mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-25 07:06:40 +08:00
243145bc43
The check in block_page_mkwrite that is meant to determine whether an offset is within the inode size is off by one. This bug has been copied into iomap_page_mkwrite and several filesystems (ubifs, ext4, f2fs, ceph). Fix that by introducing a new page_mkwrite_check_truncate helper that checks for truncate and computes the bytes in the page up to EOF. Use the helper in iomap. NOTE from Darrick: The original patch fixed a number of filesystems, but then there were merge conflicts with the f2fs for-next tree; a subsequent re-submission of the patch had different btrfs changes with no explanation; and Christoph complained that each per-fs fix should be a separate patch. In my view that's too much risk to take on, so I decided to drop all the hunks except for iomap, since I've actually QA'd XFS. Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> [darrick: drop everything but the iomap parts] Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
1656 lines
43 KiB
C
1656 lines
43 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2010 Red Hat, Inc.
|
|
* Copyright (C) 2016-2019 Christoph Hellwig.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/iomap.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/migrate.h>
|
|
#include "trace.h"
|
|
|
|
#include "../internal.h"
|
|
|
|
/*
|
|
* Structure allocated for each page when block size < PAGE_SIZE to track
|
|
* sub-page uptodate status and I/O completions.
|
|
*/
|
|
struct iomap_page {
|
|
atomic_t read_count;
|
|
atomic_t write_count;
|
|
spinlock_t uptodate_lock;
|
|
DECLARE_BITMAP(uptodate, PAGE_SIZE / 512);
|
|
};
|
|
|
|
static inline struct iomap_page *to_iomap_page(struct page *page)
|
|
{
|
|
if (page_has_private(page))
|
|
return (struct iomap_page *)page_private(page);
|
|
return NULL;
|
|
}
|
|
|
|
static struct bio_set iomap_ioend_bioset;
|
|
|
|
static struct iomap_page *
|
|
iomap_page_create(struct inode *inode, struct page *page)
|
|
{
|
|
struct iomap_page *iop = to_iomap_page(page);
|
|
|
|
if (iop || i_blocksize(inode) == PAGE_SIZE)
|
|
return iop;
|
|
|
|
iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
|
|
atomic_set(&iop->read_count, 0);
|
|
atomic_set(&iop->write_count, 0);
|
|
spin_lock_init(&iop->uptodate_lock);
|
|
bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
|
|
|
|
/*
|
|
* migrate_page_move_mapping() assumes that pages with private data have
|
|
* their count elevated by 1.
|
|
*/
|
|
get_page(page);
|
|
set_page_private(page, (unsigned long)iop);
|
|
SetPagePrivate(page);
|
|
return iop;
|
|
}
|
|
|
|
static void
|
|
iomap_page_release(struct page *page)
|
|
{
|
|
struct iomap_page *iop = to_iomap_page(page);
|
|
|
|
if (!iop)
|
|
return;
|
|
WARN_ON_ONCE(atomic_read(&iop->read_count));
|
|
WARN_ON_ONCE(atomic_read(&iop->write_count));
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
put_page(page);
|
|
kfree(iop);
|
|
}
|
|
|
|
/*
|
|
* Calculate the range inside the page that we actually need to read.
|
|
*/
|
|
static void
|
|
iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
|
|
loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
|
|
{
|
|
loff_t orig_pos = *pos;
|
|
loff_t isize = i_size_read(inode);
|
|
unsigned block_bits = inode->i_blkbits;
|
|
unsigned block_size = (1 << block_bits);
|
|
unsigned poff = offset_in_page(*pos);
|
|
unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
|
|
unsigned first = poff >> block_bits;
|
|
unsigned last = (poff + plen - 1) >> block_bits;
|
|
|
|
/*
|
|
* If the block size is smaller than the page size we need to check the
|
|
* per-block uptodate status and adjust the offset and length if needed
|
|
* to avoid reading in already uptodate ranges.
|
|
*/
|
|
if (iop) {
|
|
unsigned int i;
|
|
|
|
/* move forward for each leading block marked uptodate */
|
|
for (i = first; i <= last; i++) {
|
|
if (!test_bit(i, iop->uptodate))
|
|
break;
|
|
*pos += block_size;
|
|
poff += block_size;
|
|
plen -= block_size;
|
|
first++;
|
|
}
|
|
|
|
/* truncate len if we find any trailing uptodate block(s) */
|
|
for ( ; i <= last; i++) {
|
|
if (test_bit(i, iop->uptodate)) {
|
|
plen -= (last - i + 1) * block_size;
|
|
last = i - 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the extent spans the block that contains the i_size we need to
|
|
* handle both halves separately so that we properly zero data in the
|
|
* page cache for blocks that are entirely outside of i_size.
|
|
*/
|
|
if (orig_pos <= isize && orig_pos + length > isize) {
|
|
unsigned end = offset_in_page(isize - 1) >> block_bits;
|
|
|
|
if (first <= end && last > end)
|
|
plen -= (last - end) * block_size;
|
|
}
|
|
|
|
*offp = poff;
|
|
*lenp = plen;
|
|
}
|
|
|
|
static void
|
|
iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
|
|
{
|
|
struct iomap_page *iop = to_iomap_page(page);
|
|
struct inode *inode = page->mapping->host;
|
|
unsigned first = off >> inode->i_blkbits;
|
|
unsigned last = (off + len - 1) >> inode->i_blkbits;
|
|
bool uptodate = true;
|
|
unsigned long flags;
|
|
unsigned int i;
|
|
|
|
spin_lock_irqsave(&iop->uptodate_lock, flags);
|
|
for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
|
|
if (i >= first && i <= last)
|
|
set_bit(i, iop->uptodate);
|
|
else if (!test_bit(i, iop->uptodate))
|
|
uptodate = false;
|
|
}
|
|
|
|
if (uptodate)
|
|
SetPageUptodate(page);
|
|
spin_unlock_irqrestore(&iop->uptodate_lock, flags);
|
|
}
|
|
|
|
static void
|
|
iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
|
|
{
|
|
if (PageError(page))
|
|
return;
|
|
|
|
if (page_has_private(page))
|
|
iomap_iop_set_range_uptodate(page, off, len);
|
|
else
|
|
SetPageUptodate(page);
|
|
}
|
|
|
|
static void
|
|
iomap_read_finish(struct iomap_page *iop, struct page *page)
|
|
{
|
|
if (!iop || atomic_dec_and_test(&iop->read_count))
|
|
unlock_page(page);
|
|
}
|
|
|
|
static void
|
|
iomap_read_page_end_io(struct bio_vec *bvec, int error)
|
|
{
|
|
struct page *page = bvec->bv_page;
|
|
struct iomap_page *iop = to_iomap_page(page);
|
|
|
|
if (unlikely(error)) {
|
|
ClearPageUptodate(page);
|
|
SetPageError(page);
|
|
} else {
|
|
iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
|
|
}
|
|
|
|
iomap_read_finish(iop, page);
|
|
}
|
|
|
|
static void
|
|
iomap_read_end_io(struct bio *bio)
|
|
{
|
|
int error = blk_status_to_errno(bio->bi_status);
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all)
|
|
iomap_read_page_end_io(bvec, error);
|
|
bio_put(bio);
|
|
}
|
|
|
|
struct iomap_readpage_ctx {
|
|
struct page *cur_page;
|
|
bool cur_page_in_bio;
|
|
bool is_readahead;
|
|
struct bio *bio;
|
|
struct list_head *pages;
|
|
};
|
|
|
|
static void
|
|
iomap_read_inline_data(struct inode *inode, struct page *page,
|
|
struct iomap *iomap)
|
|
{
|
|
size_t size = i_size_read(inode);
|
|
void *addr;
|
|
|
|
if (PageUptodate(page))
|
|
return;
|
|
|
|
BUG_ON(page->index);
|
|
BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
|
|
|
|
addr = kmap_atomic(page);
|
|
memcpy(addr, iomap->inline_data, size);
|
|
memset(addr + size, 0, PAGE_SIZE - size);
|
|
kunmap_atomic(addr);
|
|
SetPageUptodate(page);
|
|
}
|
|
|
|
static inline bool iomap_block_needs_zeroing(struct inode *inode,
|
|
struct iomap *iomap, loff_t pos)
|
|
{
|
|
return iomap->type != IOMAP_MAPPED ||
|
|
(iomap->flags & IOMAP_F_NEW) ||
|
|
pos >= i_size_read(inode);
|
|
}
|
|
|
|
static loff_t
|
|
iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
|
|
struct iomap *iomap, struct iomap *srcmap)
|
|
{
|
|
struct iomap_readpage_ctx *ctx = data;
|
|
struct page *page = ctx->cur_page;
|
|
struct iomap_page *iop = iomap_page_create(inode, page);
|
|
bool same_page = false, is_contig = false;
|
|
loff_t orig_pos = pos;
|
|
unsigned poff, plen;
|
|
sector_t sector;
|
|
|
|
if (iomap->type == IOMAP_INLINE) {
|
|
WARN_ON_ONCE(pos);
|
|
iomap_read_inline_data(inode, page, iomap);
|
|
return PAGE_SIZE;
|
|
}
|
|
|
|
/* zero post-eof blocks as the page may be mapped */
|
|
iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
|
|
if (plen == 0)
|
|
goto done;
|
|
|
|
if (iomap_block_needs_zeroing(inode, iomap, pos)) {
|
|
zero_user(page, poff, plen);
|
|
iomap_set_range_uptodate(page, poff, plen);
|
|
goto done;
|
|
}
|
|
|
|
ctx->cur_page_in_bio = true;
|
|
|
|
/*
|
|
* Try to merge into a previous segment if we can.
|
|
*/
|
|
sector = iomap_sector(iomap, pos);
|
|
if (ctx->bio && bio_end_sector(ctx->bio) == sector)
|
|
is_contig = true;
|
|
|
|
if (is_contig &&
|
|
__bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
|
|
if (!same_page && iop)
|
|
atomic_inc(&iop->read_count);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If we start a new segment we need to increase the read count, and we
|
|
* need to do so before submitting any previous full bio to make sure
|
|
* that we don't prematurely unlock the page.
|
|
*/
|
|
if (iop)
|
|
atomic_inc(&iop->read_count);
|
|
|
|
if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
|
|
gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
|
|
int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
|
|
if (ctx->bio)
|
|
submit_bio(ctx->bio);
|
|
|
|
if (ctx->is_readahead) /* same as readahead_gfp_mask */
|
|
gfp |= __GFP_NORETRY | __GFP_NOWARN;
|
|
ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
|
|
ctx->bio->bi_opf = REQ_OP_READ;
|
|
if (ctx->is_readahead)
|
|
ctx->bio->bi_opf |= REQ_RAHEAD;
|
|
ctx->bio->bi_iter.bi_sector = sector;
|
|
bio_set_dev(ctx->bio, iomap->bdev);
|
|
ctx->bio->bi_end_io = iomap_read_end_io;
|
|
}
|
|
|
|
bio_add_page(ctx->bio, page, plen, poff);
|
|
done:
|
|
/*
|
|
* Move the caller beyond our range so that it keeps making progress.
|
|
* For that we have to include any leading non-uptodate ranges, but
|
|
* we can skip trailing ones as they will be handled in the next
|
|
* iteration.
|
|
*/
|
|
return pos - orig_pos + plen;
|
|
}
|
|
|
|
int
|
|
iomap_readpage(struct page *page, const struct iomap_ops *ops)
|
|
{
|
|
struct iomap_readpage_ctx ctx = { .cur_page = page };
|
|
struct inode *inode = page->mapping->host;
|
|
unsigned poff;
|
|
loff_t ret;
|
|
|
|
trace_iomap_readpage(page->mapping->host, 1);
|
|
|
|
for (poff = 0; poff < PAGE_SIZE; poff += ret) {
|
|
ret = iomap_apply(inode, page_offset(page) + poff,
|
|
PAGE_SIZE - poff, 0, ops, &ctx,
|
|
iomap_readpage_actor);
|
|
if (ret <= 0) {
|
|
WARN_ON_ONCE(ret == 0);
|
|
SetPageError(page);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ctx.bio) {
|
|
submit_bio(ctx.bio);
|
|
WARN_ON_ONCE(!ctx.cur_page_in_bio);
|
|
} else {
|
|
WARN_ON_ONCE(ctx.cur_page_in_bio);
|
|
unlock_page(page);
|
|
}
|
|
|
|
/*
|
|
* Just like mpage_readpages and block_read_full_page we always
|
|
* return 0 and just mark the page as PageError on errors. This
|
|
* should be cleaned up all through the stack eventually.
|
|
*/
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_readpage);
|
|
|
|
static struct page *
|
|
iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
|
|
loff_t length, loff_t *done)
|
|
{
|
|
while (!list_empty(pages)) {
|
|
struct page *page = lru_to_page(pages);
|
|
|
|
if (page_offset(page) >= (u64)pos + length)
|
|
break;
|
|
|
|
list_del(&page->lru);
|
|
if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
|
|
GFP_NOFS))
|
|
return page;
|
|
|
|
/*
|
|
* If we already have a page in the page cache at index we are
|
|
* done. Upper layers don't care if it is uptodate after the
|
|
* readpages call itself as every page gets checked again once
|
|
* actually needed.
|
|
*/
|
|
*done += PAGE_SIZE;
|
|
put_page(page);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static loff_t
|
|
iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
|
|
void *data, struct iomap *iomap, struct iomap *srcmap)
|
|
{
|
|
struct iomap_readpage_ctx *ctx = data;
|
|
loff_t done, ret;
|
|
|
|
for (done = 0; done < length; done += ret) {
|
|
if (ctx->cur_page && offset_in_page(pos + done) == 0) {
|
|
if (!ctx->cur_page_in_bio)
|
|
unlock_page(ctx->cur_page);
|
|
put_page(ctx->cur_page);
|
|
ctx->cur_page = NULL;
|
|
}
|
|
if (!ctx->cur_page) {
|
|
ctx->cur_page = iomap_next_page(inode, ctx->pages,
|
|
pos, length, &done);
|
|
if (!ctx->cur_page)
|
|
break;
|
|
ctx->cur_page_in_bio = false;
|
|
}
|
|
ret = iomap_readpage_actor(inode, pos + done, length - done,
|
|
ctx, iomap, srcmap);
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
int
|
|
iomap_readpages(struct address_space *mapping, struct list_head *pages,
|
|
unsigned nr_pages, const struct iomap_ops *ops)
|
|
{
|
|
struct iomap_readpage_ctx ctx = {
|
|
.pages = pages,
|
|
.is_readahead = true,
|
|
};
|
|
loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
|
|
loff_t last = page_offset(list_entry(pages->next, struct page, lru));
|
|
loff_t length = last - pos + PAGE_SIZE, ret = 0;
|
|
|
|
trace_iomap_readpages(mapping->host, nr_pages);
|
|
|
|
while (length > 0) {
|
|
ret = iomap_apply(mapping->host, pos, length, 0, ops,
|
|
&ctx, iomap_readpages_actor);
|
|
if (ret <= 0) {
|
|
WARN_ON_ONCE(ret == 0);
|
|
goto done;
|
|
}
|
|
pos += ret;
|
|
length -= ret;
|
|
}
|
|
ret = 0;
|
|
done:
|
|
if (ctx.bio)
|
|
submit_bio(ctx.bio);
|
|
if (ctx.cur_page) {
|
|
if (!ctx.cur_page_in_bio)
|
|
unlock_page(ctx.cur_page);
|
|
put_page(ctx.cur_page);
|
|
}
|
|
|
|
/*
|
|
* Check that we didn't lose a page due to the arcance calling
|
|
* conventions..
|
|
*/
|
|
WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_readpages);
|
|
|
|
/*
|
|
* iomap_is_partially_uptodate checks whether blocks within a page are
|
|
* uptodate or not.
|
|
*
|
|
* Returns true if all blocks which correspond to a file portion
|
|
* we want to read within the page are uptodate.
|
|
*/
|
|
int
|
|
iomap_is_partially_uptodate(struct page *page, unsigned long from,
|
|
unsigned long count)
|
|
{
|
|
struct iomap_page *iop = to_iomap_page(page);
|
|
struct inode *inode = page->mapping->host;
|
|
unsigned len, first, last;
|
|
unsigned i;
|
|
|
|
/* Limit range to one page */
|
|
len = min_t(unsigned, PAGE_SIZE - from, count);
|
|
|
|
/* First and last blocks in range within page */
|
|
first = from >> inode->i_blkbits;
|
|
last = (from + len - 1) >> inode->i_blkbits;
|
|
|
|
if (iop) {
|
|
for (i = first; i <= last; i++)
|
|
if (!test_bit(i, iop->uptodate))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
|
|
|
|
int
|
|
iomap_releasepage(struct page *page, gfp_t gfp_mask)
|
|
{
|
|
trace_iomap_releasepage(page->mapping->host, page, 0, 0);
|
|
|
|
/*
|
|
* mm accommodates an old ext3 case where clean pages might not have had
|
|
* the dirty bit cleared. Thus, it can send actual dirty pages to
|
|
* ->releasepage() via shrink_active_list(), skip those here.
|
|
*/
|
|
if (PageDirty(page) || PageWriteback(page))
|
|
return 0;
|
|
iomap_page_release(page);
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_releasepage);
|
|
|
|
void
|
|
iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
|
|
{
|
|
trace_iomap_invalidatepage(page->mapping->host, page, offset, len);
|
|
|
|
/*
|
|
* If we are invalidating the entire page, clear the dirty state from it
|
|
* and release it to avoid unnecessary buildup of the LRU.
|
|
*/
|
|
if (offset == 0 && len == PAGE_SIZE) {
|
|
WARN_ON_ONCE(PageWriteback(page));
|
|
cancel_dirty_page(page);
|
|
iomap_page_release(page);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_invalidatepage);
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
int
|
|
iomap_migrate_page(struct address_space *mapping, struct page *newpage,
|
|
struct page *page, enum migrate_mode mode)
|
|
{
|
|
int ret;
|
|
|
|
ret = migrate_page_move_mapping(mapping, newpage, page, 0);
|
|
if (ret != MIGRATEPAGE_SUCCESS)
|
|
return ret;
|
|
|
|
if (page_has_private(page)) {
|
|
ClearPagePrivate(page);
|
|
get_page(newpage);
|
|
set_page_private(newpage, page_private(page));
|
|
set_page_private(page, 0);
|
|
put_page(page);
|
|
SetPagePrivate(newpage);
|
|
}
|
|
|
|
if (mode != MIGRATE_SYNC_NO_COPY)
|
|
migrate_page_copy(newpage, page);
|
|
else
|
|
migrate_page_states(newpage, page);
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_migrate_page);
|
|
#endif /* CONFIG_MIGRATION */
|
|
|
|
enum {
|
|
IOMAP_WRITE_F_UNSHARE = (1 << 0),
|
|
};
|
|
|
|
static void
|
|
iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
|
|
{
|
|
loff_t i_size = i_size_read(inode);
|
|
|
|
/*
|
|
* Only truncate newly allocated pages beyoned EOF, even if the
|
|
* write started inside the existing inode size.
|
|
*/
|
|
if (pos + len > i_size)
|
|
truncate_pagecache_range(inode, max(pos, i_size), pos + len);
|
|
}
|
|
|
|
static int
|
|
iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
|
|
unsigned plen, struct iomap *iomap)
|
|
{
|
|
struct bio_vec bvec;
|
|
struct bio bio;
|
|
|
|
bio_init(&bio, &bvec, 1);
|
|
bio.bi_opf = REQ_OP_READ;
|
|
bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
|
|
bio_set_dev(&bio, iomap->bdev);
|
|
__bio_add_page(&bio, page, plen, poff);
|
|
return submit_bio_wait(&bio);
|
|
}
|
|
|
|
static int
|
|
__iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
|
|
struct page *page, struct iomap *srcmap)
|
|
{
|
|
struct iomap_page *iop = iomap_page_create(inode, page);
|
|
loff_t block_size = i_blocksize(inode);
|
|
loff_t block_start = pos & ~(block_size - 1);
|
|
loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
|
|
unsigned from = offset_in_page(pos), to = from + len, poff, plen;
|
|
int status;
|
|
|
|
if (PageUptodate(page))
|
|
return 0;
|
|
|
|
do {
|
|
iomap_adjust_read_range(inode, iop, &block_start,
|
|
block_end - block_start, &poff, &plen);
|
|
if (plen == 0)
|
|
break;
|
|
|
|
if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
|
|
(from <= poff || from >= poff + plen) &&
|
|
(to <= poff || to >= poff + plen))
|
|
continue;
|
|
|
|
if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
|
|
if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
|
|
return -EIO;
|
|
zero_user_segments(page, poff, from, to, poff + plen);
|
|
iomap_set_range_uptodate(page, poff, plen);
|
|
continue;
|
|
}
|
|
|
|
status = iomap_read_page_sync(block_start, page, poff, plen,
|
|
srcmap);
|
|
if (status)
|
|
return status;
|
|
} while ((block_start += plen) < block_end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
|
|
struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
|
|
{
|
|
const struct iomap_page_ops *page_ops = iomap->page_ops;
|
|
struct page *page;
|
|
int status = 0;
|
|
|
|
BUG_ON(pos + len > iomap->offset + iomap->length);
|
|
if (srcmap != iomap)
|
|
BUG_ON(pos + len > srcmap->offset + srcmap->length);
|
|
|
|
if (fatal_signal_pending(current))
|
|
return -EINTR;
|
|
|
|
if (page_ops && page_ops->page_prepare) {
|
|
status = page_ops->page_prepare(inode, pos, len, iomap);
|
|
if (status)
|
|
return status;
|
|
}
|
|
|
|
page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
|
|
AOP_FLAG_NOFS);
|
|
if (!page) {
|
|
status = -ENOMEM;
|
|
goto out_no_page;
|
|
}
|
|
|
|
if (srcmap->type == IOMAP_INLINE)
|
|
iomap_read_inline_data(inode, page, srcmap);
|
|
else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
|
|
status = __block_write_begin_int(page, pos, len, NULL, srcmap);
|
|
else
|
|
status = __iomap_write_begin(inode, pos, len, flags, page,
|
|
srcmap);
|
|
|
|
if (unlikely(status))
|
|
goto out_unlock;
|
|
|
|
*pagep = page;
|
|
return 0;
|
|
|
|
out_unlock:
|
|
unlock_page(page);
|
|
put_page(page);
|
|
iomap_write_failed(inode, pos, len);
|
|
|
|
out_no_page:
|
|
if (page_ops && page_ops->page_done)
|
|
page_ops->page_done(inode, pos, 0, NULL, iomap);
|
|
return status;
|
|
}
|
|
|
|
int
|
|
iomap_set_page_dirty(struct page *page)
|
|
{
|
|
struct address_space *mapping = page_mapping(page);
|
|
int newly_dirty;
|
|
|
|
if (unlikely(!mapping))
|
|
return !TestSetPageDirty(page);
|
|
|
|
/*
|
|
* Lock out page->mem_cgroup migration to keep PageDirty
|
|
* synchronized with per-memcg dirty page counters.
|
|
*/
|
|
lock_page_memcg(page);
|
|
newly_dirty = !TestSetPageDirty(page);
|
|
if (newly_dirty)
|
|
__set_page_dirty(page, mapping, 0);
|
|
unlock_page_memcg(page);
|
|
|
|
if (newly_dirty)
|
|
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
|
|
return newly_dirty;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
|
|
|
|
static int
|
|
__iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
|
|
unsigned copied, struct page *page)
|
|
{
|
|
flush_dcache_page(page);
|
|
|
|
/*
|
|
* The blocks that were entirely written will now be uptodate, so we
|
|
* don't have to worry about a readpage reading them and overwriting a
|
|
* partial write. However if we have encountered a short write and only
|
|
* partially written into a block, it will not be marked uptodate, so a
|
|
* readpage might come in and destroy our partial write.
|
|
*
|
|
* Do the simplest thing, and just treat any short write to a non
|
|
* uptodate page as a zero-length write, and force the caller to redo
|
|
* the whole thing.
|
|
*/
|
|
if (unlikely(copied < len && !PageUptodate(page)))
|
|
return 0;
|
|
iomap_set_range_uptodate(page, offset_in_page(pos), len);
|
|
iomap_set_page_dirty(page);
|
|
return copied;
|
|
}
|
|
|
|
static int
|
|
iomap_write_end_inline(struct inode *inode, struct page *page,
|
|
struct iomap *iomap, loff_t pos, unsigned copied)
|
|
{
|
|
void *addr;
|
|
|
|
WARN_ON_ONCE(!PageUptodate(page));
|
|
BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
|
|
|
|
addr = kmap_atomic(page);
|
|
memcpy(iomap->inline_data + pos, addr + pos, copied);
|
|
kunmap_atomic(addr);
|
|
|
|
mark_inode_dirty(inode);
|
|
return copied;
|
|
}
|
|
|
|
static int
|
|
iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, struct iomap *iomap, struct iomap *srcmap)
|
|
{
|
|
const struct iomap_page_ops *page_ops = iomap->page_ops;
|
|
loff_t old_size = inode->i_size;
|
|
int ret;
|
|
|
|
if (srcmap->type == IOMAP_INLINE) {
|
|
ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
|
|
} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
|
|
ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
|
|
page, NULL);
|
|
} else {
|
|
ret = __iomap_write_end(inode, pos, len, copied, page);
|
|
}
|
|
|
|
/*
|
|
* Update the in-memory inode size after copying the data into the page
|
|
* cache. It's up to the file system to write the updated size to disk,
|
|
* preferably after I/O completion so that no stale data is exposed.
|
|
*/
|
|
if (pos + ret > old_size) {
|
|
i_size_write(inode, pos + ret);
|
|
iomap->flags |= IOMAP_F_SIZE_CHANGED;
|
|
}
|
|
unlock_page(page);
|
|
|
|
if (old_size < pos)
|
|
pagecache_isize_extended(inode, old_size, pos);
|
|
if (page_ops && page_ops->page_done)
|
|
page_ops->page_done(inode, pos, ret, page, iomap);
|
|
put_page(page);
|
|
|
|
if (ret < len)
|
|
iomap_write_failed(inode, pos, len);
|
|
return ret;
|
|
}
|
|
|
|
static loff_t
|
|
iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
|
|
struct iomap *iomap, struct iomap *srcmap)
|
|
{
|
|
struct iov_iter *i = data;
|
|
long status = 0;
|
|
ssize_t written = 0;
|
|
|
|
do {
|
|
struct page *page;
|
|
unsigned long offset; /* Offset into pagecache page */
|
|
unsigned long bytes; /* Bytes to write to page */
|
|
size_t copied; /* Bytes copied from user */
|
|
|
|
offset = offset_in_page(pos);
|
|
bytes = min_t(unsigned long, PAGE_SIZE - offset,
|
|
iov_iter_count(i));
|
|
again:
|
|
if (bytes > length)
|
|
bytes = length;
|
|
|
|
/*
|
|
* Bring in the user page that we will copy from _first_.
|
|
* Otherwise there's a nasty deadlock on copying from the
|
|
* same page as we're writing to, without it being marked
|
|
* up-to-date.
|
|
*
|
|
* Not only is this an optimisation, but it is also required
|
|
* to check that the address is actually valid, when atomic
|
|
* usercopies are used, below.
|
|
*/
|
|
if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
|
|
status = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
|
|
srcmap);
|
|
if (unlikely(status))
|
|
break;
|
|
|
|
if (mapping_writably_mapped(inode->i_mapping))
|
|
flush_dcache_page(page);
|
|
|
|
copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
|
|
|
|
flush_dcache_page(page);
|
|
|
|
status = iomap_write_end(inode, pos, bytes, copied, page, iomap,
|
|
srcmap);
|
|
if (unlikely(status < 0))
|
|
break;
|
|
copied = status;
|
|
|
|
cond_resched();
|
|
|
|
iov_iter_advance(i, copied);
|
|
if (unlikely(copied == 0)) {
|
|
/*
|
|
* If we were unable to copy any data at all, we must
|
|
* fall back to a single segment length write.
|
|
*
|
|
* If we didn't fallback here, we could livelock
|
|
* because not all segments in the iov can be copied at
|
|
* once without a pagefault.
|
|
*/
|
|
bytes = min_t(unsigned long, PAGE_SIZE - offset,
|
|
iov_iter_single_seg_count(i));
|
|
goto again;
|
|
}
|
|
pos += copied;
|
|
written += copied;
|
|
length -= copied;
|
|
|
|
balance_dirty_pages_ratelimited(inode->i_mapping);
|
|
} while (iov_iter_count(i) && length);
|
|
|
|
return written ? written : status;
|
|
}
|
|
|
|
ssize_t
|
|
iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
struct inode *inode = iocb->ki_filp->f_mapping->host;
|
|
loff_t pos = iocb->ki_pos, ret = 0, written = 0;
|
|
|
|
while (iov_iter_count(iter)) {
|
|
ret = iomap_apply(inode, pos, iov_iter_count(iter),
|
|
IOMAP_WRITE, ops, iter, iomap_write_actor);
|
|
if (ret <= 0)
|
|
break;
|
|
pos += ret;
|
|
written += ret;
|
|
}
|
|
|
|
return written ? written : ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
|
|
|
|
static loff_t
|
|
iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
|
|
struct iomap *iomap, struct iomap *srcmap)
|
|
{
|
|
long status = 0;
|
|
ssize_t written = 0;
|
|
|
|
/* don't bother with blocks that are not shared to start with */
|
|
if (!(iomap->flags & IOMAP_F_SHARED))
|
|
return length;
|
|
/* don't bother with holes or unwritten extents */
|
|
if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
|
|
return length;
|
|
|
|
do {
|
|
unsigned long offset = offset_in_page(pos);
|
|
unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
|
|
struct page *page;
|
|
|
|
status = iomap_write_begin(inode, pos, bytes,
|
|
IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
|
|
if (unlikely(status))
|
|
return status;
|
|
|
|
status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
|
|
srcmap);
|
|
if (unlikely(status <= 0)) {
|
|
if (WARN_ON_ONCE(status == 0))
|
|
return -EIO;
|
|
return status;
|
|
}
|
|
|
|
cond_resched();
|
|
|
|
pos += status;
|
|
written += status;
|
|
length -= status;
|
|
|
|
balance_dirty_pages_ratelimited(inode->i_mapping);
|
|
} while (length);
|
|
|
|
return written;
|
|
}
|
|
|
|
int
|
|
iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
loff_t ret;
|
|
|
|
while (len) {
|
|
ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
|
|
iomap_unshare_actor);
|
|
if (ret <= 0)
|
|
return ret;
|
|
pos += ret;
|
|
len -= ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_file_unshare);
|
|
|
|
static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
|
|
unsigned bytes, struct iomap *iomap, struct iomap *srcmap)
|
|
{
|
|
struct page *page;
|
|
int status;
|
|
|
|
status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
|
|
if (status)
|
|
return status;
|
|
|
|
zero_user(page, offset, bytes);
|
|
mark_page_accessed(page);
|
|
|
|
return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
|
|
}
|
|
|
|
static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
|
|
struct iomap *iomap)
|
|
{
|
|
return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
|
|
iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
|
|
}
|
|
|
|
static loff_t
|
|
iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
|
|
void *data, struct iomap *iomap, struct iomap *srcmap)
|
|
{
|
|
bool *did_zero = data;
|
|
loff_t written = 0;
|
|
int status;
|
|
|
|
/* already zeroed? we're done. */
|
|
if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
|
|
return count;
|
|
|
|
do {
|
|
unsigned offset, bytes;
|
|
|
|
offset = offset_in_page(pos);
|
|
bytes = min_t(loff_t, PAGE_SIZE - offset, count);
|
|
|
|
if (IS_DAX(inode))
|
|
status = iomap_dax_zero(pos, offset, bytes, iomap);
|
|
else
|
|
status = iomap_zero(inode, pos, offset, bytes, iomap,
|
|
srcmap);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
pos += bytes;
|
|
count -= bytes;
|
|
written += bytes;
|
|
if (did_zero)
|
|
*did_zero = true;
|
|
} while (count > 0);
|
|
|
|
return written;
|
|
}
|
|
|
|
int
|
|
iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
loff_t ret;
|
|
|
|
while (len > 0) {
|
|
ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
|
|
ops, did_zero, iomap_zero_range_actor);
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
pos += ret;
|
|
len -= ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_zero_range);
|
|
|
|
int
|
|
iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
unsigned int blocksize = i_blocksize(inode);
|
|
unsigned int off = pos & (blocksize - 1);
|
|
|
|
/* Block boundary? Nothing to do */
|
|
if (!off)
|
|
return 0;
|
|
return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_truncate_page);
|
|
|
|
static loff_t
|
|
iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
|
|
void *data, struct iomap *iomap, struct iomap *srcmap)
|
|
{
|
|
struct page *page = data;
|
|
int ret;
|
|
|
|
if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
|
|
ret = __block_write_begin_int(page, pos, length, NULL, iomap);
|
|
if (ret)
|
|
return ret;
|
|
block_commit_write(page, 0, length);
|
|
} else {
|
|
WARN_ON_ONCE(!PageUptodate(page));
|
|
iomap_page_create(inode, page);
|
|
set_page_dirty(page);
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
|
|
{
|
|
struct page *page = vmf->page;
|
|
struct inode *inode = file_inode(vmf->vma->vm_file);
|
|
unsigned long length;
|
|
loff_t offset;
|
|
ssize_t ret;
|
|
|
|
lock_page(page);
|
|
ret = page_mkwrite_check_truncate(page, inode);
|
|
if (ret < 0)
|
|
goto out_unlock;
|
|
length = ret;
|
|
|
|
offset = page_offset(page);
|
|
while (length > 0) {
|
|
ret = iomap_apply(inode, offset, length,
|
|
IOMAP_WRITE | IOMAP_FAULT, ops, page,
|
|
iomap_page_mkwrite_actor);
|
|
if (unlikely(ret <= 0))
|
|
goto out_unlock;
|
|
offset += ret;
|
|
length -= ret;
|
|
}
|
|
|
|
wait_for_stable_page(page);
|
|
return VM_FAULT_LOCKED;
|
|
out_unlock:
|
|
unlock_page(page);
|
|
return block_page_mkwrite_return(ret);
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
|
|
|
|
static void
|
|
iomap_finish_page_writeback(struct inode *inode, struct page *page,
|
|
int error)
|
|
{
|
|
struct iomap_page *iop = to_iomap_page(page);
|
|
|
|
if (error) {
|
|
SetPageError(page);
|
|
mapping_set_error(inode->i_mapping, -EIO);
|
|
}
|
|
|
|
WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
|
|
WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0);
|
|
|
|
if (!iop || atomic_dec_and_test(&iop->write_count))
|
|
end_page_writeback(page);
|
|
}
|
|
|
|
/*
|
|
* We're now finished for good with this ioend structure. Update the page
|
|
* state, release holds on bios, and finally free up memory. Do not use the
|
|
* ioend after this.
|
|
*/
|
|
static void
|
|
iomap_finish_ioend(struct iomap_ioend *ioend, int error)
|
|
{
|
|
struct inode *inode = ioend->io_inode;
|
|
struct bio *bio = &ioend->io_inline_bio;
|
|
struct bio *last = ioend->io_bio, *next;
|
|
u64 start = bio->bi_iter.bi_sector;
|
|
loff_t offset = ioend->io_offset;
|
|
bool quiet = bio_flagged(bio, BIO_QUIET);
|
|
|
|
for (bio = &ioend->io_inline_bio; bio; bio = next) {
|
|
struct bio_vec *bv;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
/*
|
|
* For the last bio, bi_private points to the ioend, so we
|
|
* need to explicitly end the iteration here.
|
|
*/
|
|
if (bio == last)
|
|
next = NULL;
|
|
else
|
|
next = bio->bi_private;
|
|
|
|
/* walk each page on bio, ending page IO on them */
|
|
bio_for_each_segment_all(bv, bio, iter_all)
|
|
iomap_finish_page_writeback(inode, bv->bv_page, error);
|
|
bio_put(bio);
|
|
}
|
|
/* The ioend has been freed by bio_put() */
|
|
|
|
if (unlikely(error && !quiet)) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: writeback error on inode %lu, offset %lld, sector %llu",
|
|
inode->i_sb->s_id, inode->i_ino, offset, start);
|
|
}
|
|
}
|
|
|
|
void
|
|
iomap_finish_ioends(struct iomap_ioend *ioend, int error)
|
|
{
|
|
struct list_head tmp;
|
|
|
|
list_replace_init(&ioend->io_list, &tmp);
|
|
iomap_finish_ioend(ioend, error);
|
|
|
|
while (!list_empty(&tmp)) {
|
|
ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
|
|
list_del_init(&ioend->io_list);
|
|
iomap_finish_ioend(ioend, error);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_finish_ioends);
|
|
|
|
/*
|
|
* We can merge two adjacent ioends if they have the same set of work to do.
|
|
*/
|
|
static bool
|
|
iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
|
|
{
|
|
if (ioend->io_bio->bi_status != next->io_bio->bi_status)
|
|
return false;
|
|
if ((ioend->io_flags & IOMAP_F_SHARED) ^
|
|
(next->io_flags & IOMAP_F_SHARED))
|
|
return false;
|
|
if ((ioend->io_type == IOMAP_UNWRITTEN) ^
|
|
(next->io_type == IOMAP_UNWRITTEN))
|
|
return false;
|
|
if (ioend->io_offset + ioend->io_size != next->io_offset)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void
|
|
iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
|
|
void (*merge_private)(struct iomap_ioend *ioend,
|
|
struct iomap_ioend *next))
|
|
{
|
|
struct iomap_ioend *next;
|
|
|
|
INIT_LIST_HEAD(&ioend->io_list);
|
|
|
|
while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
|
|
io_list))) {
|
|
if (!iomap_ioend_can_merge(ioend, next))
|
|
break;
|
|
list_move_tail(&next->io_list, &ioend->io_list);
|
|
ioend->io_size += next->io_size;
|
|
if (next->io_private && merge_private)
|
|
merge_private(ioend, next);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
|
|
|
|
static int
|
|
iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
|
|
{
|
|
struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
|
|
struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
|
|
|
|
if (ia->io_offset < ib->io_offset)
|
|
return -1;
|
|
if (ia->io_offset > ib->io_offset)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iomap_sort_ioends(struct list_head *ioend_list)
|
|
{
|
|
list_sort(NULL, ioend_list, iomap_ioend_compare);
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_sort_ioends);
|
|
|
|
static void iomap_writepage_end_bio(struct bio *bio)
|
|
{
|
|
struct iomap_ioend *ioend = bio->bi_private;
|
|
|
|
iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
|
|
}
|
|
|
|
/*
|
|
* Submit the final bio for an ioend.
|
|
*
|
|
* If @error is non-zero, it means that we have a situation where some part of
|
|
* the submission process has failed after we have marked paged for writeback
|
|
* and unlocked them. In this situation, we need to fail the bio instead of
|
|
* submitting it. This typically only happens on a filesystem shutdown.
|
|
*/
|
|
static int
|
|
iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
|
|
int error)
|
|
{
|
|
ioend->io_bio->bi_private = ioend;
|
|
ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
|
|
|
|
if (wpc->ops->prepare_ioend)
|
|
error = wpc->ops->prepare_ioend(ioend, error);
|
|
if (error) {
|
|
/*
|
|
* If we are failing the IO now, just mark the ioend with an
|
|
* error and finish it. This will run IO completion immediately
|
|
* as there is only one reference to the ioend at this point in
|
|
* time.
|
|
*/
|
|
ioend->io_bio->bi_status = errno_to_blk_status(error);
|
|
bio_endio(ioend->io_bio);
|
|
return error;
|
|
}
|
|
|
|
submit_bio(ioend->io_bio);
|
|
return 0;
|
|
}
|
|
|
|
static struct iomap_ioend *
|
|
iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
|
|
loff_t offset, sector_t sector, struct writeback_control *wbc)
|
|
{
|
|
struct iomap_ioend *ioend;
|
|
struct bio *bio;
|
|
|
|
bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
|
|
bio_set_dev(bio, wpc->iomap.bdev);
|
|
bio->bi_iter.bi_sector = sector;
|
|
bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
|
|
bio->bi_write_hint = inode->i_write_hint;
|
|
wbc_init_bio(wbc, bio);
|
|
|
|
ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
|
|
INIT_LIST_HEAD(&ioend->io_list);
|
|
ioend->io_type = wpc->iomap.type;
|
|
ioend->io_flags = wpc->iomap.flags;
|
|
ioend->io_inode = inode;
|
|
ioend->io_size = 0;
|
|
ioend->io_offset = offset;
|
|
ioend->io_private = NULL;
|
|
ioend->io_bio = bio;
|
|
return ioend;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new bio, and chain the old bio to the new one.
|
|
*
|
|
* Note that we have to do perform the chaining in this unintuitive order
|
|
* so that the bi_private linkage is set up in the right direction for the
|
|
* traversal in iomap_finish_ioend().
|
|
*/
|
|
static struct bio *
|
|
iomap_chain_bio(struct bio *prev)
|
|
{
|
|
struct bio *new;
|
|
|
|
new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
|
|
bio_copy_dev(new, prev);/* also copies over blkcg information */
|
|
new->bi_iter.bi_sector = bio_end_sector(prev);
|
|
new->bi_opf = prev->bi_opf;
|
|
new->bi_write_hint = prev->bi_write_hint;
|
|
|
|
bio_chain(prev, new);
|
|
bio_get(prev); /* for iomap_finish_ioend */
|
|
submit_bio(prev);
|
|
return new;
|
|
}
|
|
|
|
static bool
|
|
iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
|
|
sector_t sector)
|
|
{
|
|
if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
|
|
(wpc->ioend->io_flags & IOMAP_F_SHARED))
|
|
return false;
|
|
if (wpc->iomap.type != wpc->ioend->io_type)
|
|
return false;
|
|
if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
|
|
return false;
|
|
if (sector != bio_end_sector(wpc->ioend->io_bio))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Test to see if we have an existing ioend structure that we could append to
|
|
* first, otherwise finish off the current ioend and start another.
|
|
*/
|
|
static void
|
|
iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
|
|
struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
|
|
struct writeback_control *wbc, struct list_head *iolist)
|
|
{
|
|
sector_t sector = iomap_sector(&wpc->iomap, offset);
|
|
unsigned len = i_blocksize(inode);
|
|
unsigned poff = offset & (PAGE_SIZE - 1);
|
|
bool merged, same_page = false;
|
|
|
|
if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
|
|
if (wpc->ioend)
|
|
list_add(&wpc->ioend->io_list, iolist);
|
|
wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
|
|
}
|
|
|
|
merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
|
|
&same_page);
|
|
if (iop && !same_page)
|
|
atomic_inc(&iop->write_count);
|
|
|
|
if (!merged) {
|
|
if (bio_full(wpc->ioend->io_bio, len)) {
|
|
wpc->ioend->io_bio =
|
|
iomap_chain_bio(wpc->ioend->io_bio);
|
|
}
|
|
bio_add_page(wpc->ioend->io_bio, page, len, poff);
|
|
}
|
|
|
|
wpc->ioend->io_size += len;
|
|
wbc_account_cgroup_owner(wbc, page, len);
|
|
}
|
|
|
|
/*
|
|
* We implement an immediate ioend submission policy here to avoid needing to
|
|
* chain multiple ioends and hence nest mempool allocations which can violate
|
|
* forward progress guarantees we need to provide. The current ioend we are
|
|
* adding blocks to is cached on the writepage context, and if the new block
|
|
* does not append to the cached ioend it will create a new ioend and cache that
|
|
* instead.
|
|
*
|
|
* If a new ioend is created and cached, the old ioend is returned and queued
|
|
* locally for submission once the entire page is processed or an error has been
|
|
* detected. While ioends are submitted immediately after they are completed,
|
|
* batching optimisations are provided by higher level block plugging.
|
|
*
|
|
* At the end of a writeback pass, there will be a cached ioend remaining on the
|
|
* writepage context that the caller will need to submit.
|
|
*/
|
|
static int
|
|
iomap_writepage_map(struct iomap_writepage_ctx *wpc,
|
|
struct writeback_control *wbc, struct inode *inode,
|
|
struct page *page, u64 end_offset)
|
|
{
|
|
struct iomap_page *iop = to_iomap_page(page);
|
|
struct iomap_ioend *ioend, *next;
|
|
unsigned len = i_blocksize(inode);
|
|
u64 file_offset; /* file offset of page */
|
|
int error = 0, count = 0, i;
|
|
LIST_HEAD(submit_list);
|
|
|
|
WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
|
|
WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0);
|
|
|
|
/*
|
|
* Walk through the page to find areas to write back. If we run off the
|
|
* end of the current map or find the current map invalid, grab a new
|
|
* one.
|
|
*/
|
|
for (i = 0, file_offset = page_offset(page);
|
|
i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
|
|
i++, file_offset += len) {
|
|
if (iop && !test_bit(i, iop->uptodate))
|
|
continue;
|
|
|
|
error = wpc->ops->map_blocks(wpc, inode, file_offset);
|
|
if (error)
|
|
break;
|
|
if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
|
|
continue;
|
|
if (wpc->iomap.type == IOMAP_HOLE)
|
|
continue;
|
|
iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
|
|
&submit_list);
|
|
count++;
|
|
}
|
|
|
|
WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
|
|
WARN_ON_ONCE(!PageLocked(page));
|
|
WARN_ON_ONCE(PageWriteback(page));
|
|
|
|
/*
|
|
* We cannot cancel the ioend directly here on error. We may have
|
|
* already set other pages under writeback and hence we have to run I/O
|
|
* completion to mark the error state of the pages under writeback
|
|
* appropriately.
|
|
*/
|
|
if (unlikely(error)) {
|
|
if (!count) {
|
|
/*
|
|
* If the current page hasn't been added to ioend, it
|
|
* won't be affected by I/O completions and we must
|
|
* discard and unlock it right here.
|
|
*/
|
|
if (wpc->ops->discard_page)
|
|
wpc->ops->discard_page(page);
|
|
ClearPageUptodate(page);
|
|
unlock_page(page);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If the page was not fully cleaned, we need to ensure that the
|
|
* higher layers come back to it correctly. That means we need
|
|
* to keep the page dirty, and for WB_SYNC_ALL writeback we need
|
|
* to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
|
|
* so another attempt to write this page in this writeback sweep
|
|
* will be made.
|
|
*/
|
|
set_page_writeback_keepwrite(page);
|
|
} else {
|
|
clear_page_dirty_for_io(page);
|
|
set_page_writeback(page);
|
|
}
|
|
|
|
unlock_page(page);
|
|
|
|
/*
|
|
* Preserve the original error if there was one, otherwise catch
|
|
* submission errors here and propagate into subsequent ioend
|
|
* submissions.
|
|
*/
|
|
list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
|
|
int error2;
|
|
|
|
list_del_init(&ioend->io_list);
|
|
error2 = iomap_submit_ioend(wpc, ioend, error);
|
|
if (error2 && !error)
|
|
error = error2;
|
|
}
|
|
|
|
/*
|
|
* We can end up here with no error and nothing to write only if we race
|
|
* with a partial page truncate on a sub-page block sized filesystem.
|
|
*/
|
|
if (!count)
|
|
end_page_writeback(page);
|
|
done:
|
|
mapping_set_error(page->mapping, error);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Write out a dirty page.
|
|
*
|
|
* For delalloc space on the page we need to allocate space and flush it.
|
|
* For unwritten space on the page we need to start the conversion to
|
|
* regular allocated space.
|
|
*/
|
|
static int
|
|
iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
|
|
{
|
|
struct iomap_writepage_ctx *wpc = data;
|
|
struct inode *inode = page->mapping->host;
|
|
pgoff_t end_index;
|
|
u64 end_offset;
|
|
loff_t offset;
|
|
|
|
trace_iomap_writepage(inode, page, 0, 0);
|
|
|
|
/*
|
|
* Refuse to write the page out if we are called from reclaim context.
|
|
*
|
|
* This avoids stack overflows when called from deeply used stacks in
|
|
* random callers for direct reclaim or memcg reclaim. We explicitly
|
|
* allow reclaim from kswapd as the stack usage there is relatively low.
|
|
*
|
|
* This should never happen except in the case of a VM regression so
|
|
* warn about it.
|
|
*/
|
|
if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
|
|
PF_MEMALLOC))
|
|
goto redirty;
|
|
|
|
/*
|
|
* Given that we do not allow direct reclaim to call us, we should
|
|
* never be called in a recursive filesystem reclaim context.
|
|
*/
|
|
if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
|
|
goto redirty;
|
|
|
|
/*
|
|
* Is this page beyond the end of the file?
|
|
*
|
|
* The page index is less than the end_index, adjust the end_offset
|
|
* to the highest offset that this page should represent.
|
|
* -----------------------------------------------------
|
|
* | file mapping | <EOF> |
|
|
* -----------------------------------------------------
|
|
* | Page ... | Page N-2 | Page N-1 | Page N | |
|
|
* ^--------------------------------^----------|--------
|
|
* | desired writeback range | see else |
|
|
* ---------------------------------^------------------|
|
|
*/
|
|
offset = i_size_read(inode);
|
|
end_index = offset >> PAGE_SHIFT;
|
|
if (page->index < end_index)
|
|
end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
|
|
else {
|
|
/*
|
|
* Check whether the page to write out is beyond or straddles
|
|
* i_size or not.
|
|
* -------------------------------------------------------
|
|
* | file mapping | <EOF> |
|
|
* -------------------------------------------------------
|
|
* | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
|
|
* ^--------------------------------^-----------|---------
|
|
* | | Straddles |
|
|
* ---------------------------------^-----------|--------|
|
|
*/
|
|
unsigned offset_into_page = offset & (PAGE_SIZE - 1);
|
|
|
|
/*
|
|
* Skip the page if it is fully outside i_size, e.g. due to a
|
|
* truncate operation that is in progress. We must redirty the
|
|
* page so that reclaim stops reclaiming it. Otherwise
|
|
* iomap_vm_releasepage() is called on it and gets confused.
|
|
*
|
|
* Note that the end_index is unsigned long, it would overflow
|
|
* if the given offset is greater than 16TB on 32-bit system
|
|
* and if we do check the page is fully outside i_size or not
|
|
* via "if (page->index >= end_index + 1)" as "end_index + 1"
|
|
* will be evaluated to 0. Hence this page will be redirtied
|
|
* and be written out repeatedly which would result in an
|
|
* infinite loop, the user program that perform this operation
|
|
* will hang. Instead, we can verify this situation by checking
|
|
* if the page to write is totally beyond the i_size or if it's
|
|
* offset is just equal to the EOF.
|
|
*/
|
|
if (page->index > end_index ||
|
|
(page->index == end_index && offset_into_page == 0))
|
|
goto redirty;
|
|
|
|
/*
|
|
* The page straddles i_size. It must be zeroed out on each
|
|
* and every writepage invocation because it may be mmapped.
|
|
* "A file is mapped in multiples of the page size. For a file
|
|
* that is not a multiple of the page size, the remaining
|
|
* memory is zeroed when mapped, and writes to that region are
|
|
* not written out to the file."
|
|
*/
|
|
zero_user_segment(page, offset_into_page, PAGE_SIZE);
|
|
|
|
/* Adjust the end_offset to the end of file */
|
|
end_offset = offset;
|
|
}
|
|
|
|
return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
|
|
|
|
redirty:
|
|
redirty_page_for_writepage(wbc, page);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iomap_writepage(struct page *page, struct writeback_control *wbc,
|
|
struct iomap_writepage_ctx *wpc,
|
|
const struct iomap_writeback_ops *ops)
|
|
{
|
|
int ret;
|
|
|
|
wpc->ops = ops;
|
|
ret = iomap_do_writepage(page, wbc, wpc);
|
|
if (!wpc->ioend)
|
|
return ret;
|
|
return iomap_submit_ioend(wpc, wpc->ioend, ret);
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_writepage);
|
|
|
|
int
|
|
iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
|
|
struct iomap_writepage_ctx *wpc,
|
|
const struct iomap_writeback_ops *ops)
|
|
{
|
|
int ret;
|
|
|
|
wpc->ops = ops;
|
|
ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
|
|
if (!wpc->ioend)
|
|
return ret;
|
|
return iomap_submit_ioend(wpc, wpc->ioend, ret);
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_writepages);
|
|
|
|
static int __init iomap_init(void)
|
|
{
|
|
return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
|
|
offsetof(struct iomap_ioend, io_inline_bio),
|
|
BIOSET_NEED_BVECS);
|
|
}
|
|
fs_initcall(iomap_init);
|