mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-08 05:34:29 +08:00
c41f012ade
global_page_state is error prone as a recent bug report pointed out [1]. It only returns proper values for zone based counters as the enum it gets suggests. We already have global_node_page_state so let's rename global_page_state to global_zone_page_state to be more explicit here. All existing users seems to be correct: $ git grep "global_page_state(NR_" | sed 's@.*(\(NR_[A-Z_]*\)).*@\1@' | sort | uniq -c 2 NR_BOUNCE 2 NR_FREE_CMA_PAGES 11 NR_FREE_PAGES 1 NR_KERNEL_STACK_KB 1 NR_MLOCK 2 NR_PAGETABLE This patch shouldn't introduce any functional change. [1] http://lkml.kernel.org/r/201707260628.v6Q6SmaS030814@www262.sakura.ne.jp Link: http://lkml.kernel.org/r/20170801134256.5400-2-hannes@cmpxchg.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
738 lines
18 KiB
C
738 lines
18 KiB
C
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/export.h>
|
|
#include <linux/err.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/security.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
|
|
#include <asm/sections.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include "internal.h"
|
|
|
|
static inline int is_kernel_rodata(unsigned long addr)
|
|
{
|
|
return addr >= (unsigned long)__start_rodata &&
|
|
addr < (unsigned long)__end_rodata;
|
|
}
|
|
|
|
/**
|
|
* kfree_const - conditionally free memory
|
|
* @x: pointer to the memory
|
|
*
|
|
* Function calls kfree only if @x is not in .rodata section.
|
|
*/
|
|
void kfree_const(const void *x)
|
|
{
|
|
if (!is_kernel_rodata((unsigned long)x))
|
|
kfree(x);
|
|
}
|
|
EXPORT_SYMBOL(kfree_const);
|
|
|
|
/**
|
|
* kstrdup - allocate space for and copy an existing string
|
|
* @s: the string to duplicate
|
|
* @gfp: the GFP mask used in the kmalloc() call when allocating memory
|
|
*/
|
|
char *kstrdup(const char *s, gfp_t gfp)
|
|
{
|
|
size_t len;
|
|
char *buf;
|
|
|
|
if (!s)
|
|
return NULL;
|
|
|
|
len = strlen(s) + 1;
|
|
buf = kmalloc_track_caller(len, gfp);
|
|
if (buf)
|
|
memcpy(buf, s, len);
|
|
return buf;
|
|
}
|
|
EXPORT_SYMBOL(kstrdup);
|
|
|
|
/**
|
|
* kstrdup_const - conditionally duplicate an existing const string
|
|
* @s: the string to duplicate
|
|
* @gfp: the GFP mask used in the kmalloc() call when allocating memory
|
|
*
|
|
* Function returns source string if it is in .rodata section otherwise it
|
|
* fallbacks to kstrdup.
|
|
* Strings allocated by kstrdup_const should be freed by kfree_const.
|
|
*/
|
|
const char *kstrdup_const(const char *s, gfp_t gfp)
|
|
{
|
|
if (is_kernel_rodata((unsigned long)s))
|
|
return s;
|
|
|
|
return kstrdup(s, gfp);
|
|
}
|
|
EXPORT_SYMBOL(kstrdup_const);
|
|
|
|
/**
|
|
* kstrndup - allocate space for and copy an existing string
|
|
* @s: the string to duplicate
|
|
* @max: read at most @max chars from @s
|
|
* @gfp: the GFP mask used in the kmalloc() call when allocating memory
|
|
*
|
|
* Note: Use kmemdup_nul() instead if the size is known exactly.
|
|
*/
|
|
char *kstrndup(const char *s, size_t max, gfp_t gfp)
|
|
{
|
|
size_t len;
|
|
char *buf;
|
|
|
|
if (!s)
|
|
return NULL;
|
|
|
|
len = strnlen(s, max);
|
|
buf = kmalloc_track_caller(len+1, gfp);
|
|
if (buf) {
|
|
memcpy(buf, s, len);
|
|
buf[len] = '\0';
|
|
}
|
|
return buf;
|
|
}
|
|
EXPORT_SYMBOL(kstrndup);
|
|
|
|
/**
|
|
* kmemdup - duplicate region of memory
|
|
*
|
|
* @src: memory region to duplicate
|
|
* @len: memory region length
|
|
* @gfp: GFP mask to use
|
|
*/
|
|
void *kmemdup(const void *src, size_t len, gfp_t gfp)
|
|
{
|
|
void *p;
|
|
|
|
p = kmalloc_track_caller(len, gfp);
|
|
if (p)
|
|
memcpy(p, src, len);
|
|
return p;
|
|
}
|
|
EXPORT_SYMBOL(kmemdup);
|
|
|
|
/**
|
|
* kmemdup_nul - Create a NUL-terminated string from unterminated data
|
|
* @s: The data to stringify
|
|
* @len: The size of the data
|
|
* @gfp: the GFP mask used in the kmalloc() call when allocating memory
|
|
*/
|
|
char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
|
|
{
|
|
char *buf;
|
|
|
|
if (!s)
|
|
return NULL;
|
|
|
|
buf = kmalloc_track_caller(len + 1, gfp);
|
|
if (buf) {
|
|
memcpy(buf, s, len);
|
|
buf[len] = '\0';
|
|
}
|
|
return buf;
|
|
}
|
|
EXPORT_SYMBOL(kmemdup_nul);
|
|
|
|
/**
|
|
* memdup_user - duplicate memory region from user space
|
|
*
|
|
* @src: source address in user space
|
|
* @len: number of bytes to copy
|
|
*
|
|
* Returns an ERR_PTR() on failure.
|
|
*/
|
|
void *memdup_user(const void __user *src, size_t len)
|
|
{
|
|
void *p;
|
|
|
|
/*
|
|
* Always use GFP_KERNEL, since copy_from_user() can sleep and
|
|
* cause pagefault, which makes it pointless to use GFP_NOFS
|
|
* or GFP_ATOMIC.
|
|
*/
|
|
p = kmalloc_track_caller(len, GFP_KERNEL);
|
|
if (!p)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (copy_from_user(p, src, len)) {
|
|
kfree(p);
|
|
return ERR_PTR(-EFAULT);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
EXPORT_SYMBOL(memdup_user);
|
|
|
|
/*
|
|
* strndup_user - duplicate an existing string from user space
|
|
* @s: The string to duplicate
|
|
* @n: Maximum number of bytes to copy, including the trailing NUL.
|
|
*/
|
|
char *strndup_user(const char __user *s, long n)
|
|
{
|
|
char *p;
|
|
long length;
|
|
|
|
length = strnlen_user(s, n);
|
|
|
|
if (!length)
|
|
return ERR_PTR(-EFAULT);
|
|
|
|
if (length > n)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
p = memdup_user(s, length);
|
|
|
|
if (IS_ERR(p))
|
|
return p;
|
|
|
|
p[length - 1] = '\0';
|
|
|
|
return p;
|
|
}
|
|
EXPORT_SYMBOL(strndup_user);
|
|
|
|
/**
|
|
* memdup_user_nul - duplicate memory region from user space and NUL-terminate
|
|
*
|
|
* @src: source address in user space
|
|
* @len: number of bytes to copy
|
|
*
|
|
* Returns an ERR_PTR() on failure.
|
|
*/
|
|
void *memdup_user_nul(const void __user *src, size_t len)
|
|
{
|
|
char *p;
|
|
|
|
/*
|
|
* Always use GFP_KERNEL, since copy_from_user() can sleep and
|
|
* cause pagefault, which makes it pointless to use GFP_NOFS
|
|
* or GFP_ATOMIC.
|
|
*/
|
|
p = kmalloc_track_caller(len + 1, GFP_KERNEL);
|
|
if (!p)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (copy_from_user(p, src, len)) {
|
|
kfree(p);
|
|
return ERR_PTR(-EFAULT);
|
|
}
|
|
p[len] = '\0';
|
|
|
|
return p;
|
|
}
|
|
EXPORT_SYMBOL(memdup_user_nul);
|
|
|
|
void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
struct vm_area_struct *prev, struct rb_node *rb_parent)
|
|
{
|
|
struct vm_area_struct *next;
|
|
|
|
vma->vm_prev = prev;
|
|
if (prev) {
|
|
next = prev->vm_next;
|
|
prev->vm_next = vma;
|
|
} else {
|
|
mm->mmap = vma;
|
|
if (rb_parent)
|
|
next = rb_entry(rb_parent,
|
|
struct vm_area_struct, vm_rb);
|
|
else
|
|
next = NULL;
|
|
}
|
|
vma->vm_next = next;
|
|
if (next)
|
|
next->vm_prev = vma;
|
|
}
|
|
|
|
/* Check if the vma is being used as a stack by this task */
|
|
int vma_is_stack_for_current(struct vm_area_struct *vma)
|
|
{
|
|
struct task_struct * __maybe_unused t = current;
|
|
|
|
return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
|
|
}
|
|
|
|
#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
|
|
void arch_pick_mmap_layout(struct mm_struct *mm)
|
|
{
|
|
mm->mmap_base = TASK_UNMAPPED_BASE;
|
|
mm->get_unmapped_area = arch_get_unmapped_area;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Like get_user_pages_fast() except its IRQ-safe in that it won't fall
|
|
* back to the regular GUP.
|
|
* If the architecture not support this function, simply return with no
|
|
* page pinned
|
|
*/
|
|
int __weak __get_user_pages_fast(unsigned long start,
|
|
int nr_pages, int write, struct page **pages)
|
|
{
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__get_user_pages_fast);
|
|
|
|
/**
|
|
* get_user_pages_fast() - pin user pages in memory
|
|
* @start: starting user address
|
|
* @nr_pages: number of pages from start to pin
|
|
* @write: whether pages will be written to
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_pages long.
|
|
*
|
|
* Returns number of pages pinned. This may be fewer than the number
|
|
* requested. If nr_pages is 0 or negative, returns 0. If no pages
|
|
* were pinned, returns -errno.
|
|
*
|
|
* get_user_pages_fast provides equivalent functionality to get_user_pages,
|
|
* operating on current and current->mm, with force=0 and vma=NULL. However
|
|
* unlike get_user_pages, it must be called without mmap_sem held.
|
|
*
|
|
* get_user_pages_fast may take mmap_sem and page table locks, so no
|
|
* assumptions can be made about lack of locking. get_user_pages_fast is to be
|
|
* implemented in a way that is advantageous (vs get_user_pages()) when the
|
|
* user memory area is already faulted in and present in ptes. However if the
|
|
* pages have to be faulted in, it may turn out to be slightly slower so
|
|
* callers need to carefully consider what to use. On many architectures,
|
|
* get_user_pages_fast simply falls back to get_user_pages.
|
|
*/
|
|
int __weak get_user_pages_fast(unsigned long start,
|
|
int nr_pages, int write, struct page **pages)
|
|
{
|
|
return get_user_pages_unlocked(start, nr_pages, pages,
|
|
write ? FOLL_WRITE : 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_user_pages_fast);
|
|
|
|
unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long prot,
|
|
unsigned long flag, unsigned long pgoff)
|
|
{
|
|
unsigned long ret;
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long populate;
|
|
LIST_HEAD(uf);
|
|
|
|
ret = security_mmap_file(file, prot, flag);
|
|
if (!ret) {
|
|
if (down_write_killable(&mm->mmap_sem))
|
|
return -EINTR;
|
|
ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
|
|
&populate, &uf);
|
|
up_write(&mm->mmap_sem);
|
|
userfaultfd_unmap_complete(mm, &uf);
|
|
if (populate)
|
|
mm_populate(ret, populate);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
unsigned long vm_mmap(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long prot,
|
|
unsigned long flag, unsigned long offset)
|
|
{
|
|
if (unlikely(offset + PAGE_ALIGN(len) < offset))
|
|
return -EINVAL;
|
|
if (unlikely(offset_in_page(offset)))
|
|
return -EINVAL;
|
|
|
|
return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
|
|
}
|
|
EXPORT_SYMBOL(vm_mmap);
|
|
|
|
/**
|
|
* kvmalloc_node - attempt to allocate physically contiguous memory, but upon
|
|
* failure, fall back to non-contiguous (vmalloc) allocation.
|
|
* @size: size of the request.
|
|
* @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
|
|
* @node: numa node to allocate from
|
|
*
|
|
* Uses kmalloc to get the memory but if the allocation fails then falls back
|
|
* to the vmalloc allocator. Use kvfree for freeing the memory.
|
|
*
|
|
* Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
|
|
* __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
|
|
* preferable to the vmalloc fallback, due to visible performance drawbacks.
|
|
*
|
|
* Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
|
|
*/
|
|
void *kvmalloc_node(size_t size, gfp_t flags, int node)
|
|
{
|
|
gfp_t kmalloc_flags = flags;
|
|
void *ret;
|
|
|
|
/*
|
|
* vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
|
|
* so the given set of flags has to be compatible.
|
|
*/
|
|
WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
|
|
|
|
/*
|
|
* We want to attempt a large physically contiguous block first because
|
|
* it is less likely to fragment multiple larger blocks and therefore
|
|
* contribute to a long term fragmentation less than vmalloc fallback.
|
|
* However make sure that larger requests are not too disruptive - no
|
|
* OOM killer and no allocation failure warnings as we have a fallback.
|
|
*/
|
|
if (size > PAGE_SIZE) {
|
|
kmalloc_flags |= __GFP_NOWARN;
|
|
|
|
if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
|
|
kmalloc_flags |= __GFP_NORETRY;
|
|
}
|
|
|
|
ret = kmalloc_node(size, kmalloc_flags, node);
|
|
|
|
/*
|
|
* It doesn't really make sense to fallback to vmalloc for sub page
|
|
* requests
|
|
*/
|
|
if (ret || size <= PAGE_SIZE)
|
|
return ret;
|
|
|
|
return __vmalloc_node_flags_caller(size, node, flags,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(kvmalloc_node);
|
|
|
|
void kvfree(const void *addr)
|
|
{
|
|
if (is_vmalloc_addr(addr))
|
|
vfree(addr);
|
|
else
|
|
kfree(addr);
|
|
}
|
|
EXPORT_SYMBOL(kvfree);
|
|
|
|
static inline void *__page_rmapping(struct page *page)
|
|
{
|
|
unsigned long mapping;
|
|
|
|
mapping = (unsigned long)page->mapping;
|
|
mapping &= ~PAGE_MAPPING_FLAGS;
|
|
|
|
return (void *)mapping;
|
|
}
|
|
|
|
/* Neutral page->mapping pointer to address_space or anon_vma or other */
|
|
void *page_rmapping(struct page *page)
|
|
{
|
|
page = compound_head(page);
|
|
return __page_rmapping(page);
|
|
}
|
|
|
|
/*
|
|
* Return true if this page is mapped into pagetables.
|
|
* For compound page it returns true if any subpage of compound page is mapped.
|
|
*/
|
|
bool page_mapped(struct page *page)
|
|
{
|
|
int i;
|
|
|
|
if (likely(!PageCompound(page)))
|
|
return atomic_read(&page->_mapcount) >= 0;
|
|
page = compound_head(page);
|
|
if (atomic_read(compound_mapcount_ptr(page)) >= 0)
|
|
return true;
|
|
if (PageHuge(page))
|
|
return false;
|
|
for (i = 0; i < hpage_nr_pages(page); i++) {
|
|
if (atomic_read(&page[i]._mapcount) >= 0)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(page_mapped);
|
|
|
|
struct anon_vma *page_anon_vma(struct page *page)
|
|
{
|
|
unsigned long mapping;
|
|
|
|
page = compound_head(page);
|
|
mapping = (unsigned long)page->mapping;
|
|
if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
|
|
return NULL;
|
|
return __page_rmapping(page);
|
|
}
|
|
|
|
struct address_space *page_mapping(struct page *page)
|
|
{
|
|
struct address_space *mapping;
|
|
|
|
page = compound_head(page);
|
|
|
|
/* This happens if someone calls flush_dcache_page on slab page */
|
|
if (unlikely(PageSlab(page)))
|
|
return NULL;
|
|
|
|
if (unlikely(PageSwapCache(page))) {
|
|
swp_entry_t entry;
|
|
|
|
entry.val = page_private(page);
|
|
return swap_address_space(entry);
|
|
}
|
|
|
|
mapping = page->mapping;
|
|
if ((unsigned long)mapping & PAGE_MAPPING_ANON)
|
|
return NULL;
|
|
|
|
return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
|
|
}
|
|
EXPORT_SYMBOL(page_mapping);
|
|
|
|
/* Slow path of page_mapcount() for compound pages */
|
|
int __page_mapcount(struct page *page)
|
|
{
|
|
int ret;
|
|
|
|
ret = atomic_read(&page->_mapcount) + 1;
|
|
/*
|
|
* For file THP page->_mapcount contains total number of mapping
|
|
* of the page: no need to look into compound_mapcount.
|
|
*/
|
|
if (!PageAnon(page) && !PageHuge(page))
|
|
return ret;
|
|
page = compound_head(page);
|
|
ret += atomic_read(compound_mapcount_ptr(page)) + 1;
|
|
if (PageDoubleMap(page))
|
|
ret--;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__page_mapcount);
|
|
|
|
int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
|
|
int sysctl_overcommit_ratio __read_mostly = 50;
|
|
unsigned long sysctl_overcommit_kbytes __read_mostly;
|
|
int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
|
|
unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
|
|
unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
|
|
|
|
int overcommit_ratio_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
ret = proc_dointvec(table, write, buffer, lenp, ppos);
|
|
if (ret == 0 && write)
|
|
sysctl_overcommit_kbytes = 0;
|
|
return ret;
|
|
}
|
|
|
|
int overcommit_kbytes_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
|
|
if (ret == 0 && write)
|
|
sysctl_overcommit_ratio = 0;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
|
|
*/
|
|
unsigned long vm_commit_limit(void)
|
|
{
|
|
unsigned long allowed;
|
|
|
|
if (sysctl_overcommit_kbytes)
|
|
allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
|
|
else
|
|
allowed = ((totalram_pages - hugetlb_total_pages())
|
|
* sysctl_overcommit_ratio / 100);
|
|
allowed += total_swap_pages;
|
|
|
|
return allowed;
|
|
}
|
|
|
|
/*
|
|
* Make sure vm_committed_as in one cacheline and not cacheline shared with
|
|
* other variables. It can be updated by several CPUs frequently.
|
|
*/
|
|
struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
|
|
|
|
/*
|
|
* The global memory commitment made in the system can be a metric
|
|
* that can be used to drive ballooning decisions when Linux is hosted
|
|
* as a guest. On Hyper-V, the host implements a policy engine for dynamically
|
|
* balancing memory across competing virtual machines that are hosted.
|
|
* Several metrics drive this policy engine including the guest reported
|
|
* memory commitment.
|
|
*/
|
|
unsigned long vm_memory_committed(void)
|
|
{
|
|
return percpu_counter_read_positive(&vm_committed_as);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vm_memory_committed);
|
|
|
|
/*
|
|
* Check that a process has enough memory to allocate a new virtual
|
|
* mapping. 0 means there is enough memory for the allocation to
|
|
* succeed and -ENOMEM implies there is not.
|
|
*
|
|
* We currently support three overcommit policies, which are set via the
|
|
* vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
|
|
*
|
|
* Strict overcommit modes added 2002 Feb 26 by Alan Cox.
|
|
* Additional code 2002 Jul 20 by Robert Love.
|
|
*
|
|
* cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
|
|
*
|
|
* Note this is a helper function intended to be used by LSMs which
|
|
* wish to use this logic.
|
|
*/
|
|
int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
|
|
{
|
|
long free, allowed, reserve;
|
|
|
|
VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
|
|
-(s64)vm_committed_as_batch * num_online_cpus(),
|
|
"memory commitment underflow");
|
|
|
|
vm_acct_memory(pages);
|
|
|
|
/*
|
|
* Sometimes we want to use more memory than we have
|
|
*/
|
|
if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
|
|
return 0;
|
|
|
|
if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
|
|
free = global_zone_page_state(NR_FREE_PAGES);
|
|
free += global_node_page_state(NR_FILE_PAGES);
|
|
|
|
/*
|
|
* shmem pages shouldn't be counted as free in this
|
|
* case, they can't be purged, only swapped out, and
|
|
* that won't affect the overall amount of available
|
|
* memory in the system.
|
|
*/
|
|
free -= global_node_page_state(NR_SHMEM);
|
|
|
|
free += get_nr_swap_pages();
|
|
|
|
/*
|
|
* Any slabs which are created with the
|
|
* SLAB_RECLAIM_ACCOUNT flag claim to have contents
|
|
* which are reclaimable, under pressure. The dentry
|
|
* cache and most inode caches should fall into this
|
|
*/
|
|
free += global_node_page_state(NR_SLAB_RECLAIMABLE);
|
|
|
|
/*
|
|
* Leave reserved pages. The pages are not for anonymous pages.
|
|
*/
|
|
if (free <= totalreserve_pages)
|
|
goto error;
|
|
else
|
|
free -= totalreserve_pages;
|
|
|
|
/*
|
|
* Reserve some for root
|
|
*/
|
|
if (!cap_sys_admin)
|
|
free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
|
|
|
|
if (free > pages)
|
|
return 0;
|
|
|
|
goto error;
|
|
}
|
|
|
|
allowed = vm_commit_limit();
|
|
/*
|
|
* Reserve some for root
|
|
*/
|
|
if (!cap_sys_admin)
|
|
allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
|
|
|
|
/*
|
|
* Don't let a single process grow so big a user can't recover
|
|
*/
|
|
if (mm) {
|
|
reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
|
|
allowed -= min_t(long, mm->total_vm / 32, reserve);
|
|
}
|
|
|
|
if (percpu_counter_read_positive(&vm_committed_as) < allowed)
|
|
return 0;
|
|
error:
|
|
vm_unacct_memory(pages);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* get_cmdline() - copy the cmdline value to a buffer.
|
|
* @task: the task whose cmdline value to copy.
|
|
* @buffer: the buffer to copy to.
|
|
* @buflen: the length of the buffer. Larger cmdline values are truncated
|
|
* to this length.
|
|
* Returns the size of the cmdline field copied. Note that the copy does
|
|
* not guarantee an ending NULL byte.
|
|
*/
|
|
int get_cmdline(struct task_struct *task, char *buffer, int buflen)
|
|
{
|
|
int res = 0;
|
|
unsigned int len;
|
|
struct mm_struct *mm = get_task_mm(task);
|
|
unsigned long arg_start, arg_end, env_start, env_end;
|
|
if (!mm)
|
|
goto out;
|
|
if (!mm->arg_end)
|
|
goto out_mm; /* Shh! No looking before we're done */
|
|
|
|
down_read(&mm->mmap_sem);
|
|
arg_start = mm->arg_start;
|
|
arg_end = mm->arg_end;
|
|
env_start = mm->env_start;
|
|
env_end = mm->env_end;
|
|
up_read(&mm->mmap_sem);
|
|
|
|
len = arg_end - arg_start;
|
|
|
|
if (len > buflen)
|
|
len = buflen;
|
|
|
|
res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
|
|
|
|
/*
|
|
* If the nul at the end of args has been overwritten, then
|
|
* assume application is using setproctitle(3).
|
|
*/
|
|
if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
|
|
len = strnlen(buffer, res);
|
|
if (len < res) {
|
|
res = len;
|
|
} else {
|
|
len = env_end - env_start;
|
|
if (len > buflen - res)
|
|
len = buflen - res;
|
|
res += access_process_vm(task, env_start,
|
|
buffer+res, len,
|
|
FOLL_FORCE);
|
|
res = strnlen(buffer, res);
|
|
}
|
|
}
|
|
out_mm:
|
|
mmput(mm);
|
|
out:
|
|
return res;
|
|
}
|