2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 18:43:59 +08:00
linux-next/security/keys/big_key.c
David Howells c06cfb08b8 KEYS: Remove key_type::match in favour of overriding default by match_preparse
A previous patch added a ->match_preparse() method to the key type.  This is
allowed to override the function called by the iteration algorithm.
Therefore, we can just set a default that simply checks for an exact match of
the key description with the original criterion data and allow match_preparse
to override it as needed.

The key_type::match op is then redundant and can be removed, as can the
user_match() function.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 17:36:06 +01:00

215 lines
4.8 KiB
C

/* Large capacity key type
*
* Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/seq_file.h>
#include <linux/file.h>
#include <linux/shmem_fs.h>
#include <linux/err.h>
#include <keys/user-type.h>
#include <keys/big_key-type.h>
MODULE_LICENSE("GPL");
/*
* If the data is under this limit, there's no point creating a shm file to
* hold it as the permanently resident metadata for the shmem fs will be at
* least as large as the data.
*/
#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
/*
* big_key defined keys take an arbitrary string as the description and an
* arbitrary blob of data as the payload
*/
struct key_type key_type_big_key = {
.name = "big_key",
.preparse = big_key_preparse,
.free_preparse = big_key_free_preparse,
.instantiate = generic_key_instantiate,
.revoke = big_key_revoke,
.destroy = big_key_destroy,
.describe = big_key_describe,
.read = big_key_read,
};
/*
* Preparse a big key
*/
int big_key_preparse(struct key_preparsed_payload *prep)
{
struct path *path = (struct path *)&prep->payload;
struct file *file;
ssize_t written;
size_t datalen = prep->datalen;
int ret;
ret = -EINVAL;
if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
goto error;
/* Set an arbitrary quota */
prep->quotalen = 16;
prep->type_data[1] = (void *)(unsigned long)datalen;
if (datalen > BIG_KEY_FILE_THRESHOLD) {
/* Create a shmem file to store the data in. This will permit the data
* to be swapped out if needed.
*
* TODO: Encrypt the stored data with a temporary key.
*/
file = shmem_kernel_file_setup("", datalen, 0);
if (IS_ERR(file)) {
ret = PTR_ERR(file);
goto error;
}
written = kernel_write(file, prep->data, prep->datalen, 0);
if (written != datalen) {
ret = written;
if (written >= 0)
ret = -ENOMEM;
goto err_fput;
}
/* Pin the mount and dentry to the key so that we can open it again
* later
*/
*path = file->f_path;
path_get(path);
fput(file);
} else {
/* Just store the data in a buffer */
void *data = kmalloc(datalen, GFP_KERNEL);
if (!data)
return -ENOMEM;
prep->payload[0] = memcpy(data, prep->data, prep->datalen);
}
return 0;
err_fput:
fput(file);
error:
return ret;
}
/*
* Clear preparsement.
*/
void big_key_free_preparse(struct key_preparsed_payload *prep)
{
if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
struct path *path = (struct path *)&prep->payload;
path_put(path);
} else {
kfree(prep->payload[0]);
}
}
/*
* dispose of the links from a revoked keyring
* - called with the key sem write-locked
*/
void big_key_revoke(struct key *key)
{
struct path *path = (struct path *)&key->payload.data2;
/* clear the quota */
key_payload_reserve(key, 0);
if (key_is_instantiated(key) && key->type_data.x[1] > BIG_KEY_FILE_THRESHOLD)
vfs_truncate(path, 0);
}
/*
* dispose of the data dangling from the corpse of a big_key key
*/
void big_key_destroy(struct key *key)
{
if (key->type_data.x[1] > BIG_KEY_FILE_THRESHOLD) {
struct path *path = (struct path *)&key->payload.data2;
path_put(path);
path->mnt = NULL;
path->dentry = NULL;
} else {
kfree(key->payload.data);
key->payload.data = NULL;
}
}
/*
* describe the big_key key
*/
void big_key_describe(const struct key *key, struct seq_file *m)
{
unsigned long datalen = key->type_data.x[1];
seq_puts(m, key->description);
if (key_is_instantiated(key))
seq_printf(m, ": %lu [%s]",
datalen,
datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
}
/*
* read the key data
* - the key's semaphore is read-locked
*/
long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
{
unsigned long datalen = key->type_data.x[1];
long ret;
if (!buffer || buflen < datalen)
return datalen;
if (datalen > BIG_KEY_FILE_THRESHOLD) {
struct path *path = (struct path *)&key->payload.data2;
struct file *file;
loff_t pos;
file = dentry_open(path, O_RDONLY, current_cred());
if (IS_ERR(file))
return PTR_ERR(file);
pos = 0;
ret = vfs_read(file, buffer, datalen, &pos);
fput(file);
if (ret >= 0 && ret != datalen)
ret = -EIO;
} else {
ret = datalen;
if (copy_to_user(buffer, key->payload.data, datalen) != 0)
ret = -EFAULT;
}
return ret;
}
/*
* Module stuff
*/
static int __init big_key_init(void)
{
return register_key_type(&key_type_big_key);
}
static void __exit big_key_cleanup(void)
{
unregister_key_type(&key_type_big_key);
}
module_init(big_key_init);
module_exit(big_key_cleanup);