2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 23:54:19 +08:00
linux-next/kernel/context_tracking.c
Oleg Nesterov 009f60e276 sched: stop the unbound recursion in preempt_schedule_context()
preempt_schedule_context() does preempt_enable_notrace() at the end
and this can call the same function again; exception_exit() is heavy
and it is quite possible that need-resched is true again.

1. Change this code to dec preempt_count() and check need_resched()
   by hand.

2. As Linus suggested, we can use the PREEMPT_ACTIVE bit and avoid
   the enable/disable dance around __schedule(). But in this case
   we need to move into sched/core.c.

3. Cosmetic, but x86 forgets to declare this function. This doesn't
   really matter because it is only called by asm helpers, still it
   make sense to add the declaration into asm/preempt.h to match
   preempt_schedule().

Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Graf <agraf@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Chuck Ebbert <cebbert.lkml@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20141005202322.GB27962@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:46:05 +01:00

177 lines
5.7 KiB
C

/*
* Context tracking: Probe on high level context boundaries such as kernel
* and userspace. This includes syscalls and exceptions entry/exit.
*
* This is used by RCU to remove its dependency on the timer tick while a CPU
* runs in userspace.
*
* Started by Frederic Weisbecker:
*
* Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker <fweisbec@redhat.com>
*
* Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton,
* Steven Rostedt, Peter Zijlstra for suggestions and improvements.
*
*/
#include <linux/context_tracking.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/hardirq.h>
#include <linux/export.h>
#include <linux/kprobes.h>
#define CREATE_TRACE_POINTS
#include <trace/events/context_tracking.h>
struct static_key context_tracking_enabled = STATIC_KEY_INIT_FALSE;
EXPORT_SYMBOL_GPL(context_tracking_enabled);
DEFINE_PER_CPU(struct context_tracking, context_tracking);
EXPORT_SYMBOL_GPL(context_tracking);
void context_tracking_cpu_set(int cpu)
{
if (!per_cpu(context_tracking.active, cpu)) {
per_cpu(context_tracking.active, cpu) = true;
static_key_slow_inc(&context_tracking_enabled);
}
}
/**
* context_tracking_user_enter - Inform the context tracking that the CPU is going to
* enter userspace mode.
*
* This function must be called right before we switch from the kernel
* to userspace, when it's guaranteed the remaining kernel instructions
* to execute won't use any RCU read side critical section because this
* function sets RCU in extended quiescent state.
*/
void context_tracking_user_enter(void)
{
unsigned long flags;
/*
* Repeat the user_enter() check here because some archs may be calling
* this from asm and if no CPU needs context tracking, they shouldn't
* go further. Repeat the check here until they support the inline static
* key check.
*/
if (!context_tracking_is_enabled())
return;
/*
* Some contexts may involve an exception occuring in an irq,
* leading to that nesting:
* rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
* This would mess up the dyntick_nesting count though. And rcu_irq_*()
* helpers are enough to protect RCU uses inside the exception. So
* just return immediately if we detect we are in an IRQ.
*/
if (in_interrupt())
return;
/* Kernel threads aren't supposed to go to userspace */
WARN_ON_ONCE(!current->mm);
local_irq_save(flags);
if ( __this_cpu_read(context_tracking.state) != IN_USER) {
if (__this_cpu_read(context_tracking.active)) {
trace_user_enter(0);
/*
* At this stage, only low level arch entry code remains and
* then we'll run in userspace. We can assume there won't be
* any RCU read-side critical section until the next call to
* user_exit() or rcu_irq_enter(). Let's remove RCU's dependency
* on the tick.
*/
vtime_user_enter(current);
rcu_user_enter();
}
/*
* Even if context tracking is disabled on this CPU, because it's outside
* the full dynticks mask for example, we still have to keep track of the
* context transitions and states to prevent inconsistency on those of
* other CPUs.
* If a task triggers an exception in userspace, sleep on the exception
* handler and then migrate to another CPU, that new CPU must know where
* the exception returns by the time we call exception_exit().
* This information can only be provided by the previous CPU when it called
* exception_enter().
* OTOH we can spare the calls to vtime and RCU when context_tracking.active
* is false because we know that CPU is not tickless.
*/
__this_cpu_write(context_tracking.state, IN_USER);
}
local_irq_restore(flags);
}
NOKPROBE_SYMBOL(context_tracking_user_enter);
/**
* context_tracking_user_exit - Inform the context tracking that the CPU is
* exiting userspace mode and entering the kernel.
*
* This function must be called after we entered the kernel from userspace
* before any use of RCU read side critical section. This potentially include
* any high level kernel code like syscalls, exceptions, signal handling, etc...
*
* This call supports re-entrancy. This way it can be called from any exception
* handler without needing to know if we came from userspace or not.
*/
void context_tracking_user_exit(void)
{
unsigned long flags;
if (!context_tracking_is_enabled())
return;
if (in_interrupt())
return;
local_irq_save(flags);
if (__this_cpu_read(context_tracking.state) == IN_USER) {
if (__this_cpu_read(context_tracking.active)) {
/*
* We are going to run code that may use RCU. Inform
* RCU core about that (ie: we may need the tick again).
*/
rcu_user_exit();
vtime_user_exit(current);
trace_user_exit(0);
}
__this_cpu_write(context_tracking.state, IN_KERNEL);
}
local_irq_restore(flags);
}
NOKPROBE_SYMBOL(context_tracking_user_exit);
/**
* __context_tracking_task_switch - context switch the syscall callbacks
* @prev: the task that is being switched out
* @next: the task that is being switched in
*
* The context tracking uses the syscall slow path to implement its user-kernel
* boundaries probes on syscalls. This way it doesn't impact the syscall fast
* path on CPUs that don't do context tracking.
*
* But we need to clear the flag on the previous task because it may later
* migrate to some CPU that doesn't do the context tracking. As such the TIF
* flag may not be desired there.
*/
void __context_tracking_task_switch(struct task_struct *prev,
struct task_struct *next)
{
clear_tsk_thread_flag(prev, TIF_NOHZ);
set_tsk_thread_flag(next, TIF_NOHZ);
}
#ifdef CONFIG_CONTEXT_TRACKING_FORCE
void __init context_tracking_init(void)
{
int cpu;
for_each_possible_cpu(cpu)
context_tracking_cpu_set(cpu);
}
#endif