hw_value == rxd->rate) {
status->rate_idx = i;
break;
}
}
}
if (rxd->channel > 14) {
status->band = IEEE80211_BAND_5GHZ;
if (!(status->flag & RX_FLAG_HT))
status->rate_idx -= 5;
} else {
status->band = IEEE80211_BAND_2GHZ;
}
status->freq = ieee80211_channel_to_frequency(rxd->channel,
status->band);
*qos = rxd->qos_control;
if ((rxd->rx_status != MWL8K_8366_AP_RXSTAT_GENERAL_DECRYPT_ERR) &&
(rxd->rx_status & MWL8K_8366_AP_RXSTAT_DECRYPT_ERR_MASK) &&
(rxd->rx_status & MWL8K_8366_AP_RXSTAT_TKIP_DECRYPT_MIC_ERR))
status->flag |= RX_FLAG_MMIC_ERROR;
return le16_to_cpu(rxd->pkt_len);
}
static struct rxd_ops rxd_8366_ap_ops = {
.rxd_size = sizeof(struct mwl8k_rxd_8366_ap),
.rxd_init = mwl8k_rxd_8366_ap_init,
.rxd_refill = mwl8k_rxd_8366_ap_refill,
.rxd_process = mwl8k_rxd_8366_ap_process,
};
/*
* Packet reception for STA firmware.
*/
struct mwl8k_rxd_sta {
__le16 pkt_len;
__u8 link_quality;
__u8 noise_level;
__le32 pkt_phys_addr;
__le32 next_rxd_phys_addr;
__le16 qos_control;
__le16 rate_info;
__le32 pad0[4];
__u8 rssi;
__u8 channel;
__le16 pad1;
__u8 rx_ctrl;
__u8 rx_status;
__u8 pad2[2];
} __packed;
#define MWL8K_STA_RATE_INFO_SHORTPRE 0x8000
#define MWL8K_STA_RATE_INFO_ANTSELECT(x) (((x) >> 11) & 0x3)
#define MWL8K_STA_RATE_INFO_RATEID(x) (((x) >> 3) & 0x3f)
#define MWL8K_STA_RATE_INFO_40MHZ 0x0004
#define MWL8K_STA_RATE_INFO_SHORTGI 0x0002
#define MWL8K_STA_RATE_INFO_MCS_FORMAT 0x0001
#define MWL8K_STA_RX_CTRL_OWNED_BY_HOST 0x02
#define MWL8K_STA_RX_CTRL_DECRYPT_ERROR 0x04
/* ICV=0 or MIC=1 */
#define MWL8K_STA_RX_CTRL_DEC_ERR_TYPE 0x08
/* Key is uploaded only in failure case */
#define MWL8K_STA_RX_CTRL_KEY_INDEX 0x30
static void mwl8k_rxd_sta_init(void *_rxd, dma_addr_t next_dma_addr)
{
struct mwl8k_rxd_sta *rxd = _rxd;
rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr);
rxd->rx_ctrl = MWL8K_STA_RX_CTRL_OWNED_BY_HOST;
}
static void mwl8k_rxd_sta_refill(void *_rxd, dma_addr_t addr, int len)
{
struct mwl8k_rxd_sta *rxd = _rxd;
rxd->pkt_len = cpu_to_le16(len);
rxd->pkt_phys_addr = cpu_to_le32(addr);
wmb();
rxd->rx_ctrl = 0;
}
static int
mwl8k_rxd_sta_process(void *_rxd, struct ieee80211_rx_status *status,
__le16 *qos, s8 *noise)
{
struct mwl8k_rxd_sta *rxd = _rxd;
u16 rate_info;
if (!(rxd->rx_ctrl & MWL8K_STA_RX_CTRL_OWNED_BY_HOST))
return -1;
rmb();
rate_info = le16_to_cpu(rxd->rate_info);
memset(status, 0, sizeof(*status));
status->signal = -rxd->rssi;
*noise = -rxd->noise_level;
status->antenna = MWL8K_STA_RATE_INFO_ANTSELECT(rate_info);
status->rate_idx = MWL8K_STA_RATE_INFO_RATEID(rate_info);
if (rate_info & MWL8K_STA_RATE_INFO_SHORTPRE)
status->flag |= RX_FLAG_SHORTPRE;
if (rate_info & MWL8K_STA_RATE_INFO_40MHZ)
status->flag |= RX_FLAG_40MHZ;
if (rate_info & MWL8K_STA_RATE_INFO_SHORTGI)
status->flag |= RX_FLAG_SHORT_GI;
if (rate_info & MWL8K_STA_RATE_INFO_MCS_FORMAT)
status->flag |= RX_FLAG_HT;
if (rxd->channel > 14) {
status->band = IEEE80211_BAND_5GHZ;
if (!(status->flag & RX_FLAG_HT))
status->rate_idx -= 5;
} else {
status->band = IEEE80211_BAND_2GHZ;
}
status->freq = ieee80211_channel_to_frequency(rxd->channel,
status->band);
*qos = rxd->qos_control;
if ((rxd->rx_ctrl & MWL8K_STA_RX_CTRL_DECRYPT_ERROR) &&
(rxd->rx_ctrl & MWL8K_STA_RX_CTRL_DEC_ERR_TYPE))
status->flag |= RX_FLAG_MMIC_ERROR;
return le16_to_cpu(rxd->pkt_len);
}
static struct rxd_ops rxd_sta_ops = {
.rxd_size = sizeof(struct mwl8k_rxd_sta),
.rxd_init = mwl8k_rxd_sta_init,
.rxd_refill = mwl8k_rxd_sta_refill,
.rxd_process = mwl8k_rxd_sta_process,
};
#define MWL8K_RX_DESCS 256
#define MWL8K_RX_MAXSZ 3800
static int mwl8k_rxq_init(struct ieee80211_hw *hw, int index)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_rx_queue *rxq = priv->rxq + index;
int size;
int i;
rxq->rxd_count = 0;
rxq->head = 0;
rxq->tail = 0;
size = MWL8K_RX_DESCS * priv->rxd_ops->rxd_size;
rxq->rxd = pci_alloc_consistent(priv->pdev, size, &rxq->rxd_dma);
if (rxq->rxd == NULL) {
wiphy_err(hw->wiphy, "failed to alloc RX descriptors\n");
return -ENOMEM;
}
memset(rxq->rxd, 0, size);
rxq->buf = kcalloc(MWL8K_RX_DESCS, sizeof(*rxq->buf), GFP_KERNEL);
if (rxq->buf == NULL) {
wiphy_err(hw->wiphy, "failed to alloc RX skbuff list\n");
pci_free_consistent(priv->pdev, size, rxq->rxd, rxq->rxd_dma);
return -ENOMEM;
}
for (i = 0; i < MWL8K_RX_DESCS; i++) {
int desc_size;
void *rxd;
int nexti;
dma_addr_t next_dma_addr;
desc_size = priv->rxd_ops->rxd_size;
rxd = rxq->rxd + (i * priv->rxd_ops->rxd_size);
nexti = i + 1;
if (nexti == MWL8K_RX_DESCS)
nexti = 0;
next_dma_addr = rxq->rxd_dma + (nexti * desc_size);
priv->rxd_ops->rxd_init(rxd, next_dma_addr);
}
return 0;
}
static int rxq_refill(struct ieee80211_hw *hw, int index, int limit)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_rx_queue *rxq = priv->rxq + index;
int refilled;
refilled = 0;
while (rxq->rxd_count < MWL8K_RX_DESCS && limit--) {
struct sk_buff *skb;
dma_addr_t addr;
int rx;
void *rxd;
skb = dev_alloc_skb(MWL8K_RX_MAXSZ);
if (skb == NULL)
break;
addr = pci_map_single(priv->pdev, skb->data,
MWL8K_RX_MAXSZ, DMA_FROM_DEVICE);
rxq->rxd_count++;
rx = rxq->tail++;
if (rxq->tail == MWL8K_RX_DESCS)
rxq->tail = 0;
rxq->buf[rx].skb = skb;
dma_unmap_addr_set(&rxq->buf[rx], dma, addr);
rxd = rxq->rxd + (rx * priv->rxd_ops->rxd_size);
priv->rxd_ops->rxd_refill(rxd, addr, MWL8K_RX_MAXSZ);
refilled++;
}
return refilled;
}
/* Must be called only when the card's reception is completely halted */
static void mwl8k_rxq_deinit(struct ieee80211_hw *hw, int index)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_rx_queue *rxq = priv->rxq + index;
int i;
if (rxq->rxd == NULL)
return;
for (i = 0; i < MWL8K_RX_DESCS; i++) {
if (rxq->buf[i].skb != NULL) {
pci_unmap_single(priv->pdev,
dma_unmap_addr(&rxq->buf[i], dma),
MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE);
dma_unmap_addr_set(&rxq->buf[i], dma, 0);
kfree_skb(rxq->buf[i].skb);
rxq->buf[i].skb = NULL;
}
}
kfree(rxq->buf);
rxq->buf = NULL;
pci_free_consistent(priv->pdev,
MWL8K_RX_DESCS * priv->rxd_ops->rxd_size,
rxq->rxd, rxq->rxd_dma);
rxq->rxd = NULL;
}
/*
* Scan a list of BSSIDs to process for finalize join.
* Allows for extension to process multiple BSSIDs.
*/
static inline int
mwl8k_capture_bssid(struct mwl8k_priv *priv, struct ieee80211_hdr *wh)
{
return priv->capture_beacon &&
ieee80211_is_beacon(wh->frame_control) &&
!compare_ether_addr(wh->addr3, priv->capture_bssid);
}
static inline void mwl8k_save_beacon(struct ieee80211_hw *hw,
struct sk_buff *skb)
{
struct mwl8k_priv *priv = hw->priv;
priv->capture_beacon = false;
memset(priv->capture_bssid, 0, ETH_ALEN);
/*
* Use GFP_ATOMIC as rxq_process is called from
* the primary interrupt handler, memory allocation call
* must not sleep.
*/
priv->beacon_skb = skb_copy(skb, GFP_ATOMIC);
if (priv->beacon_skb != NULL)
ieee80211_queue_work(hw, &priv->finalize_join_worker);
}
static inline struct mwl8k_vif *mwl8k_find_vif_bss(struct list_head *vif_list,
u8 *bssid)
{
struct mwl8k_vif *mwl8k_vif;
list_for_each_entry(mwl8k_vif,
vif_list, list) {
if (memcmp(bssid, mwl8k_vif->bssid,
ETH_ALEN) == 0)
return mwl8k_vif;
}
return NULL;
}
static int rxq_process(struct ieee80211_hw *hw, int index, int limit)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_vif *mwl8k_vif = NULL;
struct mwl8k_rx_queue *rxq = priv->rxq + index;
int processed;
processed = 0;
while (rxq->rxd_count && limit--) {
struct sk_buff *skb;
void *rxd;
int pkt_len;
struct ieee80211_rx_status status;
struct ieee80211_hdr *wh;
__le16 qos;
skb = rxq->buf[rxq->head].skb;
if (skb == NULL)
break;
rxd = rxq->rxd + (rxq->head * priv->rxd_ops->rxd_size);
pkt_len = priv->rxd_ops->rxd_process(rxd, &status, &qos,
&priv->noise);
if (pkt_len < 0)
break;
rxq->buf[rxq->head].skb = NULL;
pci_unmap_single(priv->pdev,
dma_unmap_addr(&rxq->buf[rxq->head], dma),
MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE);
dma_unmap_addr_set(&rxq->buf[rxq->head], dma, 0);
rxq->head++;
if (rxq->head == MWL8K_RX_DESCS)
rxq->head = 0;
rxq->rxd_count--;
wh = &((struct mwl8k_dma_data *)skb->data)->wh;
/*
* Check for a pending join operation. Save a
* copy of the beacon and schedule a tasklet to
* send a FINALIZE_JOIN command to the firmware.
*/
if (mwl8k_capture_bssid(priv, (void *)skb->data))
mwl8k_save_beacon(hw, skb);
if (ieee80211_has_protected(wh->frame_control)) {
/* Check if hw crypto has been enabled for
* this bss. If yes, set the status flags
* accordingly
*/
mwl8k_vif = mwl8k_find_vif_bss(&priv->vif_list,
wh->addr1);
if (mwl8k_vif != NULL &&
mwl8k_vif->is_hw_crypto_enabled) {
/*
* When MMIC ERROR is encountered
* by the firmware, payload is
* dropped and only 32 bytes of
* mwl8k Firmware header is sent
* to the host.
*
* We need to add four bytes of
* key information. In it
* MAC80211 expects keyidx set to
* 0 for triggering Counter
* Measure of MMIC failure.
*/
if (status.flag & RX_FLAG_MMIC_ERROR) {
struct mwl8k_dma_data *tr;
tr = (struct mwl8k_dma_data *)skb->data;
memset((void *)&(tr->data), 0, 4);
pkt_len += 4;
}
if (!ieee80211_is_auth(wh->frame_control))
status.flag |= RX_FLAG_IV_STRIPPED |
RX_FLAG_DECRYPTED |
RX_FLAG_MMIC_STRIPPED;
}
}
skb_put(skb, pkt_len);
mwl8k_remove_dma_header(skb, qos);
memcpy(IEEE80211_SKB_RXCB(skb), &status, sizeof(status));
ieee80211_rx_irqsafe(hw, skb);
processed++;
}
return processed;
}
/*
* Packet transmission.
*/
#define MWL8K_TXD_STATUS_OK 0x00000001
#define MWL8K_TXD_STATUS_OK_RETRY 0x00000002
#define MWL8K_TXD_STATUS_OK_MORE_RETRY 0x00000004
#define MWL8K_TXD_STATUS_MULTICAST_TX 0x00000008
#define MWL8K_TXD_STATUS_FW_OWNED 0x80000000
#define MWL8K_QOS_QLEN_UNSPEC 0xff00
#define MWL8K_QOS_ACK_POLICY_MASK 0x0060
#define MWL8K_QOS_ACK_POLICY_NORMAL 0x0000
#define MWL8K_QOS_ACK_POLICY_BLOCKACK 0x0060
#define MWL8K_QOS_EOSP 0x0010
struct mwl8k_tx_desc {
__le32 status;
__u8 data_rate;
__u8 tx_priority;
__le16 qos_control;
__le32 pkt_phys_addr;
__le16 pkt_len;
__u8 dest_MAC_addr[ETH_ALEN];
__le32 next_txd_phys_addr;
__le32 timestamp;
__le16 rate_info;
__u8 peer_id;
__u8 tx_frag_cnt;
} __packed;
#define MWL8K_TX_DESCS 128
static int mwl8k_txq_init(struct ieee80211_hw *hw, int index)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_tx_queue *txq = priv->txq + index;
int size;
int i;
txq->len = 0;
txq->head = 0;
txq->tail = 0;
size = MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc);
txq->txd = pci_alloc_consistent(priv->pdev, size, &txq->txd_dma);
if (txq->txd == NULL) {
wiphy_err(hw->wiphy, "failed to alloc TX descriptors\n");
return -ENOMEM;
}
memset(txq->txd, 0, size);
txq->skb = kcalloc(MWL8K_TX_DESCS, sizeof(*txq->skb), GFP_KERNEL);
if (txq->skb == NULL) {
wiphy_err(hw->wiphy, "failed to alloc TX skbuff list\n");
pci_free_consistent(priv->pdev, size, txq->txd, txq->txd_dma);
return -ENOMEM;
}
for (i = 0; i < MWL8K_TX_DESCS; i++) {
struct mwl8k_tx_desc *tx_desc;
int nexti;
tx_desc = txq->txd + i;
nexti = (i + 1) % MWL8K_TX_DESCS;
tx_desc->status = 0;
tx_desc->next_txd_phys_addr =
cpu_to_le32(txq->txd_dma + nexti * sizeof(*tx_desc));
}
return 0;
}
static inline void mwl8k_tx_start(struct mwl8k_priv *priv)
{
iowrite32(MWL8K_H2A_INT_PPA_READY,
priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
iowrite32(MWL8K_H2A_INT_DUMMY,
priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
ioread32(priv->regs + MWL8K_HIU_INT_CODE);
}
static void mwl8k_dump_tx_rings(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
int i;
for (i = 0; i < mwl8k_tx_queues(priv); i++) {
struct mwl8k_tx_queue *txq = priv->txq + i;
int fw_owned = 0;
int drv_owned = 0;
int unused = 0;
int desc;
for (desc = 0; desc < MWL8K_TX_DESCS; desc++) {
struct mwl8k_tx_desc *tx_desc = txq->txd + desc;
u32 status;
status = le32_to_cpu(tx_desc->status);
if (status & MWL8K_TXD_STATUS_FW_OWNED)
fw_owned++;
else
drv_owned++;
if (tx_desc->pkt_len == 0)
unused++;
}
wiphy_err(hw->wiphy,
"txq[%d] len=%d head=%d tail=%d "
"fw_owned=%d drv_owned=%d unused=%d\n",
i,
txq->len, txq->head, txq->tail,
fw_owned, drv_owned, unused);
}
}
/*
* Must be called with priv->fw_mutex held and tx queues stopped.
*/
#define MWL8K_TX_WAIT_TIMEOUT_MS 5000
static int mwl8k_tx_wait_empty(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
DECLARE_COMPLETION_ONSTACK(tx_wait);
int retry;
int rc;
might_sleep();
/* Since fw restart is in progress, allow only the firmware
* commands from the restart code and block the other
* commands since they are going to fail in any case since
* the firmware has crashed
*/
if (priv->hw_restart_in_progress) {
if (priv->hw_restart_owner == current)
return 0;
else
return -EBUSY;
}
/*
* The TX queues are stopped at this point, so this test
* doesn't need to take ->tx_lock.
*/
if (!priv->pending_tx_pkts)
return 0;
retry = 0;
rc = 0;
spin_lock_bh(&priv->tx_lock);
priv->tx_wait = &tx_wait;
while (!rc) {
int oldcount;
unsigned long timeout;
oldcount = priv->pending_tx_pkts;
spin_unlock_bh(&priv->tx_lock);
timeout = wait_for_completion_timeout(&tx_wait,
msecs_to_jiffies(MWL8K_TX_WAIT_TIMEOUT_MS));
spin_lock_bh(&priv->tx_lock);
if (timeout) {
WARN_ON(priv->pending_tx_pkts);
if (retry)
wiphy_notice(hw->wiphy, "tx rings drained\n");
break;
}
if (priv->pending_tx_pkts < oldcount) {
wiphy_notice(hw->wiphy,
"waiting for tx rings to drain (%d -> %d pkts)\n",
oldcount, priv->pending_tx_pkts);
retry = 1;
continue;
}
priv->tx_wait = NULL;
wiphy_err(hw->wiphy, "tx rings stuck for %d ms\n",
MWL8K_TX_WAIT_TIMEOUT_MS);
mwl8k_dump_tx_rings(hw);
priv->hw_restart_in_progress = true;
ieee80211_queue_work(hw, &priv->fw_reload);
rc = -ETIMEDOUT;
}
spin_unlock_bh(&priv->tx_lock);
return rc;
}
#define MWL8K_TXD_SUCCESS(status) \
((status) & (MWL8K_TXD_STATUS_OK | \
MWL8K_TXD_STATUS_OK_RETRY | \
MWL8K_TXD_STATUS_OK_MORE_RETRY))
static int mwl8k_tid_queue_mapping(u8 tid)
{
BUG_ON(tid > 7);
switch (tid) {
case 0:
case 3:
return IEEE80211_AC_BE;
break;
case 1:
case 2:
return IEEE80211_AC_BK;
break;
case 4:
case 5:
return IEEE80211_AC_VI;
break;
case 6:
case 7:
return IEEE80211_AC_VO;
break;
default:
return -1;
break;
}
}
/* The firmware will fill in the rate information
* for each packet that gets queued in the hardware
* and these macros will interpret that info.
*/
#define RI_FORMAT(a) (a & 0x0001)
#define RI_RATE_ID_MCS(a) ((a & 0x01f8) >> 3)
static int
mwl8k_txq_reclaim(struct ieee80211_hw *hw, int index, int limit, int force)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_tx_queue *txq = priv->txq + index;
int processed;
processed = 0;
while (txq->len > 0 && limit--) {
int tx;
struct mwl8k_tx_desc *tx_desc;
unsigned long addr;
int size;
struct sk_buff *skb;
struct ieee80211_tx_info *info;
u32 status;
struct ieee80211_sta *sta;
struct mwl8k_sta *sta_info = NULL;
u16 rate_info;
struct ieee80211_hdr *wh;
tx = txq->head;
tx_desc = txq->txd + tx;
status = le32_to_cpu(tx_desc->status);
if (status & MWL8K_TXD_STATUS_FW_OWNED) {
if (!force)
break;
tx_desc->status &=
~cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED);
}
txq->head = (tx + 1) % MWL8K_TX_DESCS;
BUG_ON(txq->len == 0);
txq->len--;
priv->pending_tx_pkts--;
addr = le32_to_cpu(tx_desc->pkt_phys_addr);
size = le16_to_cpu(tx_desc->pkt_len);
skb = txq->skb[tx];
txq->skb[tx] = NULL;
BUG_ON(skb == NULL);
pci_unmap_single(priv->pdev, addr, size, PCI_DMA_TODEVICE);
mwl8k_remove_dma_header(skb, tx_desc->qos_control);
wh = (struct ieee80211_hdr *) skb->data;
/* Mark descriptor as unused */
tx_desc->pkt_phys_addr = 0;
tx_desc->pkt_len = 0;
info = IEEE80211_SKB_CB(skb);
if (ieee80211_is_data(wh->frame_control)) {
sta = info->control.sta;
if (sta) {
sta_info = MWL8K_STA(sta);
BUG_ON(sta_info == NULL);
rate_info = le16_to_cpu(tx_desc->rate_info);
/* If rate is < 6.5 Mpbs for an ht station
* do not form an ampdu. If the station is a
* legacy station (format = 0), do not form an
* ampdu
*/
if (RI_RATE_ID_MCS(rate_info) < 1 ||
RI_FORMAT(rate_info) == 0) {
sta_info->is_ampdu_allowed = false;
} else {
sta_info->is_ampdu_allowed = true;
}
}
}
ieee80211_tx_info_clear_status(info);
/* Rate control is happening in the firmware.
* Ensure no tx rate is being reported.
*/
info->status.rates[0].idx = -1;
info->status.rates[0].count = 1;
if (MWL8K_TXD_SUCCESS(status))
info->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status_irqsafe(hw, skb);
processed++;
}
return processed;
}
/* must be called only when the card's transmit is completely halted */
static void mwl8k_txq_deinit(struct ieee80211_hw *hw, int index)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_tx_queue *txq = priv->txq + index;
if (txq->txd == NULL)
return;
mwl8k_txq_reclaim(hw, index, INT_MAX, 1);
kfree(txq->skb);
txq->skb = NULL;
pci_free_consistent(priv->pdev,
MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc),
txq->txd, txq->txd_dma);
txq->txd = NULL;
}
/* caller must hold priv->stream_lock when calling the stream functions */
static struct mwl8k_ampdu_stream *
mwl8k_add_stream(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 tid)
{
struct mwl8k_ampdu_stream *stream;
struct mwl8k_priv *priv = hw->priv;
int i;
for (i = 0; i < priv->num_ampdu_queues; i++) {
stream = &priv->ampdu[i];
if (stream->state == AMPDU_NO_STREAM) {
stream->sta = sta;
stream->state = AMPDU_STREAM_NEW;
stream->tid = tid;
stream->idx = i;
stream->txq_idx = MWL8K_TX_WMM_QUEUES + i;
wiphy_debug(hw->wiphy, "Added a new stream for %pM %d",
sta->addr, tid);
return stream;
}
}
return NULL;
}
static int
mwl8k_start_stream(struct ieee80211_hw *hw, struct mwl8k_ampdu_stream *stream)
{
int ret;
/* if the stream has already been started, don't start it again */
if (stream->state != AMPDU_STREAM_NEW)
return 0;
ret = ieee80211_start_tx_ba_session(stream->sta, stream->tid, 0);
if (ret)
wiphy_debug(hw->wiphy, "Failed to start stream for %pM %d: "
"%d\n", stream->sta->addr, stream->tid, ret);
else
wiphy_debug(hw->wiphy, "Started stream for %pM %d\n",
stream->sta->addr, stream->tid);
return ret;
}
static void
mwl8k_remove_stream(struct ieee80211_hw *hw, struct mwl8k_ampdu_stream *stream)
{
wiphy_debug(hw->wiphy, "Remove stream for %pM %d\n", stream->sta->addr,
stream->tid);
memset(stream, 0, sizeof(*stream));
}
static struct mwl8k_ampdu_stream *
mwl8k_lookup_stream(struct ieee80211_hw *hw, u8 *addr, u8 tid)
{
struct mwl8k_priv *priv = hw->priv;
int i;
for (i = 0 ; i < priv->num_ampdu_queues; i++) {
struct mwl8k_ampdu_stream *stream;
stream = &priv->ampdu[i];
if (stream->state == AMPDU_NO_STREAM)
continue;
if (!memcmp(stream->sta->addr, addr, ETH_ALEN) &&
stream->tid == tid)
return stream;
}
return NULL;
}
#define MWL8K_AMPDU_PACKET_THRESHOLD 64
static inline bool mwl8k_ampdu_allowed(struct ieee80211_sta *sta, u8 tid)
{
struct mwl8k_sta *sta_info = MWL8K_STA(sta);
struct tx_traffic_info *tx_stats;
BUG_ON(tid >= MWL8K_MAX_TID);
tx_stats = &sta_info->tx_stats[tid];
return sta_info->is_ampdu_allowed &&
tx_stats->pkts > MWL8K_AMPDU_PACKET_THRESHOLD;
}
static inline void mwl8k_tx_count_packet(struct ieee80211_sta *sta, u8 tid)
{
struct mwl8k_sta *sta_info = MWL8K_STA(sta);
struct tx_traffic_info *tx_stats;
BUG_ON(tid >= MWL8K_MAX_TID);
tx_stats = &sta_info->tx_stats[tid];
if (tx_stats->start_time == 0)
tx_stats->start_time = jiffies;
/* reset the packet count after each second elapses. If the number of
* packets ever exceeds the ampdu_min_traffic threshold, we will allow
* an ampdu stream to be started.
*/
if (jiffies - tx_stats->start_time > HZ) {
tx_stats->pkts = 0;
tx_stats->start_time = 0;
} else
tx_stats->pkts++;
}
static void
mwl8k_txq_xmit(struct ieee80211_hw *hw, int index, struct sk_buff *skb)
{
struct mwl8k_priv *priv = hw->priv;
struct ieee80211_tx_info *tx_info;
struct mwl8k_vif *mwl8k_vif;
struct ieee80211_sta *sta;
struct ieee80211_hdr *wh;
struct mwl8k_tx_queue *txq;
struct mwl8k_tx_desc *tx;
dma_addr_t dma;
u32 txstatus;
u8 txdatarate;
u16 qos;
int txpriority;
u8 tid = 0;
struct mwl8k_ampdu_stream *stream = NULL;
bool start_ba_session = false;
bool mgmtframe = false;
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
wh = (struct ieee80211_hdr *)skb->data;
if (ieee80211_is_data_qos(wh->frame_control))
qos = le16_to_cpu(*((__le16 *)ieee80211_get_qos_ctl(wh)));
else
qos = 0;
if (ieee80211_is_mgmt(wh->frame_control))
mgmtframe = true;
if (priv->ap_fw)
mwl8k_encapsulate_tx_frame(priv, skb);
else
mwl8k_add_dma_header(priv, skb, 0, 0);
wh = &((struct mwl8k_dma_data *)skb->data)->wh;
tx_info = IEEE80211_SKB_CB(skb);
sta = tx_info->control.sta;
mwl8k_vif = MWL8K_VIF(tx_info->control.vif);
if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
wh->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
wh->seq_ctrl |= cpu_to_le16(mwl8k_vif->seqno);
mwl8k_vif->seqno += 0x10;
}
/* Setup firmware control bit fields for each frame type. */
txstatus = 0;
txdatarate = 0;
if (ieee80211_is_mgmt(wh->frame_control) ||
ieee80211_is_ctl(wh->frame_control)) {
txdatarate = 0;
qos |= MWL8K_QOS_QLEN_UNSPEC | MWL8K_QOS_EOSP;
} else if (ieee80211_is_data(wh->frame_control)) {
txdatarate = 1;
if (is_multicast_ether_addr(wh->addr1))
txstatus |= MWL8K_TXD_STATUS_MULTICAST_TX;
qos &= ~MWL8K_QOS_ACK_POLICY_MASK;
if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
qos |= MWL8K_QOS_ACK_POLICY_BLOCKACK;
else
qos |= MWL8K_QOS_ACK_POLICY_NORMAL;
}
/* Queue ADDBA request in the respective data queue. While setting up
* the ampdu stream, mac80211 queues further packets for that
* particular ra/tid pair. However, packets piled up in the hardware
* for that ra/tid pair will still go out. ADDBA request and the
* related data packets going out from different queues asynchronously
* will cause a shift in the receiver window which might result in
* ampdu packets getting dropped at the receiver after the stream has
* been setup.
*/
if (unlikely(ieee80211_is_action(wh->frame_control) &&
mgmt->u.action.category == WLAN_CATEGORY_BACK &&
mgmt->u.action.u.addba_req.action_code == WLAN_ACTION_ADDBA_REQ &&
priv->ap_fw)) {
u16 capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
index = mwl8k_tid_queue_mapping(tid);
}
txpriority = index;
if (priv->ap_fw && sta && sta->ht_cap.ht_supported
&& skb->protocol != cpu_to_be16(ETH_P_PAE)
&& ieee80211_is_data_qos(wh->frame_control)) {
tid = qos & 0xf;
mwl8k_tx_count_packet(sta, tid);
spin_lock(&priv->stream_lock);
stream = mwl8k_lookup_stream(hw, sta->addr, tid);
if (stream != NULL) {
if (stream->state == AMPDU_STREAM_ACTIVE) {
txpriority = stream->txq_idx;
index = stream->txq_idx;
} else if (stream->state == AMPDU_STREAM_NEW) {
/* We get here if the driver sends us packets
* after we've initiated a stream, but before
* our ampdu_action routine has been called
* with IEEE80211_AMPDU_TX_START to get the SSN
* for the ADDBA request. So this packet can
* go out with no risk of sequence number
* mismatch. No special handling is required.
*/
} else {
/* Drop packets that would go out after the
* ADDBA request was sent but before the ADDBA
* response is received. If we don't do this,
* the recipient would probably receive it
* after the ADDBA request with SSN 0. This
* will cause the recipient's BA receive window
* to shift, which would cause the subsequent
* packets in the BA stream to be discarded.
* mac80211 queues our packets for us in this
* case, so this is really just a safety check.
*/
wiphy_warn(hw->wiphy,
"Cannot send packet while ADDBA "
"dialog is underway.\n");
spin_unlock(&priv->stream_lock);
dev_kfree_skb(skb);
return;
}
} else {
/* Defer calling mwl8k_start_stream so that the current
* skb can go out before the ADDBA request. This
* prevents sequence number mismatch at the recepient
* as described above.
*/
if (mwl8k_ampdu_allowed(sta, tid)) {
stream = mwl8k_add_stream(hw, sta, tid);
if (stream != NULL)
start_ba_session = true;
}
}
spin_unlock(&priv->stream_lock);
}
dma = pci_map_single(priv->pdev, skb->data,
skb->len, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(priv->pdev, dma)) {
wiphy_debug(hw->wiphy,
"failed to dma map skb, dropping TX frame.\n");
if (start_ba_session) {
spin_lock(&priv->stream_lock);
mwl8k_remove_stream(hw, stream);
spin_unlock(&priv->stream_lock);
}
dev_kfree_skb(skb);
return;
}
spin_lock_bh(&priv->tx_lock);
txq = priv->txq + index;
/* Mgmt frames that go out frequently are probe
* responses. Other mgmt frames got out relatively
* infrequently. Hence reserve 2 buffers so that
* other mgmt frames do not get dropped due to an
* already queued probe response in one of the
* reserved buffers.
*/
if (txq->len >= MWL8K_TX_DESCS - 2) {
if (!mgmtframe || txq->len == MWL8K_TX_DESCS) {
if (start_ba_session) {
spin_lock(&priv->stream_lock);
mwl8k_remove_stream(hw, stream);
spin_unlock(&priv->stream_lock);
}
spin_unlock_bh(&priv->tx_lock);
dev_kfree_skb(skb);
return;
}
}
BUG_ON(txq->skb[txq->tail] != NULL);
txq->skb[txq->tail] = skb;
tx = txq->txd + txq->tail;
tx->data_rate = txdatarate;
tx->tx_priority = txpriority;
tx->qos_control = cpu_to_le16(qos);
tx->pkt_phys_addr = cpu_to_le32(dma);
tx->pkt_len = cpu_to_le16(skb->len);
tx->rate_info = 0;
if (!priv->ap_fw && tx_info->control.sta != NULL)
tx->peer_id = MWL8K_STA(tx_info->control.sta)->peer_id;
else
tx->peer_id = 0;
if (priv->ap_fw)
tx->timestamp = cpu_to_le32(ioread32(priv->regs +
MWL8K_HW_TIMER_REGISTER));
wmb();
tx->status = cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED | txstatus);
txq->len++;
priv->pending_tx_pkts++;
txq->tail++;
if (txq->tail == MWL8K_TX_DESCS)
txq->tail = 0;
mwl8k_tx_start(priv);
spin_unlock_bh(&priv->tx_lock);
/* Initiate the ampdu session here */
if (start_ba_session) {
spin_lock(&priv->stream_lock);
if (mwl8k_start_stream(hw, stream))
mwl8k_remove_stream(hw, stream);
spin_unlock(&priv->stream_lock);
}
}
/*
* Firmware access.
*
* We have the following requirements for issuing firmware commands:
* - Some commands require that the packet transmit path is idle when
* the command is issued. (For simplicity, we'll just quiesce the
* transmit path for every command.)
* - There are certain sequences of commands that need to be issued to
* the hardware sequentially, with no other intervening commands.
*
* This leads to an implementation of a "firmware lock" as a mutex that
* can be taken recursively, and which is taken by both the low-level
* command submission function (mwl8k_post_cmd) as well as any users of
* that function that require issuing of an atomic sequence of commands,
* and quiesces the transmit path whenever it's taken.
*/
static int mwl8k_fw_lock(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
if (priv->fw_mutex_owner != current) {
int rc;
mutex_lock(&priv->fw_mutex);
ieee80211_stop_queues(hw);
rc = mwl8k_tx_wait_empty(hw);
if (rc) {
if (!priv->hw_restart_in_progress)
ieee80211_wake_queues(hw);
mutex_unlock(&priv->fw_mutex);
return rc;
}
priv->fw_mutex_owner = current;
}
priv->fw_mutex_depth++;
return 0;
}
static void mwl8k_fw_unlock(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
if (!--priv->fw_mutex_depth) {
if (!priv->hw_restart_in_progress)
ieee80211_wake_queues(hw);
priv->fw_mutex_owner = NULL;
mutex_unlock(&priv->fw_mutex);
}
}
/*
* Command processing.
*/
/* Timeout firmware commands after 10s */
#define MWL8K_CMD_TIMEOUT_MS 10000
static int mwl8k_post_cmd(struct ieee80211_hw *hw, struct mwl8k_cmd_pkt *cmd)
{
DECLARE_COMPLETION_ONSTACK(cmd_wait);
struct mwl8k_priv *priv = hw->priv;
void __iomem *regs = priv->regs;
dma_addr_t dma_addr;
unsigned int dma_size;
int rc;
unsigned long timeout = 0;
u8 buf[32];
cmd->result = (__force __le16) 0xffff;
dma_size = le16_to_cpu(cmd->length);
dma_addr = pci_map_single(priv->pdev, cmd, dma_size,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(priv->pdev, dma_addr))
return -ENOMEM;
rc = mwl8k_fw_lock(hw);
if (rc) {
pci_unmap_single(priv->pdev, dma_addr, dma_size,
PCI_DMA_BIDIRECTIONAL);
return rc;
}
priv->hostcmd_wait = &cmd_wait;
iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR);
iowrite32(MWL8K_H2A_INT_DOORBELL,
regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
iowrite32(MWL8K_H2A_INT_DUMMY,
regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
timeout = wait_for_completion_timeout(&cmd_wait,
msecs_to_jiffies(MWL8K_CMD_TIMEOUT_MS));
priv->hostcmd_wait = NULL;
mwl8k_fw_unlock(hw);
pci_unmap_single(priv->pdev, dma_addr, dma_size,
PCI_DMA_BIDIRECTIONAL);
if (!timeout) {
wiphy_err(hw->wiphy, "Command %s timeout after %u ms\n",
mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
MWL8K_CMD_TIMEOUT_MS);
rc = -ETIMEDOUT;
} else {
int ms;
ms = MWL8K_CMD_TIMEOUT_MS - jiffies_to_msecs(timeout);
rc = cmd->result ? -EINVAL : 0;
if (rc)
wiphy_err(hw->wiphy, "Command %s error 0x%x\n",
mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
le16_to_cpu(cmd->result));
else if (ms > 2000)
wiphy_notice(hw->wiphy, "Command %s took %d ms\n",
mwl8k_cmd_name(cmd->code,
buf, sizeof(buf)),
ms);
}
return rc;
}
static int mwl8k_post_pervif_cmd(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct mwl8k_cmd_pkt *cmd)
{
if (vif != NULL)
cmd->macid = MWL8K_VIF(vif)->macid;
return mwl8k_post_cmd(hw, cmd);
}
/*
* Setup code shared between STA and AP firmware images.
*/
static void mwl8k_setup_2ghz_band(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
BUILD_BUG_ON(sizeof(priv->channels_24) != sizeof(mwl8k_channels_24));
memcpy(priv->channels_24, mwl8k_channels_24, sizeof(mwl8k_channels_24));
BUILD_BUG_ON(sizeof(priv->rates_24) != sizeof(mwl8k_rates_24));
memcpy(priv->rates_24, mwl8k_rates_24, sizeof(mwl8k_rates_24));
priv->band_24.band = IEEE80211_BAND_2GHZ;
priv->band_24.channels = priv->channels_24;
priv->band_24.n_channels = ARRAY_SIZE(mwl8k_channels_24);
priv->band_24.bitrates = priv->rates_24;
priv->band_24.n_bitrates = ARRAY_SIZE(mwl8k_rates_24);
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band_24;
}
static void mwl8k_setup_5ghz_band(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
BUILD_BUG_ON(sizeof(priv->channels_50) != sizeof(mwl8k_channels_50));
memcpy(priv->channels_50, mwl8k_channels_50, sizeof(mwl8k_channels_50));
BUILD_BUG_ON(sizeof(priv->rates_50) != sizeof(mwl8k_rates_50));
memcpy(priv->rates_50, mwl8k_rates_50, sizeof(mwl8k_rates_50));
priv->band_50.band = IEEE80211_BAND_5GHZ;
priv->band_50.channels = priv->channels_50;
priv->band_50.n_channels = ARRAY_SIZE(mwl8k_channels_50);
priv->band_50.bitrates = priv->rates_50;
priv->band_50.n_bitrates = ARRAY_SIZE(mwl8k_rates_50);
hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &priv->band_50;
}
/*
* CMD_GET_HW_SPEC (STA version).
*/
struct mwl8k_cmd_get_hw_spec_sta {
struct mwl8k_cmd_pkt header;
__u8 hw_rev;
__u8 host_interface;
__le16 num_mcaddrs;
__u8 perm_addr[ETH_ALEN];
__le16 region_code;
__le32 fw_rev;
__le32 ps_cookie;
__le32 caps;
__u8 mcs_bitmap[16];
__le32 rx_queue_ptr;
__le32 num_tx_queues;
__le32 tx_queue_ptrs[MWL8K_TX_WMM_QUEUES];
__le32 caps2;
__le32 num_tx_desc_per_queue;
__le32 total_rxd;
} __packed;
#define MWL8K_CAP_MAX_AMSDU 0x20000000
#define MWL8K_CAP_GREENFIELD 0x08000000
#define MWL8K_CAP_AMPDU 0x04000000
#define MWL8K_CAP_RX_STBC 0x01000000
#define MWL8K_CAP_TX_STBC 0x00800000
#define MWL8K_CAP_SHORTGI_40MHZ 0x00400000
#define MWL8K_CAP_SHORTGI_20MHZ 0x00200000
#define MWL8K_CAP_RX_ANTENNA_MASK 0x000e0000
#define MWL8K_CAP_TX_ANTENNA_MASK 0x0001c000
#define MWL8K_CAP_DELAY_BA 0x00003000
#define MWL8K_CAP_MIMO 0x00000200
#define MWL8K_CAP_40MHZ 0x00000100
#define MWL8K_CAP_BAND_MASK 0x00000007
#define MWL8K_CAP_5GHZ 0x00000004
#define MWL8K_CAP_2GHZ4 0x00000001
static void
mwl8k_set_ht_caps(struct ieee80211_hw *hw,
struct ieee80211_supported_band *band, u32 cap)
{
int rx_streams;
int tx_streams;
band->ht_cap.ht_supported = 1;
if (cap & MWL8K_CAP_MAX_AMSDU)
band->ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU;
if (cap & MWL8K_CAP_GREENFIELD)
band->ht_cap.cap |= IEEE80211_HT_CAP_GRN_FLD;
if (cap & MWL8K_CAP_AMPDU) {
hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
band->ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
band->ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_NONE;
}
if (cap & MWL8K_CAP_RX_STBC)
band->ht_cap.cap |= IEEE80211_HT_CAP_RX_STBC;
if (cap & MWL8K_CAP_TX_STBC)
band->ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC;
if (cap & MWL8K_CAP_SHORTGI_40MHZ)
band->ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
if (cap & MWL8K_CAP_SHORTGI_20MHZ)
band->ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
if (cap & MWL8K_CAP_DELAY_BA)
band->ht_cap.cap |= IEEE80211_HT_CAP_DELAY_BA;
if (cap & MWL8K_CAP_40MHZ)
band->ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
rx_streams = hweight32(cap & MWL8K_CAP_RX_ANTENNA_MASK);
tx_streams = hweight32(cap & MWL8K_CAP_TX_ANTENNA_MASK);
band->ht_cap.mcs.rx_mask[0] = 0xff;
if (rx_streams >= 2)
band->ht_cap.mcs.rx_mask[1] = 0xff;
if (rx_streams >= 3)
band->ht_cap.mcs.rx_mask[2] = 0xff;
band->ht_cap.mcs.rx_mask[4] = 0x01;
band->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
if (rx_streams != tx_streams) {
band->ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
band->ht_cap.mcs.tx_params |= (tx_streams - 1) <<
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
}
}
static void
mwl8k_set_caps(struct ieee80211_hw *hw, u32 caps)
{
struct mwl8k_priv *priv = hw->priv;
if ((caps & MWL8K_CAP_2GHZ4) || !(caps & MWL8K_CAP_BAND_MASK)) {
mwl8k_setup_2ghz_band(hw);
if (caps & MWL8K_CAP_MIMO)
mwl8k_set_ht_caps(hw, &priv->band_24, caps);
}
if (caps & MWL8K_CAP_5GHZ) {
mwl8k_setup_5ghz_band(hw);
if (caps & MWL8K_CAP_MIMO)
mwl8k_set_ht_caps(hw, &priv->band_50, caps);
}
}
static int mwl8k_cmd_get_hw_spec_sta(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_get_hw_spec_sta *cmd;
int rc;
int i;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr));
cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma);
cmd->num_tx_queues = cpu_to_le32(mwl8k_tx_queues(priv));
for (i = 0; i < mwl8k_tx_queues(priv); i++)
cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].txd_dma);
cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS);
cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS);
rc = mwl8k_post_cmd(hw, &cmd->header);
if (!rc) {
SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr);
priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs);
priv->fw_rev = le32_to_cpu(cmd->fw_rev);
priv->hw_rev = cmd->hw_rev;
mwl8k_set_caps(hw, le32_to_cpu(cmd->caps));
priv->ap_macids_supported = 0x00000000;
priv->sta_macids_supported = 0x00000001;
}
kfree(cmd);
return rc;
}
/*
* CMD_GET_HW_SPEC (AP version).
*/
struct mwl8k_cmd_get_hw_spec_ap {
struct mwl8k_cmd_pkt header;
__u8 hw_rev;
__u8 host_interface;
__le16 num_wcb;
__le16 num_mcaddrs;
__u8 perm_addr[ETH_ALEN];
__le16 region_code;
__le16 num_antenna;
__le32 fw_rev;
__le32 wcbbase0;
__le32 rxwrptr;
__le32 rxrdptr;
__le32 ps_cookie;
__le32 wcbbase1;
__le32 wcbbase2;
__le32 wcbbase3;
__le32 fw_api_version;
__le32 caps;
__le32 num_of_ampdu_queues;
__le32 wcbbase_ampdu[MWL8K_MAX_AMPDU_QUEUES];
} __packed;
static int mwl8k_cmd_get_hw_spec_ap(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_get_hw_spec_ap *cmd;
int rc, i;
u32 api_version;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr));
cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
rc = mwl8k_post_cmd(hw, &cmd->header);
if (!rc) {
int off;
api_version = le32_to_cpu(cmd->fw_api_version);
if (priv->device_info->fw_api_ap != api_version) {
printk(KERN_ERR "%s: Unsupported fw API version for %s."
" Expected %d got %d.\n", MWL8K_NAME,
priv->device_info->part_name,
priv->device_info->fw_api_ap,
api_version);
rc = -EINVAL;
goto done;
}
SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr);
priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs);
priv->fw_rev = le32_to_cpu(cmd->fw_rev);
priv->hw_rev = cmd->hw_rev;
mwl8k_set_caps(hw, le32_to_cpu(cmd->caps));
priv->ap_macids_supported = 0x000000ff;
priv->sta_macids_supported = 0x00000000;
priv->num_ampdu_queues = le32_to_cpu(cmd->num_of_ampdu_queues);
if (priv->num_ampdu_queues > MWL8K_MAX_AMPDU_QUEUES) {
wiphy_warn(hw->wiphy, "fw reported %d ampdu queues"
" but we only support %d.\n",
priv->num_ampdu_queues,
MWL8K_MAX_AMPDU_QUEUES);
priv->num_ampdu_queues = MWL8K_MAX_AMPDU_QUEUES;
}
off = le32_to_cpu(cmd->rxwrptr) & 0xffff;
iowrite32(priv->rxq[0].rxd_dma, priv->sram + off);
off = le32_to_cpu(cmd->rxrdptr) & 0xffff;
iowrite32(priv->rxq[0].rxd_dma, priv->sram + off);
priv->txq_offset[0] = le32_to_cpu(cmd->wcbbase0) & 0xffff;
priv->txq_offset[1] = le32_to_cpu(cmd->wcbbase1) & 0xffff;
priv->txq_offset[2] = le32_to_cpu(cmd->wcbbase2) & 0xffff;
priv->txq_offset[3] = le32_to_cpu(cmd->wcbbase3) & 0xffff;
for (i = 0; i < priv->num_ampdu_queues; i++)
priv->txq_offset[i + MWL8K_TX_WMM_QUEUES] =
le32_to_cpu(cmd->wcbbase_ampdu[i]) & 0xffff;
}
done:
kfree(cmd);
return rc;
}
/*
* CMD_SET_HW_SPEC.
*/
struct mwl8k_cmd_set_hw_spec {
struct mwl8k_cmd_pkt header;
__u8 hw_rev;
__u8 host_interface;
__le16 num_mcaddrs;
__u8 perm_addr[ETH_ALEN];
__le16 region_code;
__le32 fw_rev;
__le32 ps_cookie;
__le32 caps;
__le32 rx_queue_ptr;
__le32 num_tx_queues;
__le32 tx_queue_ptrs[MWL8K_MAX_TX_QUEUES];
__le32 flags;
__le32 num_tx_desc_per_queue;
__le32 total_rxd;
} __packed;
/* If enabled, MWL8K_SET_HW_SPEC_FLAG_ENABLE_LIFE_TIME_EXPIRY will cause
* packets to expire 500 ms after the timestamp in the tx descriptor. That is,
* the packets that are queued for more than 500ms, will be dropped in the
* hardware. This helps minimizing the issues caused due to head-of-line
* blocking where a slow client can hog the bandwidth and affect traffic to a
* faster client.
*/
#define MWL8K_SET_HW_SPEC_FLAG_ENABLE_LIFE_TIME_EXPIRY 0x00000400
#define MWL8K_SET_HW_SPEC_FLAG_GENERATE_CCMP_HDR 0x00000200
#define MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT 0x00000080
#define MWL8K_SET_HW_SPEC_FLAG_HOSTFORM_PROBERESP 0x00000020
#define MWL8K_SET_HW_SPEC_FLAG_HOSTFORM_BEACON 0x00000010
static int mwl8k_cmd_set_hw_spec(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_set_hw_spec *cmd;
int rc;
int i;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_HW_SPEC);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma);
cmd->num_tx_queues = cpu_to_le32(mwl8k_tx_queues(priv));
/*
* Mac80211 stack has Q0 as highest priority and Q3 as lowest in
* that order. Firmware has Q3 as highest priority and Q0 as lowest
* in that order. Map Q3 of mac80211 to Q0 of firmware so that the
* priority is interpreted the right way in firmware.
*/
for (i = 0; i < mwl8k_tx_queues(priv); i++) {
int j = mwl8k_tx_queues(priv) - 1 - i;
cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[j].txd_dma);
}
cmd->flags = cpu_to_le32(MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT |
MWL8K_SET_HW_SPEC_FLAG_HOSTFORM_PROBERESP |
MWL8K_SET_HW_SPEC_FLAG_HOSTFORM_BEACON |
MWL8K_SET_HW_SPEC_FLAG_ENABLE_LIFE_TIME_EXPIRY |
MWL8K_SET_HW_SPEC_FLAG_GENERATE_CCMP_HDR);
cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS);
cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_MAC_MULTICAST_ADR.
*/
struct mwl8k_cmd_mac_multicast_adr {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 numaddr;
__u8 addr[0][ETH_ALEN];
};
#define MWL8K_ENABLE_RX_DIRECTED 0x0001
#define MWL8K_ENABLE_RX_MULTICAST 0x0002
#define MWL8K_ENABLE_RX_ALL_MULTICAST 0x0004
#define MWL8K_ENABLE_RX_BROADCAST 0x0008
static struct mwl8k_cmd_pkt *
__mwl8k_cmd_mac_multicast_adr(struct ieee80211_hw *hw, int allmulti,
struct netdev_hw_addr_list *mc_list)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_mac_multicast_adr *cmd;
int size;
int mc_count = 0;
if (mc_list)
mc_count = netdev_hw_addr_list_count(mc_list);
if (allmulti || mc_count > priv->num_mcaddrs) {
allmulti = 1;
mc_count = 0;
}
size = sizeof(*cmd) + mc_count * ETH_ALEN;
cmd = kzalloc(size, GFP_ATOMIC);
if (cmd == NULL)
return NULL;
cmd->header.code = cpu_to_le16(MWL8K_CMD_MAC_MULTICAST_ADR);
cmd->header.length = cpu_to_le16(size);
cmd->action = cpu_to_le16(MWL8K_ENABLE_RX_DIRECTED |
MWL8K_ENABLE_RX_BROADCAST);
if (allmulti) {
cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_ALL_MULTICAST);
} else if (mc_count) {
struct netdev_hw_addr *ha;
int i = 0;
cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_MULTICAST);
cmd->numaddr = cpu_to_le16(mc_count);
netdev_hw_addr_list_for_each(ha, mc_list) {
memcpy(cmd->addr[i], ha->addr, ETH_ALEN);
}
}
return &cmd->header;
}
/*
* CMD_GET_STAT.
*/
struct mwl8k_cmd_get_stat {
struct mwl8k_cmd_pkt header;
__le32 stats[64];
} __packed;
#define MWL8K_STAT_ACK_FAILURE 9
#define MWL8K_STAT_RTS_FAILURE 12
#define MWL8K_STAT_FCS_ERROR 24
#define MWL8K_STAT_RTS_SUCCESS 11
static int mwl8k_cmd_get_stat(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats)
{
struct mwl8k_cmd_get_stat *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_STAT);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
rc = mwl8k_post_cmd(hw, &cmd->header);
if (!rc) {
stats->dot11ACKFailureCount =
le32_to_cpu(cmd->stats[MWL8K_STAT_ACK_FAILURE]);
stats->dot11RTSFailureCount =
le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_FAILURE]);
stats->dot11FCSErrorCount =
le32_to_cpu(cmd->stats[MWL8K_STAT_FCS_ERROR]);
stats->dot11RTSSuccessCount =
le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_SUCCESS]);
}
kfree(cmd);
return rc;
}
/*
* CMD_RADIO_CONTROL.
*/
struct mwl8k_cmd_radio_control {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 control;
__le16 radio_on;
} __packed;
static int
mwl8k_cmd_radio_control(struct ieee80211_hw *hw, bool enable, bool force)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_radio_control *cmd;
int rc;
if (enable == priv->radio_on && !force)
return 0;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_RADIO_CONTROL);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->control = cpu_to_le16(priv->radio_short_preamble ? 3 : 1);
cmd->radio_on = cpu_to_le16(enable ? 0x0001 : 0x0000);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
if (!rc)
priv->radio_on = enable;
return rc;
}
static int mwl8k_cmd_radio_disable(struct ieee80211_hw *hw)
{
return mwl8k_cmd_radio_control(hw, 0, 0);
}
static int mwl8k_cmd_radio_enable(struct ieee80211_hw *hw)
{
return mwl8k_cmd_radio_control(hw, 1, 0);
}
static int
mwl8k_set_radio_preamble(struct ieee80211_hw *hw, bool short_preamble)
{
struct mwl8k_priv *priv = hw->priv;
priv->radio_short_preamble = short_preamble;
return mwl8k_cmd_radio_control(hw, 1, 1);
}
/*
* CMD_RF_TX_POWER.
*/
#define MWL8K_RF_TX_POWER_LEVEL_TOTAL 8
struct mwl8k_cmd_rf_tx_power {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 support_level;
__le16 current_level;
__le16 reserved;
__le16 power_level_list[MWL8K_RF_TX_POWER_LEVEL_TOTAL];
} __packed;
static int mwl8k_cmd_rf_tx_power(struct ieee80211_hw *hw, int dBm)
{
struct mwl8k_cmd_rf_tx_power *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_TX_POWER);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->support_level = cpu_to_le16(dBm);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_TX_POWER.
*/
#define MWL8K_TX_POWER_LEVEL_TOTAL 12
struct mwl8k_cmd_tx_power {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 band;
__le16 channel;
__le16 bw;
__le16 sub_ch;
__le16 power_level_list[MWL8K_TX_POWER_LEVEL_TOTAL];
} __packed;
static int mwl8k_cmd_tx_power(struct ieee80211_hw *hw,
struct ieee80211_conf *conf,
unsigned short pwr)
{
struct ieee80211_channel *channel = conf->channel;
struct mwl8k_cmd_tx_power *cmd;
int rc;
int i;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_TX_POWER);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET_LIST);
if (channel->band == IEEE80211_BAND_2GHZ)
cmd->band = cpu_to_le16(0x1);
else if (channel->band == IEEE80211_BAND_5GHZ)
cmd->band = cpu_to_le16(0x4);
cmd->channel = cpu_to_le16(channel->hw_value);
if (conf->channel_type == NL80211_CHAN_NO_HT ||
conf->channel_type == NL80211_CHAN_HT20) {
cmd->bw = cpu_to_le16(0x2);
} else {
cmd->bw = cpu_to_le16(0x4);
if (conf->channel_type == NL80211_CHAN_HT40MINUS)
cmd->sub_ch = cpu_to_le16(0x3);
else if (conf->channel_type == NL80211_CHAN_HT40PLUS)
cmd->sub_ch = cpu_to_le16(0x1);
}
for (i = 0; i < MWL8K_TX_POWER_LEVEL_TOTAL; i++)
cmd->power_level_list[i] = cpu_to_le16(pwr);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_RF_ANTENNA.
*/
struct mwl8k_cmd_rf_antenna {
struct mwl8k_cmd_pkt header;
__le16 antenna;
__le16 mode;
} __packed;
#define MWL8K_RF_ANTENNA_RX 1
#define MWL8K_RF_ANTENNA_TX 2
static int
mwl8k_cmd_rf_antenna(struct ieee80211_hw *hw, int antenna, int mask)
{
struct mwl8k_cmd_rf_antenna *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_ANTENNA);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->antenna = cpu_to_le16(antenna);
cmd->mode = cpu_to_le16(mask);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_BEACON.
*/
struct mwl8k_cmd_set_beacon {
struct mwl8k_cmd_pkt header;
__le16 beacon_len;
__u8 beacon[0];
};
static int mwl8k_cmd_set_beacon(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u8 *beacon, int len)
{
struct mwl8k_cmd_set_beacon *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd) + len, GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_BEACON);
cmd->header.length = cpu_to_le16(sizeof(*cmd) + len);
cmd->beacon_len = cpu_to_le16(len);
memcpy(cmd->beacon, beacon, len);
rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_PRE_SCAN.
*/
struct mwl8k_cmd_set_pre_scan {
struct mwl8k_cmd_pkt header;
} __packed;
static int mwl8k_cmd_set_pre_scan(struct ieee80211_hw *hw)
{
struct mwl8k_cmd_set_pre_scan *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_PRE_SCAN);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_POST_SCAN.
*/
struct mwl8k_cmd_set_post_scan {
struct mwl8k_cmd_pkt header;
__le32 isibss;
__u8 bssid[ETH_ALEN];
} __packed;
static int
mwl8k_cmd_set_post_scan(struct ieee80211_hw *hw, const __u8 *mac)
{
struct mwl8k_cmd_set_post_scan *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_POST_SCAN);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->isibss = 0;
memcpy(cmd->bssid, mac, ETH_ALEN);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_RF_CHANNEL.
*/
struct mwl8k_cmd_set_rf_channel {
struct mwl8k_cmd_pkt header;
__le16 action;
__u8 current_channel;
__le32 channel_flags;
} __packed;
static int mwl8k_cmd_set_rf_channel(struct ieee80211_hw *hw,
struct ieee80211_conf *conf)
{
struct ieee80211_channel *channel = conf->channel;
struct mwl8k_cmd_set_rf_channel *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RF_CHANNEL);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->current_channel = channel->hw_value;
if (channel->band == IEEE80211_BAND_2GHZ)
cmd->channel_flags |= cpu_to_le32(0x00000001);
else if (channel->band == IEEE80211_BAND_5GHZ)
cmd->channel_flags |= cpu_to_le32(0x00000004);
if (conf->channel_type == NL80211_CHAN_NO_HT ||
conf->channel_type == NL80211_CHAN_HT20)
cmd->channel_flags |= cpu_to_le32(0x00000080);
else if (conf->channel_type == NL80211_CHAN_HT40MINUS)
cmd->channel_flags |= cpu_to_le32(0x000001900);
else if (conf->channel_type == NL80211_CHAN_HT40PLUS)
cmd->channel_flags |= cpu_to_le32(0x000000900);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_AID.
*/
#define MWL8K_FRAME_PROT_DISABLED 0x00
#define MWL8K_FRAME_PROT_11G 0x07
#define MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY 0x02
#define MWL8K_FRAME_PROT_11N_HT_ALL 0x06
struct mwl8k_cmd_update_set_aid {
struct mwl8k_cmd_pkt header;
__le16 aid;
/* AP's MAC address (BSSID) */
__u8 bssid[ETH_ALEN];
__le16 protection_mode;
__u8 supp_rates[14];
} __packed;
static void legacy_rate_mask_to_array(u8 *rates, u32 mask)
{
int i;
int j;
/*
* Clear nonstandard rates 4 and 13.
*/
mask &= 0x1fef;
for (i = 0, j = 0; i < 14; i++) {
if (mask & (1 << i))
rates[j++] = mwl8k_rates_24[i].hw_value;
}
}
static int
mwl8k_cmd_set_aid(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u32 legacy_rate_mask)
{
struct mwl8k_cmd_update_set_aid *cmd;
u16 prot_mode;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_AID);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->aid = cpu_to_le16(vif->bss_conf.aid);
memcpy(cmd->bssid, vif->bss_conf.bssid, ETH_ALEN);
if (vif->bss_conf.use_cts_prot) {
prot_mode = MWL8K_FRAME_PROT_11G;
} else {
switch (vif->bss_conf.ht_operation_mode &
IEEE80211_HT_OP_MODE_PROTECTION) {
case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
prot_mode = MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY;
break;
case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
prot_mode = MWL8K_FRAME_PROT_11N_HT_ALL;
break;
default:
prot_mode = MWL8K_FRAME_PROT_DISABLED;
break;
}
}
cmd->protection_mode = cpu_to_le16(prot_mode);
legacy_rate_mask_to_array(cmd->supp_rates, legacy_rate_mask);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_RATE.
*/
struct mwl8k_cmd_set_rate {
struct mwl8k_cmd_pkt header;
__u8 legacy_rates[14];
/* Bitmap for supported MCS codes. */
__u8 mcs_set[16];
__u8 reserved[16];
} __packed;
static int
mwl8k_cmd_set_rate(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u32 legacy_rate_mask, u8 *mcs_rates)
{
struct mwl8k_cmd_set_rate *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
legacy_rate_mask_to_array(cmd->legacy_rates, legacy_rate_mask);
memcpy(cmd->mcs_set, mcs_rates, 16);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_FINALIZE_JOIN.
*/
#define MWL8K_FJ_BEACON_MAXLEN 128
struct mwl8k_cmd_finalize_join {
struct mwl8k_cmd_pkt header;
__le32 sleep_interval; /* Number of beacon periods to sleep */
__u8 beacon_data[MWL8K_FJ_BEACON_MAXLEN];
} __packed;
static int mwl8k_cmd_finalize_join(struct ieee80211_hw *hw, void *frame,
int framelen, int dtim)
{
struct mwl8k_cmd_finalize_join *cmd;
struct ieee80211_mgmt *payload = frame;
int payload_len;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_FINALIZE_JOIN);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->sleep_interval = cpu_to_le32(dtim ? dtim : 1);
payload_len = framelen - ieee80211_hdrlen(payload->frame_control);
if (payload_len < 0)
payload_len = 0;
else if (payload_len > MWL8K_FJ_BEACON_MAXLEN)
payload_len = MWL8K_FJ_BEACON_MAXLEN;
memcpy(cmd->beacon_data, &payload->u.beacon, payload_len);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_RTS_THRESHOLD.
*/
struct mwl8k_cmd_set_rts_threshold {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 threshold;
} __packed;
static int
mwl8k_cmd_set_rts_threshold(struct ieee80211_hw *hw, int rts_thresh)
{
struct mwl8k_cmd_set_rts_threshold *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_RTS_THRESHOLD);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->threshold = cpu_to_le16(rts_thresh);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_SLOT.
*/
struct mwl8k_cmd_set_slot {
struct mwl8k_cmd_pkt header;
__le16 action;
__u8 short_slot;
} __packed;
static int mwl8k_cmd_set_slot(struct ieee80211_hw *hw, bool short_slot_time)
{
struct mwl8k_cmd_set_slot *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_SLOT);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->short_slot = short_slot_time;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_EDCA_PARAMS.
*/
struct mwl8k_cmd_set_edca_params {
struct mwl8k_cmd_pkt header;
/* See MWL8K_SET_EDCA_XXX below */
__le16 action;
/* TX opportunity in units of 32 us */
__le16 txop;
union {
struct {
/* Log exponent of max contention period: 0...15 */
__le32 log_cw_max;
/* Log exponent of min contention period: 0...15 */
__le32 log_cw_min;
/* Adaptive interframe spacing in units of 32us */
__u8 aifs;
/* TX queue to configure */
__u8 txq;
} ap;
struct {
/* Log exponent of max contention period: 0...15 */
__u8 log_cw_max;
/* Log exponent of min contention period: 0...15 */
__u8 log_cw_min;
/* Adaptive interframe spacing in units of 32us */
__u8 aifs;
/* TX queue to configure */
__u8 txq;
} sta;
};
} __packed;
#define MWL8K_SET_EDCA_CW 0x01
#define MWL8K_SET_EDCA_TXOP 0x02
#define MWL8K_SET_EDCA_AIFS 0x04
#define MWL8K_SET_EDCA_ALL (MWL8K_SET_EDCA_CW | \
MWL8K_SET_EDCA_TXOP | \
MWL8K_SET_EDCA_AIFS)
static int
mwl8k_cmd_set_edca_params(struct ieee80211_hw *hw, __u8 qnum,
__u16 cw_min, __u16 cw_max,
__u8 aifs, __u16 txop)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_set_edca_params *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_EDCA_PARAMS);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_SET_EDCA_ALL);
cmd->txop = cpu_to_le16(txop);
if (priv->ap_fw) {
cmd->ap.log_cw_max = cpu_to_le32(ilog2(cw_max + 1));
cmd->ap.log_cw_min = cpu_to_le32(ilog2(cw_min + 1));
cmd->ap.aifs = aifs;
cmd->ap.txq = qnum;
} else {
cmd->sta.log_cw_max = (u8)ilog2(cw_max + 1);
cmd->sta.log_cw_min = (u8)ilog2(cw_min + 1);
cmd->sta.aifs = aifs;
cmd->sta.txq = qnum;
}
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_WMM_MODE.
*/
struct mwl8k_cmd_set_wmm_mode {
struct mwl8k_cmd_pkt header;
__le16 action;
} __packed;
static int mwl8k_cmd_set_wmm_mode(struct ieee80211_hw *hw, bool enable)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_set_wmm_mode *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_WMM_MODE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(!!enable);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
if (!rc)
priv->wmm_enabled = enable;
return rc;
}
/*
* CMD_MIMO_CONFIG.
*/
struct mwl8k_cmd_mimo_config {
struct mwl8k_cmd_pkt header;
__le32 action;
__u8 rx_antenna_map;
__u8 tx_antenna_map;
} __packed;
static int mwl8k_cmd_mimo_config(struct ieee80211_hw *hw, __u8 rx, __u8 tx)
{
struct mwl8k_cmd_mimo_config *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_MIMO_CONFIG);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32((u32)MWL8K_CMD_SET);
cmd->rx_antenna_map = rx;
cmd->tx_antenna_map = tx;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_USE_FIXED_RATE (STA version).
*/
struct mwl8k_cmd_use_fixed_rate_sta {
struct mwl8k_cmd_pkt header;
__le32 action;
__le32 allow_rate_drop;
__le32 num_rates;
struct {
__le32 is_ht_rate;
__le32 enable_retry;
__le32 rate;
__le32 retry_count;
} rate_entry[8];
__le32 rate_type;
__le32 reserved1;
__le32 reserved2;
} __packed;
#define MWL8K_USE_AUTO_RATE 0x0002
#define MWL8K_UCAST_RATE 0
static int mwl8k_cmd_use_fixed_rate_sta(struct ieee80211_hw *hw)
{
struct mwl8k_cmd_use_fixed_rate_sta *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_USE_FIXED_RATE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(MWL8K_USE_AUTO_RATE);
cmd->rate_type = cpu_to_le32(MWL8K_UCAST_RATE);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_USE_FIXED_RATE (AP version).
*/
struct mwl8k_cmd_use_fixed_rate_ap {
struct mwl8k_cmd_pkt header;
__le32 action;
__le32 allow_rate_drop;
__le32 num_rates;
struct mwl8k_rate_entry_ap {
__le32 is_ht_rate;
__le32 enable_retry;
__le32 rate;
__le32 retry_count;
} rate_entry[4];
u8 multicast_rate;
u8 multicast_rate_type;
u8 management_rate;
} __packed;
static int
mwl8k_cmd_use_fixed_rate_ap(struct ieee80211_hw *hw, int mcast, int mgmt)
{
struct mwl8k_cmd_use_fixed_rate_ap *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_USE_FIXED_RATE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(MWL8K_USE_AUTO_RATE);
cmd->multicast_rate = mcast;
cmd->management_rate = mgmt;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_ENABLE_SNIFFER.
*/
struct mwl8k_cmd_enable_sniffer {
struct mwl8k_cmd_pkt header;
__le32 action;
} __packed;
static int mwl8k_cmd_enable_sniffer(struct ieee80211_hw *hw, bool enable)
{
struct mwl8k_cmd_enable_sniffer *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_ENABLE_SNIFFER);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(!!enable);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
struct mwl8k_cmd_update_mac_addr {
struct mwl8k_cmd_pkt header;
union {
struct {
__le16 mac_type;
__u8 mac_addr[ETH_ALEN];
} mbss;
__u8 mac_addr[ETH_ALEN];
};
} __packed;
#define MWL8K_MAC_TYPE_PRIMARY_CLIENT 0
#define MWL8K_MAC_TYPE_SECONDARY_CLIENT 1
#define MWL8K_MAC_TYPE_PRIMARY_AP 2
#define MWL8K_MAC_TYPE_SECONDARY_AP 3
static int mwl8k_cmd_update_mac_addr(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u8 *mac, bool set)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif);
struct mwl8k_cmd_update_mac_addr *cmd;
int mac_type;
int rc;
mac_type = MWL8K_MAC_TYPE_PRIMARY_AP;
if (vif != NULL && vif->type == NL80211_IFTYPE_STATION) {
if (mwl8k_vif->macid + 1 == ffs(priv->sta_macids_supported))
mac_type = MWL8K_MAC_TYPE_PRIMARY_CLIENT;
else
mac_type = MWL8K_MAC_TYPE_SECONDARY_CLIENT;
} else if (vif != NULL && vif->type == NL80211_IFTYPE_AP) {
if (mwl8k_vif->macid + 1 == ffs(priv->ap_macids_supported))
mac_type = MWL8K_MAC_TYPE_PRIMARY_AP;
else
mac_type = MWL8K_MAC_TYPE_SECONDARY_AP;
}
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
if (set)
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_MAC_ADDR);
else
cmd->header.code = cpu_to_le16(MWL8K_CMD_DEL_MAC_ADDR);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
if (priv->ap_fw) {
cmd->mbss.mac_type = cpu_to_le16(mac_type);
memcpy(cmd->mbss.mac_addr, mac, ETH_ALEN);
} else {
memcpy(cmd->mac_addr, mac, ETH_ALEN);
}
rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header);
kfree(cmd);
return rc;
}
/*
* MWL8K_CMD_SET_MAC_ADDR.
*/
static inline int mwl8k_cmd_set_mac_addr(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u8 *mac)
{
return mwl8k_cmd_update_mac_addr(hw, vif, mac, true);
}
/*
* MWL8K_CMD_DEL_MAC_ADDR.
*/
static inline int mwl8k_cmd_del_mac_addr(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u8 *mac)
{
return mwl8k_cmd_update_mac_addr(hw, vif, mac, false);
}
/*
* CMD_SET_RATEADAPT_MODE.
*/
struct mwl8k_cmd_set_rate_adapt_mode {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 mode;
} __packed;
static int mwl8k_cmd_set_rateadapt_mode(struct ieee80211_hw *hw, __u16 mode)
{
struct mwl8k_cmd_set_rate_adapt_mode *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATEADAPT_MODE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->mode = cpu_to_le16(mode);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_GET_WATCHDOG_BITMAP.
*/
struct mwl8k_cmd_get_watchdog_bitmap {
struct mwl8k_cmd_pkt header;
u8 bitmap;
} __packed;
static int mwl8k_cmd_get_watchdog_bitmap(struct ieee80211_hw *hw, u8 *bitmap)
{
struct mwl8k_cmd_get_watchdog_bitmap *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_WATCHDOG_BITMAP);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
rc = mwl8k_post_cmd(hw, &cmd->header);
if (!rc)
*bitmap = cmd->bitmap;
kfree(cmd);
return rc;
}
#define INVALID_BA 0xAA
static void mwl8k_watchdog_ba_events(struct work_struct *work)
{
int rc;
u8 bitmap = 0, stream_index;
struct mwl8k_ampdu_stream *streams;
struct mwl8k_priv *priv =
container_of(work, struct mwl8k_priv, watchdog_ba_handle);
rc = mwl8k_cmd_get_watchdog_bitmap(priv->hw, &bitmap);
if (rc)
return;
if (bitmap == INVALID_BA)
return;
/* the bitmap is the hw queue number. Map it to the ampdu queue. */
stream_index = bitmap - MWL8K_TX_WMM_QUEUES;
BUG_ON(stream_index >= priv->num_ampdu_queues);
streams = &priv->ampdu[stream_index];
if (streams->state == AMPDU_STREAM_ACTIVE)
ieee80211_stop_tx_ba_session(streams->sta, streams->tid);
return;
}
/*
* CMD_BSS_START.
*/
struct mwl8k_cmd_bss_start {
struct mwl8k_cmd_pkt header;
__le32 enable;
} __packed;
static int mwl8k_cmd_bss_start(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, int enable)
{
struct mwl8k_cmd_bss_start *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_BSS_START);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->enable = cpu_to_le32(enable);
rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_BASTREAM.
*/
/*
* UPSTREAM is tx direction
*/
#define BASTREAM_FLAG_DIRECTION_UPSTREAM 0x00
#define BASTREAM_FLAG_IMMEDIATE_TYPE 0x01
enum ba_stream_action_type {
MWL8K_BA_CREATE,
MWL8K_BA_UPDATE,
MWL8K_BA_DESTROY,
MWL8K_BA_FLUSH,
MWL8K_BA_CHECK,
};
struct mwl8k_create_ba_stream {
__le32 flags;
__le32 idle_thrs;
__le32 bar_thrs;
__le32 window_size;
u8 peer_mac_addr[6];
u8 dialog_token;
u8 tid;
u8 queue_id;
u8 param_info;
__le32 ba_context;
u8 reset_seq_no_flag;
__le16 curr_seq_no;
u8 sta_src_mac_addr[6];
} __packed;
struct mwl8k_destroy_ba_stream {
__le32 flags;
__le32 ba_context;
} __packed;
struct mwl8k_cmd_bastream {
struct mwl8k_cmd_pkt header;
__le32 action;
union {
struct mwl8k_create_ba_stream create_params;
struct mwl8k_destroy_ba_stream destroy_params;
};
} __packed;
static int
mwl8k_check_ba(struct ieee80211_hw *hw, struct mwl8k_ampdu_stream *stream)
{
struct mwl8k_cmd_bastream *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_BASTREAM);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(MWL8K_BA_CHECK);
cmd->create_params.queue_id = stream->idx;
memcpy(&cmd->create_params.peer_mac_addr[0], stream->sta->addr,
ETH_ALEN);
cmd->create_params.tid = stream->tid;
cmd->create_params.flags =
cpu_to_le32(BASTREAM_FLAG_IMMEDIATE_TYPE) |
cpu_to_le32(BASTREAM_FLAG_DIRECTION_UPSTREAM);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
static int
mwl8k_create_ba(struct ieee80211_hw *hw, struct mwl8k_ampdu_stream *stream,
u8 buf_size)
{
struct mwl8k_cmd_bastream *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_BASTREAM);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(MWL8K_BA_CREATE);
cmd->create_params.bar_thrs = cpu_to_le32((u32)buf_size);
cmd->create_params.window_size = cpu_to_le32((u32)buf_size);
cmd->create_params.queue_id = stream->idx;
memcpy(cmd->create_params.peer_mac_addr, stream->sta->addr, ETH_ALEN);
cmd->create_params.tid = stream->tid;
cmd->create_params.curr_seq_no = cpu_to_le16(0);
cmd->create_params.reset_seq_no_flag = 1;
cmd->create_params.param_info =
(stream->sta->ht_cap.ampdu_factor &
IEEE80211_HT_AMPDU_PARM_FACTOR) |
((stream->sta->ht_cap.ampdu_density << 2) &
IEEE80211_HT_AMPDU_PARM_DENSITY);
cmd->create_params.flags =
cpu_to_le32(BASTREAM_FLAG_IMMEDIATE_TYPE |
BASTREAM_FLAG_DIRECTION_UPSTREAM);
rc = mwl8k_post_cmd(hw, &cmd->header);
wiphy_debug(hw->wiphy, "Created a BA stream for %pM : tid %d\n",
stream->sta->addr, stream->tid);
kfree(cmd);
return rc;
}
static void mwl8k_destroy_ba(struct ieee80211_hw *hw,
struct mwl8k_ampdu_stream *stream)
{
struct mwl8k_cmd_bastream *cmd;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return;
cmd->header.code = cpu_to_le16(MWL8K_CMD_BASTREAM);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(MWL8K_BA_DESTROY);
cmd->destroy_params.ba_context = cpu_to_le32(stream->idx);
mwl8k_post_cmd(hw, &cmd->header);
wiphy_debug(hw->wiphy, "Deleted BA stream index %d\n", stream->idx);
kfree(cmd);
}
/*
* CMD_SET_NEW_STN.
*/
struct mwl8k_cmd_set_new_stn {
struct mwl8k_cmd_pkt header;
__le16 aid;
__u8 mac_addr[6];
__le16 stn_id;
__le16 action;
__le16 rsvd;
__le32 legacy_rates;
__u8 ht_rates[4];
__le16 cap_info;
__le16 ht_capabilities_info;
__u8 mac_ht_param_info;
__u8 rev;
__u8 control_channel;
__u8 add_channel;
__le16 op_mode;
__le16 stbc;
__u8 add_qos_info;
__u8 is_qos_sta;
__le32 fw_sta_ptr;
} __packed;
#define MWL8K_STA_ACTION_ADD 0
#define MWL8K_STA_ACTION_REMOVE 2
static int mwl8k_cmd_set_new_stn_add(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mwl8k_cmd_set_new_stn *cmd;
u32 rates;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_NEW_STN);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->aid = cpu_to_le16(sta->aid);
memcpy(cmd->mac_addr, sta->addr, ETH_ALEN);
cmd->stn_id = cpu_to_le16(sta->aid);
cmd->action = cpu_to_le16(MWL8K_STA_ACTION_ADD);
if (hw->conf.channel->band == IEEE80211_BAND_2GHZ)
rates = sta->supp_rates[IEEE80211_BAND_2GHZ];
else
rates = sta->supp_rates[IEEE80211_BAND_5GHZ] << 5;
cmd->legacy_rates = cpu_to_le32(rates);
if (sta->ht_cap.ht_supported) {
cmd->ht_rates[0] = sta->ht_cap.mcs.rx_mask[0];
cmd->ht_rates[1] = sta->ht_cap.mcs.rx_mask[1];
cmd->ht_rates[2] = sta->ht_cap.mcs.rx_mask[2];
cmd->ht_rates[3] = sta->ht_cap.mcs.rx_mask[3];
cmd->ht_capabilities_info = cpu_to_le16(sta->ht_cap.cap);
cmd->mac_ht_param_info = (sta->ht_cap.ampdu_factor & 3) |
((sta->ht_cap.ampdu_density & 7) << 2);
cmd->is_qos_sta = 1;
}
rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header);
kfree(cmd);
return rc;
}
static int mwl8k_cmd_set_new_stn_add_self(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mwl8k_cmd_set_new_stn *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_NEW_STN);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
memcpy(cmd->mac_addr, vif->addr, ETH_ALEN);
rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header);
kfree(cmd);
return rc;
}
static int mwl8k_cmd_set_new_stn_del(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u8 *addr)
{
struct mwl8k_cmd_set_new_stn *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_NEW_STN);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
memcpy(cmd->mac_addr, addr, ETH_ALEN);
cmd->action = cpu_to_le16(MWL8K_STA_ACTION_REMOVE);
rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_UPDATE_ENCRYPTION.
*/
#define MAX_ENCR_KEY_LENGTH 16
#define MIC_KEY_LENGTH 8
struct mwl8k_cmd_update_encryption {
struct mwl8k_cmd_pkt header;
__le32 action;
__le32 reserved;
__u8 mac_addr[6];
__u8 encr_type;
} __packed;
struct mwl8k_cmd_set_key {
struct mwl8k_cmd_pkt header;
__le32 action;
__le32 reserved;
__le16 length;
__le16 key_type_id;
__le32 key_info;
__le32 key_id;
__le16 key_len;
__u8 key_material[MAX_ENCR_KEY_LENGTH];
__u8 tkip_tx_mic_key[MIC_KEY_LENGTH];
__u8 tkip_rx_mic_key[MIC_KEY_LENGTH];
__le16 tkip_rsc_low;
__le32 tkip_rsc_high;
__le16 tkip_tsc_low;
__le32 tkip_tsc_high;
__u8 mac_addr[6];
} __packed;
enum {
MWL8K_ENCR_ENABLE,
MWL8K_ENCR_SET_KEY,
MWL8K_ENCR_REMOVE_KEY,
MWL8K_ENCR_SET_GROUP_KEY,
};
#define MWL8K_UPDATE_ENCRYPTION_TYPE_WEP 0
#define MWL8K_UPDATE_ENCRYPTION_TYPE_DISABLE 1
#define MWL8K_UPDATE_ENCRYPTION_TYPE_TKIP 4
#define MWL8K_UPDATE_ENCRYPTION_TYPE_MIXED 7
#define MWL8K_UPDATE_ENCRYPTION_TYPE_AES 8
enum {
MWL8K_ALG_WEP,
MWL8K_ALG_TKIP,
MWL8K_ALG_CCMP,
};
#define MWL8K_KEY_FLAG_TXGROUPKEY 0x00000004
#define MWL8K_KEY_FLAG_PAIRWISE 0x00000008
#define MWL8K_KEY_FLAG_TSC_VALID 0x00000040
#define MWL8K_KEY_FLAG_WEP_TXKEY 0x01000000
#define MWL8K_KEY_FLAG_MICKEY_VALID 0x02000000
static int mwl8k_cmd_update_encryption_enable(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u8 *addr,
u8 encr_type)
{
struct mwl8k_cmd_update_encryption *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_ENCRYPTION);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(MWL8K_ENCR_ENABLE);
memcpy(cmd->mac_addr, addr, ETH_ALEN);
cmd->encr_type = encr_type;
rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header);
kfree(cmd);
return rc;
}
static int mwl8k_encryption_set_cmd_info(struct mwl8k_cmd_set_key *cmd,
u8 *addr,
struct ieee80211_key_conf *key)
{
cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_ENCRYPTION);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->length = cpu_to_le16(sizeof(*cmd) -
offsetof(struct mwl8k_cmd_set_key, length));
cmd->key_id = cpu_to_le32(key->keyidx);
cmd->key_len = cpu_to_le16(key->keylen);
memcpy(cmd->mac_addr, addr, ETH_ALEN);
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
cmd->key_type_id = cpu_to_le16(MWL8K_ALG_WEP);
if (key->keyidx == 0)
cmd->key_info = cpu_to_le32(MWL8K_KEY_FLAG_WEP_TXKEY);
break;
case WLAN_CIPHER_SUITE_TKIP:
cmd->key_type_id = cpu_to_le16(MWL8K_ALG_TKIP);
cmd->key_info = (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
? cpu_to_le32(MWL8K_KEY_FLAG_PAIRWISE)
: cpu_to_le32(MWL8K_KEY_FLAG_TXGROUPKEY);
cmd->key_info |= cpu_to_le32(MWL8K_KEY_FLAG_MICKEY_VALID
| MWL8K_KEY_FLAG_TSC_VALID);
break;
case WLAN_CIPHER_SUITE_CCMP:
cmd->key_type_id = cpu_to_le16(MWL8K_ALG_CCMP);
cmd->key_info = (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
? cpu_to_le32(MWL8K_KEY_FLAG_PAIRWISE)
: cpu_to_le32(MWL8K_KEY_FLAG_TXGROUPKEY);
break;
default:
return -ENOTSUPP;
}
return 0;
}
static int mwl8k_cmd_encryption_set_key(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u8 *addr,
struct ieee80211_key_conf *key)
{
struct mwl8k_cmd_set_key *cmd;
int rc;
int keymlen;
u32 action;
u8 idx;
struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif);
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
rc = mwl8k_encryption_set_cmd_info(cmd, addr, key);
if (rc < 0)
goto done;
idx = key->keyidx;
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
action = MWL8K_ENCR_SET_KEY;
else
action = MWL8K_ENCR_SET_GROUP_KEY;
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
if (!mwl8k_vif->wep_key_conf[idx].enabled) {
memcpy(mwl8k_vif->wep_key_conf[idx].key, key,
sizeof(*key) + key->keylen);
mwl8k_vif->wep_key_conf[idx].enabled = 1;
}
keymlen = key->keylen;
action = MWL8K_ENCR_SET_KEY;
break;
case WLAN_CIPHER_SUITE_TKIP:
keymlen = MAX_ENCR_KEY_LENGTH + 2 * MIC_KEY_LENGTH;
break;
case WLAN_CIPHER_SUITE_CCMP:
keymlen = key->keylen;
break;
default:
rc = -ENOTSUPP;
goto done;
}
memcpy(cmd->key_material, key->key, keymlen);
cmd->action = cpu_to_le32(action);
rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header);
done:
kfree(cmd);
return rc;
}
static int mwl8k_cmd_encryption_remove_key(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u8 *addr,
struct ieee80211_key_conf *key)
{
struct mwl8k_cmd_set_key *cmd;
int rc;
struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif);
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
rc = mwl8k_encryption_set_cmd_info(cmd, addr, key);
if (rc < 0)
goto done;
if (key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
key->cipher == WLAN_CIPHER_SUITE_WEP104)
mwl8k_vif->wep_key_conf[key->keyidx].enabled = 0;
cmd->action = cpu_to_le32(MWL8K_ENCR_REMOVE_KEY);
rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header);
done:
kfree(cmd);
return rc;
}
static int mwl8k_set_key(struct ieee80211_hw *hw,
enum set_key_cmd cmd_param,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
int rc = 0;
u8 encr_type;
u8 *addr;
struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif);
if (vif->type == NL80211_IFTYPE_STATION)
return -EOPNOTSUPP;
if (sta == NULL)
addr = vif->addr;
else
addr = sta->addr;
if (cmd_param == SET_KEY) {
rc = mwl8k_cmd_encryption_set_key(hw, vif, addr, key);
if (rc)
goto out;
if ((key->cipher == WLAN_CIPHER_SUITE_WEP40)
|| (key->cipher == WLAN_CIPHER_SUITE_WEP104))
encr_type = MWL8K_UPDATE_ENCRYPTION_TYPE_WEP;
else
encr_type = MWL8K_UPDATE_ENCRYPTION_TYPE_MIXED;
rc = mwl8k_cmd_update_encryption_enable(hw, vif, addr,
encr_type);
if (rc)
goto out;
mwl8k_vif->is_hw_crypto_enabled = true;
} else {
rc = mwl8k_cmd_encryption_remove_key(hw, vif, addr, key);
if (rc)
goto out;
}
out:
return rc;
}
/*
* CMD_UPDATE_STADB.
*/
struct ewc_ht_info {
__le16 control1;
__le16 control2;
__le16 control3;
} __packed;
struct peer_capability_info {
/* Peer type - AP vs. STA. */
__u8 peer_type;
/* Basic 802.11 capabilities from assoc resp. */
__le16 basic_caps;
/* Set if peer supports 802.11n high throughput (HT). */
__u8 ht_support;
/* Valid if HT is supported. */
__le16 ht_caps;
__u8 extended_ht_caps;
struct ewc_ht_info ewc_info;
/* Legacy rate table. Intersection of our rates and peer rates. */
__u8 legacy_rates[12];
/* HT rate table. Intersection of our rates and peer rates. */
__u8 ht_rates[16];
__u8 pad[16];
/* If set, interoperability mode, no proprietary extensions. */
__u8 interop;
__u8 pad2;
__u8 station_id;
__le16 amsdu_enabled;
} __packed;
struct mwl8k_cmd_update_stadb {
struct mwl8k_cmd_pkt header;
/* See STADB_ACTION_TYPE */
__le32 action;
/* Peer MAC address */
__u8 peer_addr[ETH_ALEN];
__le32 reserved;
/* Peer info - valid during add/update. */
struct peer_capability_info peer_info;
} __packed;
#define MWL8K_STA_DB_MODIFY_ENTRY 1
#define MWL8K_STA_DB_DEL_ENTRY 2
/* Peer Entry flags - used to define the type of the peer node */
#define MWL8K_PEER_TYPE_ACCESSPOINT 2
static int mwl8k_cmd_update_stadb_add(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mwl8k_cmd_update_stadb *cmd;
struct peer_capability_info *p;
u32 rates;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(MWL8K_STA_DB_MODIFY_ENTRY);
memcpy(cmd->peer_addr, sta->addr, ETH_ALEN);
p = &cmd->peer_info;
p->peer_type = MWL8K_PEER_TYPE_ACCESSPOINT;
p->basic_caps = cpu_to_le16(vif->bss_conf.assoc_capability);
p->ht_support = sta->ht_cap.ht_supported;
p->ht_caps = cpu_to_le16(sta->ht_cap.cap);
p->extended_ht_caps = (sta->ht_cap.ampdu_factor & 3) |
((sta->ht_cap.ampdu_density & 7) << 2);
if (hw->conf.channel->band == IEEE80211_BAND_2GHZ)
rates = sta->supp_rates[IEEE80211_BAND_2GHZ];
else
rates = sta->supp_rates[IEEE80211_BAND_5GHZ] << 5;
legacy_rate_mask_to_array(p->legacy_rates, rates);
memcpy(p->ht_rates, sta->ht_cap.mcs.rx_mask, 16);
p->interop = 1;
p->amsdu_enabled = 0;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc ? rc : p->station_id;
}
static int mwl8k_cmd_update_stadb_del(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u8 *addr)
{
struct mwl8k_cmd_update_stadb *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(MWL8K_STA_DB_DEL_ENTRY);
memcpy(cmd->peer_addr, addr, ETH_ALEN);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* Interrupt handling.
*/
static irqreturn_t mwl8k_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *hw = dev_id;
struct mwl8k_priv *priv = hw->priv;
u32 status;
status = ioread32(priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
if (!status)
return IRQ_NONE;
if (status & MWL8K_A2H_INT_TX_DONE) {
status &= ~MWL8K_A2H_INT_TX_DONE;
tasklet_schedule(&priv->poll_tx_task);
}
if (status & MWL8K_A2H_INT_RX_READY) {
status &= ~MWL8K_A2H_INT_RX_READY;
tasklet_schedule(&priv->poll_rx_task);
}
if (status & MWL8K_A2H_INT_BA_WATCHDOG) {
status &= ~MWL8K_A2H_INT_BA_WATCHDOG;
ieee80211_queue_work(hw, &priv->watchdog_ba_handle);
}
if (status)
iowrite32(~status, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
if (status & MWL8K_A2H_INT_OPC_DONE) {
if (priv->hostcmd_wait != NULL)
complete(priv->hostcmd_wait);
}
if (status & MWL8K_A2H_INT_QUEUE_EMPTY) {
if (!mutex_is_locked(&priv->fw_mutex) &&
priv->radio_on && priv->pending_tx_pkts)
mwl8k_tx_start(priv);
}
return IRQ_HANDLED;
}
static void mwl8k_tx_poll(unsigned long data)
{
struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
struct mwl8k_priv *priv = hw->priv;
int limit;
int i;
limit = 32;
spin_lock_bh(&priv->tx_lock);
for (i = 0; i < mwl8k_tx_queues(priv); i++)
limit -= mwl8k_txq_reclaim(hw, i, limit, 0);
if (!priv->pending_tx_pkts && priv->tx_wait != NULL) {
complete(priv->tx_wait);
priv->tx_wait = NULL;
}
spin_unlock_bh(&priv->tx_lock);
if (limit) {
writel(~MWL8K_A2H_INT_TX_DONE,
priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
} else {
tasklet_schedule(&priv->poll_tx_task);
}
}
static void mwl8k_rx_poll(unsigned long data)
{
struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
struct mwl8k_priv *priv = hw->priv;
int limit;
limit = 32;
limit -= rxq_process(hw, 0, limit);
limit -= rxq_refill(hw, 0, limit);
if (limit) {
writel(~MWL8K_A2H_INT_RX_READY,
priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
} else {
tasklet_schedule(&priv->poll_rx_task);
}
}
/*
* Core driver operations.
*/
static void mwl8k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct mwl8k_priv *priv = hw->priv;
int index = skb_get_queue_mapping(skb);
if (!priv->radio_on) {
wiphy_debug(hw->wiphy,
"dropped TX frame since radio disabled\n");
dev_kfree_skb(skb);
return;
}
mwl8k_txq_xmit(hw, index, skb);
}
static int mwl8k_start(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
int rc;
rc = request_irq(priv->pdev->irq, mwl8k_interrupt,
IRQF_SHARED, MWL8K_NAME, hw);
if (rc) {
priv->irq = -1;
wiphy_err(hw->wiphy, "failed to register IRQ handler\n");
return -EIO;
}
priv->irq = priv->pdev->irq;
/* Enable TX reclaim and RX tasklets. */
tasklet_enable(&priv->poll_tx_task);
tasklet_enable(&priv->poll_rx_task);
/* Enable interrupts */
iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
iowrite32(MWL8K_A2H_EVENTS,
priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK);
rc = mwl8k_fw_lock(hw);
if (!rc) {
rc = mwl8k_cmd_radio_enable(hw);
if (!priv->ap_fw) {
if (!rc)
rc = mwl8k_cmd_enable_sniffer(hw, 0);
if (!rc)
rc = mwl8k_cmd_set_pre_scan(hw);
if (!rc)
rc = mwl8k_cmd_set_post_scan(hw,
"\x00\x00\x00\x00\x00\x00");
}
if (!rc)
rc = mwl8k_cmd_set_rateadapt_mode(hw, 0);
if (!rc)
rc = mwl8k_cmd_set_wmm_mode(hw, 0);
mwl8k_fw_unlock(hw);
}
if (rc) {
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
free_irq(priv->pdev->irq, hw);
priv->irq = -1;
tasklet_disable(&priv->poll_tx_task);
tasklet_disable(&priv->poll_rx_task);
}
return rc;
}
static void mwl8k_stop(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
int i;
if (!priv->hw_restart_in_progress)
mwl8k_cmd_radio_disable(hw);
ieee80211_stop_queues(hw);
/* Disable interrupts */
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
if (priv->irq != -1) {
free_irq(priv->pdev->irq, hw);
priv->irq = -1;
}
/* Stop finalize join worker */
cancel_work_sync(&priv->finalize_join_worker);
cancel_work_sync(&priv->watchdog_ba_handle);
if (priv->beacon_skb != NULL)
dev_kfree_skb(priv->beacon_skb);
/* Stop TX reclaim and RX tasklets. */
tasklet_disable(&priv->poll_tx_task);
tasklet_disable(&priv->poll_rx_task);
/* Return all skbs to mac80211 */
for (i = 0; i < mwl8k_tx_queues(priv); i++)
mwl8k_txq_reclaim(hw, i, INT_MAX, 1);
}
static int mwl8k_reload_firmware(struct ieee80211_hw *hw, char *fw_image);
static int mwl8k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_vif *mwl8k_vif;
u32 macids_supported;
int macid, rc;
struct mwl8k_device_info *di;
/*
* Reject interface creation if sniffer mode is active, as
* STA operation is mutually exclusive with hardware sniffer
* mode. (Sniffer mode is only used on STA firmware.)
*/
if (priv->sniffer_enabled) {
wiphy_info(hw->wiphy,
"unable to create STA interface because sniffer mode is enabled\n");
return -EINVAL;
}
di = priv->device_info;
switch (vif->type) {
case NL80211_IFTYPE_AP:
if (!priv->ap_fw && di->fw_image_ap) {
/* we must load the ap fw to meet this request */
if (!list_empty(&priv->vif_list))
return -EBUSY;
rc = mwl8k_reload_firmware(hw, di->fw_image_ap);
if (rc)
return rc;
}
macids_supported = priv->ap_macids_supported;
break;
case NL80211_IFTYPE_STATION:
if (priv->ap_fw && di->fw_image_sta) {
/* we must load the sta fw to meet this request */
if (!list_empty(&priv->vif_list))
return -EBUSY;
rc = mwl8k_reload_firmware(hw, di->fw_image_sta);
if (rc)
return rc;
}
macids_supported = priv->sta_macids_supported;
break;
default:
return -EINVAL;
}
macid = ffs(macids_supported & ~priv->macids_used);
if (!macid--)
return -EBUSY;
/* Setup driver private area. */
mwl8k_vif = MWL8K_VIF(vif);
memset(mwl8k_vif, 0, sizeof(*mwl8k_vif));
mwl8k_vif->vif = vif;
mwl8k_vif->macid = macid;
mwl8k_vif->seqno = 0;
memcpy(mwl8k_vif->bssid, vif->addr, ETH_ALEN);
mwl8k_vif->is_hw_crypto_enabled = false;
/* Set the mac address. */
mwl8k_cmd_set_mac_addr(hw, vif, vif->addr);
if (priv->ap_fw)
mwl8k_cmd_set_new_stn_add_self(hw, vif);
priv->macids_used |= 1 << mwl8k_vif->macid;
list_add_tail(&mwl8k_vif->list, &priv->vif_list);
return 0;
}
static void mwl8k_remove_vif(struct mwl8k_priv *priv, struct mwl8k_vif *vif)
{
/* Has ieee80211_restart_hw re-added the removed interfaces? */
if (!priv->macids_used)
return;
priv->macids_used &= ~(1 << vif->macid);
list_del(&vif->list);
}
static void mwl8k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif);
if (priv->ap_fw)
mwl8k_cmd_set_new_stn_del(hw, vif, vif->addr);
mwl8k_cmd_del_mac_addr(hw, vif, vif->addr);
mwl8k_remove_vif(priv, mwl8k_vif);
}
static void mwl8k_hw_restart_work(struct work_struct *work)
{
struct mwl8k_priv *priv =
container_of(work, struct mwl8k_priv, fw_reload);
struct ieee80211_hw *hw = priv->hw;
struct mwl8k_device_info *di;
int rc;
/* If some command is waiting for a response, clear it */
if (priv->hostcmd_wait != NULL) {
complete(priv->hostcmd_wait);
priv->hostcmd_wait = NULL;
}
priv->hw_restart_owner = current;
di = priv->device_info;
mwl8k_fw_lock(hw);
if (priv->ap_fw)
rc = mwl8k_reload_firmware(hw, di->fw_image_ap);
else
rc = mwl8k_reload_firmware(hw, di->fw_image_sta);
if (rc)
goto fail;
priv->hw_restart_owner = NULL;
priv->hw_restart_in_progress = false;
/*
* This unlock will wake up the queues and
* also opens the command path for other
* commands
*/
mwl8k_fw_unlock(hw);
ieee80211_restart_hw(hw);
wiphy_err(hw->wiphy, "Firmware restarted successfully\n");
return;
fail:
mwl8k_fw_unlock(hw);
wiphy_err(hw->wiphy, "Firmware restart failed\n");
}
static int mwl8k_config(struct ieee80211_hw *hw, u32 changed)
{
struct ieee80211_conf *conf = &hw->conf;
struct mwl8k_priv *priv = hw->priv;
int rc;
if (conf->flags & IEEE80211_CONF_IDLE) {
mwl8k_cmd_radio_disable(hw);
return 0;
}
rc = mwl8k_fw_lock(hw);
if (rc)
return rc;
rc = mwl8k_cmd_radio_enable(hw);
if (rc)
goto out;
rc = mwl8k_cmd_set_rf_channel(hw, conf);
if (rc)
goto out;
if (conf->power_level > 18)
conf->power_level = 18;
if (priv->ap_fw) {
if (conf->flags & IEEE80211_CONF_CHANGE_POWER) {
rc = mwl8k_cmd_tx_power(hw, conf, conf->power_level);
if (rc)
goto out;
}
rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_RX, 0x3);
if (rc)
wiphy_warn(hw->wiphy, "failed to set # of RX antennas");
rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_TX, 0x7);
if (rc)
wiphy_warn(hw->wiphy, "failed to set # of TX antennas");
} else {
rc = mwl8k_cmd_rf_tx_power(hw, conf->power_level);
if (rc)
goto out;
rc = mwl8k_cmd_mimo_config(hw, 0x7, 0x7);
}
out:
mwl8k_fw_unlock(hw);
return rc;
}
static void
mwl8k_bss_info_changed_sta(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info, u32 changed)
{
struct mwl8k_priv *priv = hw->priv;
u32 ap_legacy_rates = 0;
u8 ap_mcs_rates[16];
int rc;
if (mwl8k_fw_lock(hw))
return;
/*
* No need to capture a beacon if we're no longer associated.
*/
if ((changed & BSS_CHANGED_ASSOC) && !vif->bss_conf.assoc)
priv->capture_beacon = false;
/*
* Get the AP's legacy and MCS rates.
*/
if (vif->bss_conf.assoc) {
struct ieee80211_sta *ap;
rcu_read_lock();
ap = ieee80211_find_sta(vif, vif->bss_conf.bssid);
if (ap == NULL) {
rcu_read_unlock();
goto out;
}
if (hw->conf.channel->band == IEEE80211_BAND_2GHZ) {
ap_legacy_rates = ap->supp_rates[IEEE80211_BAND_2GHZ];
} else {
ap_legacy_rates =
ap->supp_rates[IEEE80211_BAND_5GHZ] << 5;
}
memcpy(ap_mcs_rates, ap->ht_cap.mcs.rx_mask, 16);
rcu_read_unlock();
}
if ((changed & BSS_CHANGED_ASSOC) && vif->bss_conf.assoc) {
rc = mwl8k_cmd_set_rate(hw, vif, ap_legacy_rates, ap_mcs_rates);
if (rc)
goto out;
rc = mwl8k_cmd_use_fixed_rate_sta(hw);
if (rc)
goto out;
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
rc = mwl8k_set_radio_preamble(hw,
vif->bss_conf.use_short_preamble);
if (rc)
goto out;
}
if (changed & BSS_CHANGED_ERP_SLOT) {
rc = mwl8k_cmd_set_slot(hw, vif->bss_conf.use_short_slot);
if (rc)
goto out;
}
if (vif->bss_conf.assoc &&
(changed & (BSS_CHANGED_ASSOC | BSS_CHANGED_ERP_CTS_PROT |
BSS_CHANGED_HT))) {
rc = mwl8k_cmd_set_aid(hw, vif, ap_legacy_rates);
if (rc)
goto out;
}
if (vif->bss_conf.assoc &&
(changed & (BSS_CHANGED_ASSOC | BSS_CHANGED_BEACON_INT))) {
/*
* Finalize the join. Tell rx handler to process
* next beacon from our BSSID.
*/
memcpy(priv->capture_bssid, vif->bss_conf.bssid, ETH_ALEN);
priv->capture_beacon = true;
}
out:
mwl8k_fw_unlock(hw);
}
static void
mwl8k_bss_info_changed_ap(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info, u32 changed)
{
int rc;
if (mwl8k_fw_lock(hw))
return;
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
rc = mwl8k_set_radio_preamble(hw,
vif->bss_conf.use_short_preamble);
if (rc)
goto out;
}
if (changed & BSS_CHANGED_BASIC_RATES) {
int idx;
int rate;
/*
* Use lowest supported basic rate for multicasts
* and management frames (such as probe responses --
* beacons will always go out at 1 Mb/s).
*/
idx = ffs(vif->bss_conf.basic_rates);
if (idx)
idx--;
if (hw->conf.channel->band == IEEE80211_BAND_2GHZ)
rate = mwl8k_rates_24[idx].hw_value;
else
rate = mwl8k_rates_50[idx].hw_value;
mwl8k_cmd_use_fixed_rate_ap(hw, rate, rate);
}
if (changed & (BSS_CHANGED_BEACON_INT | BSS_CHANGED_BEACON)) {
struct sk_buff *skb;
skb = ieee80211_beacon_get(hw, vif);
if (skb != NULL) {
mwl8k_cmd_set_beacon(hw, vif, skb->data, skb->len);
kfree_skb(skb);
}
}
if (changed & BSS_CHANGED_BEACON_ENABLED)
mwl8k_cmd_bss_start(hw, vif, info->enable_beacon);
out:
mwl8k_fw_unlock(hw);
}
static void
mwl8k_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info, u32 changed)
{
struct mwl8k_priv *priv = hw->priv;
if (!priv->ap_fw)
mwl8k_bss_info_changed_sta(hw, vif, info, changed);
else
mwl8k_bss_info_changed_ap(hw, vif, info, changed);
}
static u64 mwl8k_prepare_multicast(struct ieee80211_hw *hw,
struct netdev_hw_addr_list *mc_list)
{
struct mwl8k_cmd_pkt *cmd;
/*
* Synthesize and return a command packet that programs the
* hardware multicast address filter. At this point we don't
* know whether FIF_ALLMULTI is being requested, but if it is,
* we'll end up throwing this packet away and creating a new
* one in mwl8k_configure_filter().
*/
cmd = __mwl8k_cmd_mac_multicast_adr(hw, 0, mc_list);
return (unsigned long)cmd;
}
static int
mwl8k_configure_filter_sniffer(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags)
{
struct mwl8k_priv *priv = hw->priv;
/*
* Hardware sniffer mode is mutually exclusive with STA
* operation, so refuse to enable sniffer mode if a STA
* interface is active.
*/
if (!list_empty(&priv->vif_list)) {
if (net_ratelimit())
wiphy_info(hw->wiphy,
"not enabling sniffer mode because STA interface is active\n");
return 0;
}
if (!priv->sniffer_enabled) {
if (mwl8k_cmd_enable_sniffer(hw, 1))
return 0;
priv->sniffer_enabled = true;
}
*total_flags &= FIF_PROMISC_IN_BSS | FIF_ALLMULTI |
FIF_BCN_PRBRESP_PROMISC | FIF_CONTROL |
FIF_OTHER_BSS;
return 1;
}
static struct mwl8k_vif *mwl8k_first_vif(struct mwl8k_priv *priv)
{
if (!list_empty(&priv->vif_list))
return list_entry(priv->vif_list.next, struct mwl8k_vif, list);
return NULL;
}
static void mwl8k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_pkt *cmd = (void *)(unsigned long)multicast;
/*
* AP firmware doesn't allow fine-grained control over
* the receive filter.
*/
if (priv->ap_fw) {
*total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC;
kfree(cmd);
return;
}
/*
* Enable hardware sniffer mode if FIF_CONTROL or
* FIF_OTHER_BSS is requested.
*/
if (*total_flags & (FIF_CONTROL | FIF_OTHER_BSS) &&
mwl8k_configure_filter_sniffer(hw, changed_flags, total_flags)) {
kfree(cmd);
return;
}
/* Clear unsupported feature flags */
*total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC;
if (mwl8k_fw_lock(hw)) {
kfree(cmd);
return;
}
if (priv->sniffer_enabled) {
mwl8k_cmd_enable_sniffer(hw, 0);
priv->sniffer_enabled = false;
}
if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
if (*total_flags & FIF_BCN_PRBRESP_PROMISC) {
/*
* Disable the BSS filter.
*/
mwl8k_cmd_set_pre_scan(hw);
} else {
struct mwl8k_vif *mwl8k_vif;
const u8 *bssid;
/*
* Enable the BSS filter.
*
* If there is an active STA interface, use that
* interface's BSSID, otherwise use a dummy one
* (where the OUI part needs to be nonzero for
* the BSSID to be accepted by POST_SCAN).
*/
mwl8k_vif = mwl8k_first_vif(priv);
if (mwl8k_vif != NULL)
bssid = mwl8k_vif->vif->bss_conf.bssid;
else
bssid = "\x01\x00\x00\x00\x00\x00";
mwl8k_cmd_set_post_scan(hw, bssid);
}
}
/*
* If FIF_ALLMULTI is being requested, throw away the command
* packet that ->prepare_multicast() built and replace it with
* a command packet that enables reception of all multicast
* packets.
*/
if (*total_flags & FIF_ALLMULTI) {
kfree(cmd);
cmd = __mwl8k_cmd_mac_multicast_adr(hw, 1, NULL);
}
if (cmd != NULL) {
mwl8k_post_cmd(hw, cmd);
kfree(cmd);
}
mwl8k_fw_unlock(hw);
}
static int mwl8k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
return mwl8k_cmd_set_rts_threshold(hw, value);
}
static int mwl8k_sta_remove(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mwl8k_priv *priv = hw->priv;
if (priv->ap_fw)
return mwl8k_cmd_set_new_stn_del(hw, vif, sta->addr);
else
return mwl8k_cmd_update_stadb_del(hw, vif, sta->addr);
}
static int mwl8k_sta_add(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mwl8k_priv *priv = hw->priv;
int ret;
int i;
struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif);
struct ieee80211_key_conf *key;
if (!priv->ap_fw) {
ret = mwl8k_cmd_update_stadb_add(hw, vif, sta);
if (ret >= 0) {
MWL8K_STA(sta)->peer_id = ret;
if (sta->ht_cap.ht_supported)
MWL8K_STA(sta)->is_ampdu_allowed = true;
ret = 0;
}
} else {
ret = mwl8k_cmd_set_new_stn_add(hw, vif, sta);
}
for (i = 0; i < NUM_WEP_KEYS; i++) {
key = IEEE80211_KEY_CONF(mwl8k_vif->wep_key_conf[i].key);
if (mwl8k_vif->wep_key_conf[i].enabled)
mwl8k_set_key(hw, SET_KEY, vif, sta, key);
}
return ret;
}
static int mwl8k_conf_tx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct mwl8k_priv *priv = hw->priv;
int rc;
rc = mwl8k_fw_lock(hw);
if (!rc) {
BUG_ON(queue > MWL8K_TX_WMM_QUEUES - 1);
memcpy(&priv->wmm_params[queue], params, sizeof(*params));
if (!priv->wmm_enabled)
rc = mwl8k_cmd_set_wmm_mode(hw, 1);
if (!rc) {
int q = MWL8K_TX_WMM_QUEUES - 1 - queue;
rc = mwl8k_cmd_set_edca_params(hw, q,
params->cw_min,
params->cw_max,
params->aifs,
params->txop);
}
mwl8k_fw_unlock(hw);
}
return rc;
}
static int mwl8k_get_stats(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats)
{
return mwl8k_cmd_get_stat(hw, stats);
}
static int mwl8k_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct mwl8k_priv *priv = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
if (idx != 0)
return -ENOENT;
survey->channel = conf->channel;
survey->filled = SURVEY_INFO_NOISE_DBM;
survey->noise = priv->noise;
return 0;
}
#define MAX_AMPDU_ATTEMPTS 5
static int
mwl8k_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta, u16 tid, u16 *ssn,
u8 buf_size)
{
int i, rc = 0;
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_ampdu_stream *stream;
u8 *addr = sta->addr;
if (!(hw->flags & IEEE80211_HW_AMPDU_AGGREGATION))
return -ENOTSUPP;
spin_lock(&priv->stream_lock);
stream = mwl8k_lookup_stream(hw, addr, tid);
switch (action) {
case IEEE80211_AMPDU_RX_START:
case IEEE80211_AMPDU_RX_STOP:
break;
case IEEE80211_AMPDU_TX_START:
/* By the time we get here the hw queues may contain outgoing
* packets for this RA/TID that are not part of this BA
* session. The hw will assign sequence numbers to these
* packets as they go out. So if we query the hw for its next
* sequence number and use that for the SSN here, it may end up
* being wrong, which will lead to sequence number mismatch at
* the recipient. To avoid this, we reset the sequence number
* to O for the first MPDU in this BA stream.
*/
*ssn = 0;
if (stream == NULL) {
/* This means that somebody outside this driver called
* ieee80211_start_tx_ba_session. This is unexpected
* because we do our own rate control. Just warn and
* move on.
*/
wiphy_warn(hw->wiphy, "Unexpected call to %s. "
"Proceeding anyway.\n", __func__);
stream = mwl8k_add_stream(hw, sta, tid);
}
if (stream == NULL) {
wiphy_debug(hw->wiphy, "no free AMPDU streams\n");
rc = -EBUSY;
break;
}
stream->state = AMPDU_STREAM_IN_PROGRESS;
/* Release the lock before we do the time consuming stuff */
spin_unlock(&priv->stream_lock);
for (i = 0; i < MAX_AMPDU_ATTEMPTS; i++) {
rc = mwl8k_check_ba(hw, stream);
/* If HW restart is in progress mwl8k_post_cmd will
* return -EBUSY. Avoid retrying mwl8k_check_ba in
* such cases
*/
if (!rc || rc == -EBUSY)
break;
/*
* HW queues take time to be flushed, give them
* sufficient time
*/
msleep(1000);
}
spin_lock(&priv->stream_lock);
if (rc) {
wiphy_err(hw->wiphy, "Stream for tid %d busy after %d"
" attempts\n", tid, MAX_AMPDU_ATTEMPTS);
mwl8k_remove_stream(hw, stream);
rc = -EBUSY;
break;
}
ieee80211_start_tx_ba_cb_irqsafe(vif, addr, tid);
break;
case IEEE80211_AMPDU_TX_STOP:
if (stream) {
if (stream->state == AMPDU_STREAM_ACTIVE) {
spin_unlock(&priv->stream_lock);
mwl8k_destroy_ba(hw, stream);
spin_lock(&priv->stream_lock);
}
mwl8k_remove_stream(hw, stream);
}
ieee80211_stop_tx_ba_cb_irqsafe(vif, addr, tid);
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
BUG_ON(stream == NULL);
BUG_ON(stream->state != AMPDU_STREAM_IN_PROGRESS);
spin_unlock(&priv->stream_lock);
rc = mwl8k_create_ba(hw, stream, buf_size);
spin_lock(&priv->stream_lock);
if (!rc)
stream->state = AMPDU_STREAM_ACTIVE;
else {
spin_unlock(&priv->stream_lock);
mwl8k_destroy_ba(hw, stream);
spin_lock(&priv->stream_lock);
wiphy_debug(hw->wiphy,
"Failed adding stream for sta %pM tid %d\n",
addr, tid);
mwl8k_remove_stream(hw, stream);
}
break;
default:
rc = -ENOTSUPP;
}
spin_unlock(&priv->stream_lock);
return rc;
}
static const struct ieee80211_ops mwl8k_ops = {
.tx = mwl8k_tx,
.start = mwl8k_start,
.stop = mwl8k_stop,
.add_interface = mwl8k_add_interface,
.remove_interface = mwl8k_remove_interface,
.config = mwl8k_config,
.bss_info_changed = mwl8k_bss_info_changed,
.prepare_multicast = mwl8k_prepare_multicast,
.configure_filter = mwl8k_configure_filter,
.set_key = mwl8k_set_key,
.set_rts_threshold = mwl8k_set_rts_threshold,
.sta_add = mwl8k_sta_add,
.sta_remove = mwl8k_sta_remove,
.conf_tx = mwl8k_conf_tx,
.get_stats = mwl8k_get_stats,
.get_survey = mwl8k_get_survey,
.ampdu_action = mwl8k_ampdu_action,
};
static void mwl8k_finalize_join_worker(struct work_struct *work)
{
struct mwl8k_priv *priv =
container_of(work, struct mwl8k_priv, finalize_join_worker);
struct sk_buff *skb = priv->beacon_skb;
struct ieee80211_mgmt *mgmt = (void *)skb->data;
int len = skb->len - offsetof(struct ieee80211_mgmt, u.beacon.variable);
const u8 *tim = cfg80211_find_ie(WLAN_EID_TIM,
mgmt->u.beacon.variable, len);
int dtim_period = 1;
if (tim && tim[1] >= 2)
dtim_period = tim[3];
mwl8k_cmd_finalize_join(priv->hw, skb->data, skb->len, dtim_period);
dev_kfree_skb(skb);
priv->beacon_skb = NULL;
}
enum {
MWL8363 = 0,
MWL8687,
MWL8366,
};
#define MWL8K_8366_AP_FW_API 2
#define _MWL8K_8366_AP_FW(api) "mwl8k/fmimage_8366_ap-" #api ".fw"
#define MWL8K_8366_AP_FW(api) _MWL8K_8366_AP_FW(api)
static struct mwl8k_device_info mwl8k_info_tbl[] __devinitdata = {
[MWL8363] = {
.part_name = "88w8363",
.helper_image = "mwl8k/helper_8363.fw",
.fw_image_sta = "mwl8k/fmimage_8363.fw",
},
[MWL8687] = {
.part_name = "88w8687",
.helper_image = "mwl8k/helper_8687.fw",
.fw_image_sta = "mwl8k/fmimage_8687.fw",
},
[MWL8366] = {
.part_name = "88w8366",
.helper_image = "mwl8k/helper_8366.fw",
.fw_image_sta = "mwl8k/fmimage_8366.fw",
.fw_image_ap = MWL8K_8366_AP_FW(MWL8K_8366_AP_FW_API),
.fw_api_ap = MWL8K_8366_AP_FW_API,
.ap_rxd_ops = &rxd_8366_ap_ops,
},
};
MODULE_FIRMWARE("mwl8k/helper_8363.fw");
MODULE_FIRMWARE("mwl8k/fmimage_8363.fw");
MODULE_FIRMWARE("mwl8k/helper_8687.fw");
MODULE_FIRMWARE("mwl8k/fmimage_8687.fw");
MODULE_FIRMWARE("mwl8k/helper_8366.fw");
MODULE_FIRMWARE("mwl8k/fmimage_8366.fw");
MODULE_FIRMWARE(MWL8K_8366_AP_FW(MWL8K_8366_AP_FW_API));
static DEFINE_PCI_DEVICE_TABLE(mwl8k_pci_id_table) = {
{ PCI_VDEVICE(MARVELL, 0x2a0a), .driver_data = MWL8363, },
{ PCI_VDEVICE(MARVELL, 0x2a0c), .driver_data = MWL8363, },
{ PCI_VDEVICE(MARVELL, 0x2a24), .driver_data = MWL8363, },
{ PCI_VDEVICE(MARVELL, 0x2a2b), .driver_data = MWL8687, },
{ PCI_VDEVICE(MARVELL, 0x2a30), .driver_data = MWL8687, },
{ PCI_VDEVICE(MARVELL, 0x2a40), .driver_data = MWL8366, },
{ PCI_VDEVICE(MARVELL, 0x2a43), .driver_data = MWL8366, },
{ },
};
MODULE_DEVICE_TABLE(pci, mwl8k_pci_id_table);
static int mwl8k_request_alt_fw(struct mwl8k_priv *priv)
{
int rc;
printk(KERN_ERR "%s: Error requesting preferred fw %s.\n"
"Trying alternative firmware %s\n", pci_name(priv->pdev),
priv->fw_pref, priv->fw_alt);
rc = mwl8k_request_fw(priv, priv->fw_alt, &priv->fw_ucode, true);
if (rc) {
printk(KERN_ERR "%s: Error requesting alt fw %s\n",
pci_name(priv->pdev), priv->fw_alt);
return rc;
}
return 0;
}
static int mwl8k_firmware_load_success(struct mwl8k_priv *priv);
static void mwl8k_fw_state_machine(const struct firmware *fw, void *context)
{
struct mwl8k_priv *priv = context;
struct mwl8k_device_info *di = priv->device_info;
int rc;
switch (priv->fw_state) {
case FW_STATE_INIT:
if (!fw) {
printk(KERN_ERR "%s: Error requesting helper fw %s\n",
pci_name(priv->pdev), di->helper_image);
goto fail;
}
priv->fw_helper = fw;
rc = mwl8k_request_fw(priv, priv->fw_pref, &priv->fw_ucode,
true);
if (rc && priv->fw_alt) {
rc = mwl8k_request_alt_fw(priv);
if (rc)
goto fail;
priv->fw_state = FW_STATE_LOADING_ALT;
} else if (rc)
goto fail;
else
priv->fw_state = FW_STATE_LOADING_PREF;
break;
case FW_STATE_LOADING_PREF:
if (!fw) {
if (priv->fw_alt) {
rc = mwl8k_request_alt_fw(priv);
if (rc)
goto fail;
priv->fw_state = FW_STATE_LOADING_ALT;
} else
goto fail;
} else {
priv->fw_ucode = fw;
rc = mwl8k_firmware_load_success(priv);
if (rc)
goto fail;
else
complete(&priv->firmware_loading_complete);
}
break;
case FW_STATE_LOADING_ALT:
if (!fw) {
printk(KERN_ERR "%s: Error requesting alt fw %s\n",
pci_name(priv->pdev), di->helper_image);
goto fail;
}
priv->fw_ucode = fw;
rc = mwl8k_firmware_load_success(priv);
if (rc)
goto fail;
else
complete(&priv->firmware_loading_complete);
break;
default:
printk(KERN_ERR "%s: Unexpected firmware loading state: %d\n",
MWL8K_NAME, priv->fw_state);
BUG_ON(1);
}
return;
fail:
priv->fw_state = FW_STATE_ERROR;
complete(&priv->firmware_loading_complete);
device_release_driver(&priv->pdev->dev);
mwl8k_release_firmware(priv);
}
#define MAX_RESTART_ATTEMPTS 1
static int mwl8k_init_firmware(struct ieee80211_hw *hw, char *fw_image,
bool nowait)
{
struct mwl8k_priv *priv = hw->priv;
int rc;
int count = MAX_RESTART_ATTEMPTS;
retry:
/* Reset firmware and hardware */
mwl8k_hw_reset(priv);
/* Ask userland hotplug daemon for the device firmware */
rc = mwl8k_request_firmware(priv, fw_image, nowait);
if (rc) {
wiphy_err(hw->wiphy, "Firmware files not found\n");
return rc;
}
if (nowait)
return rc;
/* Load firmware into hardware */
rc = mwl8k_load_firmware(hw);
if (rc)
wiphy_err(hw->wiphy, "Cannot start firmware\n");
/* Reclaim memory once firmware is successfully loaded */
mwl8k_release_firmware(priv);
if (rc && count) {
/* FW did not start successfully;
* lets try one more time
*/
count--;
wiphy_err(hw->wiphy, "Trying to reload the firmware again\n");
msleep(20);
goto retry;
}
return rc;
}
static int mwl8k_init_txqs(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
int rc = 0;
int i;
for (i = 0; i < mwl8k_tx_queues(priv); i++) {
rc = mwl8k_txq_init(hw, i);
if (rc)
break;
if (priv->ap_fw)
iowrite32(priv->txq[i].txd_dma,
priv->sram + priv->txq_offset[i]);
}
return rc;
}
/* initialize hw after successfully loading a firmware image */
static int mwl8k_probe_hw(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
int rc = 0;
int i;
if (priv->ap_fw) {
priv->rxd_ops = priv->device_info->ap_rxd_ops;
if (priv->rxd_ops == NULL) {
wiphy_err(hw->wiphy,
"Driver does not have AP firmware image support for this hardware\n");
goto err_stop_firmware;
}
} else {
priv->rxd_ops = &rxd_sta_ops;
}
priv->sniffer_enabled = false;
priv->wmm_enabled = false;
priv->pending_tx_pkts = 0;
rc = mwl8k_rxq_init(hw, 0);
if (rc)
goto err_stop_firmware;
rxq_refill(hw, 0, INT_MAX);
/* For the sta firmware, we need to know the dma addresses of tx queues
* before sending MWL8K_CMD_GET_HW_SPEC. So we must initialize them
* prior to issuing this command. But for the AP case, we learn the
* total number of queues from the result CMD_GET_HW_SPEC, so for this
* case we must initialize the tx queues after.
*/
priv->num_ampdu_queues = 0;
if (!priv->ap_fw) {
rc = mwl8k_init_txqs(hw);
if (rc)
goto err_free_queues;
}
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
iowrite32(MWL8K_A2H_INT_TX_DONE|MWL8K_A2H_INT_RX_READY|
MWL8K_A2H_INT_BA_WATCHDOG,
priv->regs + MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL);
iowrite32(MWL8K_A2H_INT_OPC_DONE,
priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK);
rc = request_irq(priv->pdev->irq, mwl8k_interrupt,
IRQF_SHARED, MWL8K_NAME, hw);
if (rc) {
wiphy_err(hw->wiphy, "failed to register IRQ handler\n");
goto err_free_queues;
}
/*
* When hw restart is requested,
* mac80211 will take care of clearing
* the ampdu streams, so do not clear
* the ampdu state here
*/
if (!priv->hw_restart_in_progress)
memset(priv->ampdu, 0, sizeof(priv->ampdu));
/*
* Temporarily enable interrupts. Initial firmware host
* commands use interrupts and avoid polling. Disable
* interrupts when done.
*/
iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
/* Get config data, mac addrs etc */
if (priv->ap_fw) {
rc = mwl8k_cmd_get_hw_spec_ap(hw);
if (!rc)
rc = mwl8k_init_txqs(hw);
if (!rc)
rc = mwl8k_cmd_set_hw_spec(hw);
} else {
rc = mwl8k_cmd_get_hw_spec_sta(hw);
}
if (rc) {
wiphy_err(hw->wiphy, "Cannot initialise firmware\n");
goto err_free_irq;
}
/* Turn radio off */
rc = mwl8k_cmd_radio_disable(hw);
if (rc) {
wiphy_err(hw->wiphy, "Cannot disable\n");
goto err_free_irq;
}
/* Clear MAC address */
rc = mwl8k_cmd_set_mac_addr(hw, NULL, "\x00\x00\x00\x00\x00\x00");
if (rc) {
wiphy_err(hw->wiphy, "Cannot clear MAC address\n");
goto err_free_irq;
}
/* Disable interrupts */
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
free_irq(priv->pdev->irq, hw);
wiphy_info(hw->wiphy, "%s v%d, %pm, %s firmware %u.%u.%u.%u\n",
priv->device_info->part_name,
priv->hw_rev, hw->wiphy->perm_addr,
priv->ap_fw ? "AP" : "STA",
(priv->fw_rev >> 24) & 0xff, (priv->fw_rev >> 16) & 0xff,
(priv->fw_rev >> 8) & 0xff, priv->fw_rev & 0xff);
return 0;
err_free_irq:
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
free_irq(priv->pdev->irq, hw);
err_free_queues:
for (i = 0; i < mwl8k_tx_queues(priv); i++)
mwl8k_txq_deinit(hw, i);
mwl8k_rxq_deinit(hw, 0);
err_stop_firmware:
mwl8k_hw_reset(priv);
return rc;
}
/*
* invoke mwl8k_reload_firmware to change the firmware image after the device
* has already been registered
*/
static int mwl8k_reload_firmware(struct ieee80211_hw *hw, char *fw_image)
{
int i, rc = 0;
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_vif *vif, *tmp_vif;
mwl8k_stop(hw);
mwl8k_rxq_deinit(hw, 0);
/*
* All the existing interfaces are re-added by the ieee80211_reconfig;
* which means driver should remove existing interfaces before calling
* ieee80211_restart_hw
*/
if (priv->hw_restart_in_progress)
list_for_each_entry_safe(vif, tmp_vif, &priv->vif_list, list)
mwl8k_remove_vif(priv, vif);
for (i = 0; i < mwl8k_tx_queues(priv); i++)
mwl8k_txq_deinit(hw, i);
rc = mwl8k_init_firmware(hw, fw_image, false);
if (rc)
goto fail;
rc = mwl8k_probe_hw(hw);
if (rc)
goto fail;
if (priv->hw_restart_in_progress)
return rc;
rc = mwl8k_start(hw);
if (rc)
goto fail;
rc = mwl8k_config(hw, ~0);
if (rc)
goto fail;
for (i = 0; i < MWL8K_TX_WMM_QUEUES; i++) {
rc = mwl8k_conf_tx(hw, NULL, i, &priv->wmm_params[i]);
if (rc)
goto fail;
}
return rc;
fail:
printk(KERN_WARNING "mwl8k: Failed to reload firmware image.\n");
return rc;
}
static int mwl8k_firmware_load_success(struct mwl8k_priv *priv)
{
struct ieee80211_hw *hw = priv->hw;
int i, rc;
rc = mwl8k_load_firmware(hw);
mwl8k_release_firmware(priv);
if (rc) {
wiphy_err(hw->wiphy, "Cannot start firmware\n");
return rc;
}
/*
* Extra headroom is the size of the required DMA header
* minus the size of the smallest 802.11 frame (CTS frame).
*/
hw->extra_tx_headroom =
sizeof(struct mwl8k_dma_data) - sizeof(struct ieee80211_cts);
hw->extra_tx_headroom -= priv->ap_fw ? REDUCED_TX_HEADROOM : 0;
hw->channel_change_time = 10;
hw->queues = MWL8K_TX_WMM_QUEUES;
/* Set rssi values to dBm */
hw->flags |= IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_HAS_RATE_CONTROL;
/*
* Ask mac80211 to not to trigger PS mode
* based on PM bit of incoming frames.
*/
if (priv->ap_fw)
hw->flags |= IEEE80211_HW_AP_LINK_PS;
hw->vif_data_size = sizeof(struct mwl8k_vif);
hw->sta_data_size = sizeof(struct mwl8k_sta);
priv->macids_used = 0;
INIT_LIST_HEAD(&priv->vif_list);
/* Set default radio state and preamble */
priv->radio_on = false;
priv->radio_short_preamble = false;
/* Finalize join worker */
INIT_WORK(&priv->finalize_join_worker, mwl8k_finalize_join_worker);
/* Handle watchdog ba events */
INIT_WORK(&priv->watchdog_ba_handle, mwl8k_watchdog_ba_events);
/* To reload the firmware if it crashes */
INIT_WORK(&priv->fw_reload, mwl8k_hw_restart_work);
/* TX reclaim and RX tasklets. */
tasklet_init(&priv->poll_tx_task, mwl8k_tx_poll, (unsigned long)hw);
tasklet_disable(&priv->poll_tx_task);
tasklet_init(&priv->poll_rx_task, mwl8k_rx_poll, (unsigned long)hw);
tasklet_disable(&priv->poll_rx_task);
/* Power management cookie */
priv->cookie = pci_alloc_consistent(priv->pdev, 4, &priv->cookie_dma);
if (priv->cookie == NULL)
return -ENOMEM;
mutex_init(&priv->fw_mutex);
priv->fw_mutex_owner = NULL;
priv->fw_mutex_depth = 0;
priv->hostcmd_wait = NULL;
spin_lock_init(&priv->tx_lock);
spin_lock_init(&priv->stream_lock);
priv->tx_wait = NULL;
rc = mwl8k_probe_hw(hw);
if (rc)
goto err_free_cookie;
hw->wiphy->interface_modes = 0;
if (priv->ap_macids_supported || priv->device_info->fw_image_ap)
hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_AP);
if (priv->sta_macids_supported || priv->device_info->fw_image_sta)
hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_STATION);
rc = ieee80211_register_hw(hw);
if (rc) {
wiphy_err(hw->wiphy, "Cannot register device\n");
goto err_unprobe_hw;
}
return 0;
err_unprobe_hw:
for (i = 0; i < mwl8k_tx_queues(priv); i++)
mwl8k_txq_deinit(hw, i);
mwl8k_rxq_deinit(hw, 0);
err_free_cookie:
if (priv->cookie != NULL)
pci_free_consistent(priv->pdev, 4,
priv->cookie, priv->cookie_dma);
return rc;
}
static int __devinit mwl8k_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
static int printed_version;
struct ieee80211_hw *hw;
struct mwl8k_priv *priv;
struct mwl8k_device_info *di;
int rc;
if (!printed_version) {
printk(KERN_INFO "%s version %s\n", MWL8K_DESC, MWL8K_VERSION);
printed_version = 1;
}
rc = pci_enable_device(pdev);
if (rc) {
printk(KERN_ERR "%s: Cannot enable new PCI device\n",
MWL8K_NAME);
return rc;
}
rc = pci_request_regions(pdev, MWL8K_NAME);
if (rc) {
printk(KERN_ERR "%s: Cannot obtain PCI resources\n",
MWL8K_NAME);
goto err_disable_device;
}
pci_set_master(pdev);
hw = ieee80211_alloc_hw(sizeof(*priv), &mwl8k_ops);
if (hw == NULL) {
printk(KERN_ERR "%s: ieee80211 alloc failed\n", MWL8K_NAME);
rc = -ENOMEM;
goto err_free_reg;
}
SET_IEEE80211_DEV(hw, &pdev->dev);
pci_set_drvdata(pdev, hw);
priv = hw->priv;
priv->hw = hw;
priv->pdev = pdev;
priv->device_info = &mwl8k_info_tbl[id->driver_data];
priv->sram = pci_iomap(pdev, 0, 0x10000);
if (priv->sram == NULL) {
wiphy_err(hw->wiphy, "Cannot map device SRAM\n");
goto err_iounmap;
}
/*
* If BAR0 is a 32 bit BAR, the register BAR will be BAR1.
* If BAR0 is a 64 bit BAR, the register BAR will be BAR2.
*/
priv->regs = pci_iomap(pdev, 1, 0x10000);
if (priv->regs == NULL) {
priv->regs = pci_iomap(pdev, 2, 0x10000);
if (priv->regs == NULL) {
wiphy_err(hw->wiphy, "Cannot map device registers\n");
goto err_iounmap;
}
}
/*
* Choose the initial fw image depending on user input. If a second
* image is available, make it the alternative image that will be
* loaded if the first one fails.
*/
init_completion(&priv->firmware_loading_complete);
di = priv->device_info;
if (ap_mode_default && di->fw_image_ap) {
priv->fw_pref = di->fw_image_ap;
priv->fw_alt = di->fw_image_sta;
} else if (!ap_mode_default && di->fw_image_sta) {
priv->fw_pref = di->fw_image_sta;
priv->fw_alt = di->fw_image_ap;
} else if (ap_mode_default && !di->fw_image_ap && di->fw_image_sta) {
printk(KERN_WARNING "AP fw is unavailable. Using STA fw.");
priv->fw_pref = di->fw_image_sta;
} else if (!ap_mode_default && !di->fw_image_sta && di->fw_image_ap) {
printk(KERN_WARNING "STA fw is unavailable. Using AP fw.");
priv->fw_pref = di->fw_image_ap;
}
rc = mwl8k_init_firmware(hw, priv->fw_pref, true);
if (rc)
goto err_stop_firmware;
priv->hw_restart_in_progress = false;
return rc;
err_stop_firmware:
mwl8k_hw_reset(priv);
err_iounmap:
if (priv->regs != NULL)
pci_iounmap(pdev, priv->regs);
if (priv->sram != NULL)
pci_iounmap(pdev, priv->sram);
pci_set_drvdata(pdev, NULL);
ieee80211_free_hw(hw);
err_free_reg:
pci_release_regions(pdev);
err_disable_device:
pci_disable_device(pdev);
return rc;
}
static void __devexit mwl8k_shutdown(struct pci_dev *pdev)
{
printk(KERN_ERR "===>%s(%u)\n", __func__, __LINE__);
}
static void __devexit mwl8k_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct mwl8k_priv *priv;
int i;
if (hw == NULL)
return;
priv = hw->priv;
wait_for_completion(&priv->firmware_loading_complete);
if (priv->fw_state == FW_STATE_ERROR) {
mwl8k_hw_reset(priv);
goto unmap;
}
ieee80211_stop_queues(hw);
ieee80211_unregister_hw(hw);
/* Remove TX reclaim and RX tasklets. */
tasklet_kill(&priv->poll_tx_task);
tasklet_kill(&priv->poll_rx_task);
/* Stop hardware */
mwl8k_hw_reset(priv);
/* Return all skbs to mac80211 */
for (i = 0; i < mwl8k_tx_queues(priv); i++)
mwl8k_txq_reclaim(hw, i, INT_MAX, 1);
for (i = 0; i < mwl8k_tx_queues(priv); i++)
mwl8k_txq_deinit(hw, i);
mwl8k_rxq_deinit(hw, 0);
pci_free_consistent(priv->pdev, 4, priv->cookie, priv->cookie_dma);
unmap:
pci_iounmap(pdev, priv->regs);
pci_iounmap(pdev, priv->sram);
pci_set_drvdata(pdev, NULL);
ieee80211_free_hw(hw);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static struct pci_driver mwl8k_driver = {
.name = MWL8K_NAME,
.id_table = mwl8k_pci_id_table,
.probe = mwl8k_probe,
.remove = __devexit_p(mwl8k_remove),
.shutdown = __devexit_p(mwl8k_shutdown),
};
static int __init mwl8k_init(void)
{
return pci_register_driver(&mwl8k_driver);
}
static void __exit mwl8k_exit(void)
{
pci_unregister_driver(&mwl8k_driver);
}
module_init(mwl8k_init);
module_exit(mwl8k_exit);
MODULE_DESCRIPTION(MWL8K_DESC);
MODULE_VERSION(MWL8K_VERSION);
MODULE_AUTHOR("Lennert Buytenhek <buytenh@marvell.com>");
MODULE_LICENSE("GPL");