2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 20:24:09 +08:00
linux-next/drivers/mtd/nand/sh_flctl.c
Yoshihiro Shimoda 6028aa01f7 [MTD] [NAND] sh_flctl: add support for Renesas SuperH FLCTL
Several Renesas SuperH CPU has FLCTL. The FLCTL support NAND Flash.
This driver support SH7723.

Signed-off-by: Yoshihiro Shimoda <shimoda.yoshihiro@renesas.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2008-10-14 13:33:05 +01:00

302 lines
7.1 KiB
C

/*
* SuperH FLCTL nand controller
*
* Copyright © 2008 Renesas Solutions Corp.
* Copyright © 2008 Atom Create Engineering Co., Ltd.
*
* Based on fsl_elbc_nand.c, Copyright © 2006-2007 Freescale Semiconductor
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/sh_flctl.h>
static struct nand_ecclayout flctl_4secc_oob_16 = {
.eccbytes = 10,
.eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
.oobfree = {
{.offset = 12,
. length = 4} },
};
static struct nand_ecclayout flctl_4secc_oob_64 = {
.eccbytes = 10,
.eccpos = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57},
.oobfree = {
{.offset = 60,
. length = 4} },
};
static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
static struct nand_bbt_descr flctl_4secc_smallpage = {
.options = NAND_BBT_SCAN2NDPAGE,
.offs = 11,
.len = 1,
.pattern = scan_ff_pattern,
};
static struct nand_bbt_descr flctl_4secc_largepage = {
.options = 0,
.offs = 58,
.len = 2,
.pattern = scan_ff_pattern,
};
static void empty_fifo(struct sh_flctl *flctl)
{
writel(0x000c0000, FLINTDMACR(flctl)); /* FIFO Clear */
writel(0x00000000, FLINTDMACR(flctl)); /* Clear Error flags */
}
static void start_translation(struct sh_flctl *flctl)
{
writeb(TRSTRT, FLTRCR(flctl));
}
static void wait_completion(struct sh_flctl *flctl)
{
uint32_t timeout = LOOP_TIMEOUT_MAX;
while (timeout--) {
if (readb(FLTRCR(flctl)) & TREND) {
writeb(0x0, FLTRCR(flctl));
return;
}
udelay(1);
}
printk(KERN_ERR "wait_completion(): Timeout occured \n");
writeb(0x0, FLTRCR(flctl));
}
static void set_addr(struct mtd_info *mtd, int column, int page_addr)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
uint32_t addr = 0;
if (column == -1) {
addr = page_addr; /* ERASE1 */
} else if (page_addr != -1) {
/* SEQIN, READ0, etc.. */
if (flctl->page_size) {
addr = column & 0x0FFF;
addr |= (page_addr & 0xff) << 16;
addr |= ((page_addr >> 8) & 0xff) << 24;
/* big than 128MB */
if (flctl->rw_ADRCNT == ADRCNT2_E) {
uint32_t addr2;
addr2 = (page_addr >> 16) & 0xff;
writel(addr2, FLADR2(flctl));
}
} else {
addr = column;
addr |= (page_addr & 0xff) << 8;
addr |= ((page_addr >> 8) & 0xff) << 16;
addr |= ((page_addr >> 16) & 0xff) << 24;
}
}
writel(addr, FLADR(flctl));
}
static void wait_rfifo_ready(struct sh_flctl *flctl)
{
uint32_t timeout = LOOP_TIMEOUT_MAX;
while (timeout--) {
uint32_t val;
/* check FIFO */
val = readl(FLDTCNTR(flctl)) >> 16;
if (val & 0xFF)
return;
udelay(1);
}
printk(KERN_ERR "wait_rfifo_ready(): Timeout occured \n");
}
static void wait_wfifo_ready(struct sh_flctl *flctl)
{
uint32_t len, timeout = LOOP_TIMEOUT_MAX;
while (timeout--) {
/* check FIFO */
len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
if (len >= 4)
return;
udelay(1);
}
printk(KERN_ERR "wait_wfifo_ready(): Timeout occured \n");
}
static int wait_recfifo_ready(struct sh_flctl *flctl)
{
uint32_t timeout = LOOP_TIMEOUT_MAX;
int checked[4];
void __iomem *ecc_reg[4];
int i;
uint32_t data, size;
memset(checked, 0, sizeof(checked));
while (timeout--) {
size = readl(FLDTCNTR(flctl)) >> 24;
if (size & 0xFF)
return 0; /* success */
if (readl(FL4ECCCR(flctl)) & _4ECCFA)
return 1; /* can't correct */
udelay(1);
if (!(readl(FL4ECCCR(flctl)) & _4ECCEND))
continue;
/* start error correction */
ecc_reg[0] = FL4ECCRESULT0(flctl);
ecc_reg[1] = FL4ECCRESULT1(flctl);
ecc_reg[2] = FL4ECCRESULT2(flctl);
ecc_reg[3] = FL4ECCRESULT3(flctl);
for (i = 0; i < 3; i++) {
data = readl(ecc_reg[i]);
if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) {
uint8_t org;
int index;
index = data >> 16;
org = flctl->done_buff[index];
flctl->done_buff[index] = org ^ (data & 0xFF);
checked[i] = 1;
}
}
writel(0, FL4ECCCR(flctl));
}
printk(KERN_ERR "wait_recfifo_ready(): Timeout occured \n");
return 1; /* timeout */
}
static void wait_wecfifo_ready(struct sh_flctl *flctl)
{
uint32_t timeout = LOOP_TIMEOUT_MAX;
uint32_t len;
while (timeout--) {
/* check FLECFIFO */
len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
if (len >= 4)
return;
udelay(1);
}
printk(KERN_ERR "wait_wecfifo_ready(): Timeout occured \n");
}
static void read_datareg(struct sh_flctl *flctl, int offset)
{
unsigned long data;
unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
wait_completion(flctl);
data = readl(FLDATAR(flctl));
*buf = le32_to_cpu(data);
}
static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
{
int i, len_4align;
unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
void *fifo_addr = (void *)FLDTFIFO(flctl);
len_4align = (rlen + 3) / 4;
for (i = 0; i < len_4align; i++) {
wait_rfifo_ready(flctl);
buf[i] = readl(fifo_addr);
buf[i] = be32_to_cpu(buf[i]);
}
}
static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff)
{
int i;
unsigned long *ecc_buf = (unsigned long *)buff;
void *fifo_addr = (void *)FLECFIFO(flctl);
for (i = 0; i < 4; i++) {
if (wait_recfifo_ready(flctl))
return 1;
ecc_buf[i] = readl(fifo_addr);
ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
}
return 0;
}
static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
{
int i, len_4align;
unsigned long *data = (unsigned long *)&flctl->done_buff[offset];
void *fifo_addr = (void *)FLDTFIFO(flctl);
len_4align = (rlen + 3) / 4;
for (i = 0; i < len_4align; i++) {
wait_wfifo_ready(flctl);
writel(cpu_to_be32(data[i]), fifo_addr);
}
}
static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
{
struct sh_flctl *flctl = mtd_to_flctl(mtd);
uint32_t flcmncr_val = readl(FLCMNCR(flctl));
uint32_t flcmdcr_val, addr_len_bytes = 0;
/* Set SNAND bit if page size is 2048byte */
if (flctl->page_size)
flcmncr_val |= SNAND_E;
else
flcmncr_val &= ~SNAND_E;
/* default FLCMDCR val */
flcmdcr_val = DOCMD1_E | DOADR_E;
/* Set for FLCMDCR */
switch (cmd) {
case NAND_CMD_ERASE1:
addr_len_bytes = flctl->erase_ADRCNT;
flcmdcr_val |= DOCMD2_E;
break;
case NAND_CMD_READ0:
case NAND_CMD_READOOB:
addr_len_bytes = flctl->rw_ADRCNT;
flcmdcr_val |= CDSRC_E;
break;
case NAND_CMD_SEQIN:
/* This case is that cmd is READ0 or READ1 or READ00 */
flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */
break;
case NAND_CMD_PAGEPROG:
addr_len_bytes = flctl->rw_ADRCNT;