2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 06:34:17 +08:00
linux-next/mm/nobootmem.c
Tejun Heo d4bbf7e775 Merge branch 'master' into x86/memblock
Conflicts & resolutions:

* arch/x86/xen/setup.c

	dc91c728fd "xen: allow extra memory to be in multiple regions"
	24aa07882b "memblock, x86: Replace memblock_x86_reserve/free..."

	conflicted on xen_add_extra_mem() updates.  The resolution is
	trivial as the latter just want to replace
	memblock_x86_reserve_range() with memblock_reserve().

* drivers/pci/intel-iommu.c

	166e9278a3 "x86/ia64: intel-iommu: move to drivers/iommu/"
	5dfe8660a3 "bootmem: Replace work_with_active_regions() with..."

	conflicted as the former moved the file under drivers/iommu/.
	Resolved by applying the chnages from the latter on the moved
	file.

* mm/Kconfig

	6661672053 "memblock: add NO_BOOTMEM config symbol"
	c378ddd53f "memblock, x86: Make ARCH_DISCARD_MEMBLOCK a config option"

	conflicted trivially.  Both added config options.  Just
	letting both add their own options resolves the conflict.

* mm/memblock.c

	d1f0ece6cd "mm/memblock.c: small function definition fixes"
	ed7b56a799 "memblock: Remove memblock_memory_can_coalesce()"

	confliected.  The former updates function removed by the
	latter.  Resolution is trivial.

Signed-off-by: Tejun Heo <tj@kernel.org>
2011-11-28 09:46:22 -08:00

408 lines
11 KiB
C

/*
* bootmem - A boot-time physical memory allocator and configurator
*
* Copyright (C) 1999 Ingo Molnar
* 1999 Kanoj Sarcar, SGI
* 2008 Johannes Weiner
*
* Access to this subsystem has to be serialized externally (which is true
* for the boot process anyway).
*/
#include <linux/init.h>
#include <linux/pfn.h>
#include <linux/slab.h>
#include <linux/bootmem.h>
#include <linux/export.h>
#include <linux/kmemleak.h>
#include <linux/range.h>
#include <linux/memblock.h>
#include <asm/bug.h>
#include <asm/io.h>
#include <asm/processor.h>
#include "internal.h"
#ifndef CONFIG_NEED_MULTIPLE_NODES
struct pglist_data __refdata contig_page_data;
EXPORT_SYMBOL(contig_page_data);
#endif
unsigned long max_low_pfn;
unsigned long min_low_pfn;
unsigned long max_pfn;
static void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
u64 goal, u64 limit)
{
void *ptr;
u64 addr;
if (limit > memblock.current_limit)
limit = memblock.current_limit;
addr = memblock_find_in_range_node(goal, limit, size, align, nid);
if (!addr)
return NULL;
ptr = phys_to_virt(addr);
memset(ptr, 0, size);
memblock_reserve(addr, size);
/*
* The min_count is set to 0 so that bootmem allocated blocks
* are never reported as leaks.
*/
kmemleak_alloc(ptr, size, 0, 0);
return ptr;
}
/*
* free_bootmem_late - free bootmem pages directly to page allocator
* @addr: starting address of the range
* @size: size of the range in bytes
*
* This is only useful when the bootmem allocator has already been torn
* down, but we are still initializing the system. Pages are given directly
* to the page allocator, no bootmem metadata is updated because it is gone.
*/
void __init free_bootmem_late(unsigned long addr, unsigned long size)
{
unsigned long cursor, end;
kmemleak_free_part(__va(addr), size);
cursor = PFN_UP(addr);
end = PFN_DOWN(addr + size);
for (; cursor < end; cursor++) {
__free_pages_bootmem(pfn_to_page(cursor), 0);
totalram_pages++;
}
}
static void __init __free_pages_memory(unsigned long start, unsigned long end)
{
int i;
unsigned long start_aligned, end_aligned;
int order = ilog2(BITS_PER_LONG);
start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
end_aligned = end & ~(BITS_PER_LONG - 1);
if (end_aligned <= start_aligned) {
for (i = start; i < end; i++)
__free_pages_bootmem(pfn_to_page(i), 0);
return;
}
for (i = start; i < start_aligned; i++)
__free_pages_bootmem(pfn_to_page(i), 0);
for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
__free_pages_bootmem(pfn_to_page(i), order);
for (i = end_aligned; i < end; i++)
__free_pages_bootmem(pfn_to_page(i), 0);
}
unsigned long __init free_low_memory_core_early(int nodeid)
{
unsigned long count = 0;
phys_addr_t start, end;
u64 i;
/* free reserved array temporarily so that it's treated as free area */
memblock_free_reserved_regions();
for_each_free_mem_range(i, MAX_NUMNODES, &start, &end, NULL) {
unsigned long start_pfn = PFN_UP(start);
unsigned long end_pfn = min_t(unsigned long,
PFN_DOWN(end), max_low_pfn);
if (start_pfn < end_pfn) {
__free_pages_memory(start_pfn, end_pfn);
count += end_pfn - start_pfn;
}
}
/* put region array back? */
memblock_reserve_reserved_regions();
return count;
}
/**
* free_all_bootmem_node - release a node's free pages to the buddy allocator
* @pgdat: node to be released
*
* Returns the number of pages actually released.
*/
unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
{
register_page_bootmem_info_node(pgdat);
/* free_low_memory_core_early(MAX_NUMNODES) will be called later */
return 0;
}
/**
* free_all_bootmem - release free pages to the buddy allocator
*
* Returns the number of pages actually released.
*/
unsigned long __init free_all_bootmem(void)
{
/*
* We need to use MAX_NUMNODES instead of NODE_DATA(0)->node_id
* because in some case like Node0 doesn't have RAM installed
* low ram will be on Node1
* Use MAX_NUMNODES will make sure all ranges in early_node_map[]
* will be used instead of only Node0 related
*/
return free_low_memory_core_early(MAX_NUMNODES);
}
/**
* free_bootmem_node - mark a page range as usable
* @pgdat: node the range resides on
* @physaddr: starting address of the range
* @size: size of the range in bytes
*
* Partial pages will be considered reserved and left as they are.
*
* The range must reside completely on the specified node.
*/
void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
unsigned long size)
{
kmemleak_free_part(__va(physaddr), size);
memblock_free(physaddr, size);
}
/**
* free_bootmem - mark a page range as usable
* @addr: starting address of the range
* @size: size of the range in bytes
*
* Partial pages will be considered reserved and left as they are.
*
* The range must be contiguous but may span node boundaries.
*/
void __init free_bootmem(unsigned long addr, unsigned long size)
{
kmemleak_free_part(__va(addr), size);
memblock_free(addr, size);
}
static void * __init ___alloc_bootmem_nopanic(unsigned long size,
unsigned long align,
unsigned long goal,
unsigned long limit)
{
void *ptr;
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc(size, GFP_NOWAIT);
restart:
ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit);
if (ptr)
return ptr;
if (goal != 0) {
goal = 0;
goto restart;
}
return NULL;
}
/**
* __alloc_bootmem_nopanic - allocate boot memory without panicking
* @size: size of the request in bytes
* @align: alignment of the region
* @goal: preferred starting address of the region
*
* The goal is dropped if it can not be satisfied and the allocation will
* fall back to memory below @goal.
*
* Allocation may happen on any node in the system.
*
* Returns NULL on failure.
*/
void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
unsigned long goal)
{
unsigned long limit = -1UL;
return ___alloc_bootmem_nopanic(size, align, goal, limit);
}
static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
unsigned long goal, unsigned long limit)
{
void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
if (mem)
return mem;
/*
* Whoops, we cannot satisfy the allocation request.
*/
printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
panic("Out of memory");
return NULL;
}
/**
* __alloc_bootmem - allocate boot memory
* @size: size of the request in bytes
* @align: alignment of the region
* @goal: preferred starting address of the region
*
* The goal is dropped if it can not be satisfied and the allocation will
* fall back to memory below @goal.
*
* Allocation may happen on any node in the system.
*
* The function panics if the request can not be satisfied.
*/
void * __init __alloc_bootmem(unsigned long size, unsigned long align,
unsigned long goal)
{
unsigned long limit = -1UL;
return ___alloc_bootmem(size, align, goal, limit);
}
/**
* __alloc_bootmem_node - allocate boot memory from a specific node
* @pgdat: node to allocate from
* @size: size of the request in bytes
* @align: alignment of the region
* @goal: preferred starting address of the region
*
* The goal is dropped if it can not be satisfied and the allocation will
* fall back to memory below @goal.
*
* Allocation may fall back to any node in the system if the specified node
* can not hold the requested memory.
*
* The function panics if the request can not be satisfied.
*/
void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
void *ptr;
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
goal, -1ULL);
if (ptr)
return ptr;
return __alloc_memory_core_early(MAX_NUMNODES, size, align,
goal, -1ULL);
}
void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
return __alloc_bootmem_node(pgdat, size, align, goal);
}
#ifdef CONFIG_SPARSEMEM
/**
* alloc_bootmem_section - allocate boot memory from a specific section
* @size: size of the request in bytes
* @section_nr: sparse map section to allocate from
*
* Return NULL on failure.
*/
void * __init alloc_bootmem_section(unsigned long size,
unsigned long section_nr)
{
unsigned long pfn, goal, limit;
pfn = section_nr_to_pfn(section_nr);
goal = pfn << PAGE_SHIFT;
limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
return __alloc_memory_core_early(early_pfn_to_nid(pfn), size,
SMP_CACHE_BYTES, goal, limit);
}
#endif
void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
void *ptr;
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
goal, -1ULL);
if (ptr)
return ptr;
return __alloc_bootmem_nopanic(size, align, goal);
}
#ifndef ARCH_LOW_ADDRESS_LIMIT
#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
#endif
/**
* __alloc_bootmem_low - allocate low boot memory
* @size: size of the request in bytes
* @align: alignment of the region
* @goal: preferred starting address of the region
*
* The goal is dropped if it can not be satisfied and the allocation will
* fall back to memory below @goal.
*
* Allocation may happen on any node in the system.
*
* The function panics if the request can not be satisfied.
*/
void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
unsigned long goal)
{
return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
}
/**
* __alloc_bootmem_low_node - allocate low boot memory from a specific node
* @pgdat: node to allocate from
* @size: size of the request in bytes
* @align: alignment of the region
* @goal: preferred starting address of the region
*
* The goal is dropped if it can not be satisfied and the allocation will
* fall back to memory below @goal.
*
* Allocation may fall back to any node in the system if the specified node
* can not hold the requested memory.
*
* The function panics if the request can not be satisfied.
*/
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
void *ptr;
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
goal, ARCH_LOW_ADDRESS_LIMIT);
if (ptr)
return ptr;
return __alloc_memory_core_early(MAX_NUMNODES, size, align,
goal, ARCH_LOW_ADDRESS_LIMIT);
}