2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
linux-next/arch/parisc/kernel/perf.c
Simon Arlott 7022672e40 [PARISC] spelling fixes: arch/parisc/
Spelling fixes in arch/parisc/.

Signed-off-by: Simon Arlott <simon@fire.lp0.eu>
Acked-by: Grant Grundler <grundler@parisc-linux.org>
Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
2007-05-22 22:52:16 -04:00

852 lines
23 KiB
C

/*
* Parisc performance counters
* Copyright (C) 2001 Randolph Chung <tausq@debian.org>
*
* This code is derived, with permission, from HP/UX sources.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Edited comment from original sources:
*
* This driver programs the PCX-U/PCX-W performance counters
* on the PA-RISC 2.0 chips. The driver keeps all images now
* internally to the kernel to hopefully eliminate the possiblity
* of a bad image halting the CPU. Also, there are different
* images for the PCX-W and later chips vs the PCX-U chips.
*
* Only 1 process is allowed to access the driver at any time,
* so the only protection that is needed is at open and close.
* A variable "perf_enabled" is used to hold the state of the
* driver. The spinlock "perf_lock" is used to protect the
* modification of the state during open/close operations so
* multiple processes don't get into the driver simultaneously.
*
* This driver accesses the processor directly vs going through
* the PDC INTRIGUE calls. This is done to eliminate bugs introduced
* in various PDC revisions. The code is much more maintainable
* and reliable this way vs having to debug on every version of PDC
* on every box.
*/
#include <linux/capability.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/miscdevice.h>
#include <linux/spinlock.h>
#include <asm/uaccess.h>
#include <asm/perf.h>
#include <asm/parisc-device.h>
#include <asm/processor.h>
#include <asm/runway.h>
#include <asm/io.h> /* for __raw_read() */
#include "perf_images.h"
#define MAX_RDR_WORDS 24
#define PERF_VERSION 2 /* derived from hpux's PI v2 interface */
/* definition of RDR regs */
struct rdr_tbl_ent {
uint16_t width;
uint8_t num_words;
uint8_t write_control;
};
static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
static int perf_enabled __read_mostly;
static spinlock_t perf_lock;
struct parisc_device *cpu_device __read_mostly;
/* RDRs to write for PCX-W */
static const int perf_rdrs_W[] =
{ 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
/* RDRs to write for PCX-U */
static const int perf_rdrs_U[] =
{ 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
/* RDR register descriptions for PCX-W */
static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
{ 19, 1, 8 }, /* RDR 0 */
{ 16, 1, 16 }, /* RDR 1 */
{ 72, 2, 0 }, /* RDR 2 */
{ 81, 2, 0 }, /* RDR 3 */
{ 328, 6, 0 }, /* RDR 4 */
{ 160, 3, 0 }, /* RDR 5 */
{ 336, 6, 0 }, /* RDR 6 */
{ 164, 3, 0 }, /* RDR 7 */
{ 0, 0, 0 }, /* RDR 8 */
{ 35, 1, 0 }, /* RDR 9 */
{ 6, 1, 0 }, /* RDR 10 */
{ 18, 1, 0 }, /* RDR 11 */
{ 13, 1, 0 }, /* RDR 12 */
{ 8, 1, 0 }, /* RDR 13 */
{ 8, 1, 0 }, /* RDR 14 */
{ 8, 1, 0 }, /* RDR 15 */
{ 1530, 24, 0 }, /* RDR 16 */
{ 16, 1, 0 }, /* RDR 17 */
{ 4, 1, 0 }, /* RDR 18 */
{ 0, 0, 0 }, /* RDR 19 */
{ 152, 3, 24 }, /* RDR 20 */
{ 152, 3, 24 }, /* RDR 21 */
{ 233, 4, 48 }, /* RDR 22 */
{ 233, 4, 48 }, /* RDR 23 */
{ 71, 2, 0 }, /* RDR 24 */
{ 71, 2, 0 }, /* RDR 25 */
{ 11, 1, 0 }, /* RDR 26 */
{ 18, 1, 0 }, /* RDR 27 */
{ 128, 2, 0 }, /* RDR 28 */
{ 0, 0, 0 }, /* RDR 29 */
{ 16, 1, 0 }, /* RDR 30 */
{ 16, 1, 0 }, /* RDR 31 */
};
/* RDR register descriptions for PCX-U */
static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
{ 19, 1, 8 }, /* RDR 0 */
{ 32, 1, 16 }, /* RDR 1 */
{ 20, 1, 0 }, /* RDR 2 */
{ 0, 0, 0 }, /* RDR 3 */
{ 344, 6, 0 }, /* RDR 4 */
{ 176, 3, 0 }, /* RDR 5 */
{ 336, 6, 0 }, /* RDR 6 */
{ 0, 0, 0 }, /* RDR 7 */
{ 0, 0, 0 }, /* RDR 8 */
{ 0, 0, 0 }, /* RDR 9 */
{ 28, 1, 0 }, /* RDR 10 */
{ 33, 1, 0 }, /* RDR 11 */
{ 0, 0, 0 }, /* RDR 12 */
{ 230, 4, 0 }, /* RDR 13 */
{ 32, 1, 0 }, /* RDR 14 */
{ 128, 2, 0 }, /* RDR 15 */
{ 1494, 24, 0 }, /* RDR 16 */
{ 18, 1, 0 }, /* RDR 17 */
{ 4, 1, 0 }, /* RDR 18 */
{ 0, 0, 0 }, /* RDR 19 */
{ 158, 3, 24 }, /* RDR 20 */
{ 158, 3, 24 }, /* RDR 21 */
{ 194, 4, 48 }, /* RDR 22 */
{ 194, 4, 48 }, /* RDR 23 */
{ 71, 2, 0 }, /* RDR 24 */
{ 71, 2, 0 }, /* RDR 25 */
{ 28, 1, 0 }, /* RDR 26 */
{ 33, 1, 0 }, /* RDR 27 */
{ 88, 2, 0 }, /* RDR 28 */
{ 32, 1, 0 }, /* RDR 29 */
{ 24, 1, 0 }, /* RDR 30 */
{ 16, 1, 0 }, /* RDR 31 */
};
/*
* A non-zero write_control in the above tables is a byte offset into
* this array.
*/
static const uint64_t perf_bitmasks[] = {
0x0000000000000000ul, /* first dbl word must be zero */
0xfdffe00000000000ul, /* RDR0 bitmask */
0x003f000000000000ul, /* RDR1 bitmask */
0x00fffffffffffffful, /* RDR20-RDR21 bitmask (152 bits) */
0xfffffffffffffffful,
0xfffffffc00000000ul,
0xfffffffffffffffful, /* RDR22-RDR23 bitmask (233 bits) */
0xfffffffffffffffful,
0xfffffffffffffffcul,
0xff00000000000000ul
};
/*
* Write control bitmasks for Pa-8700 processor given
* some things have changed slightly.
*/
static const uint64_t perf_bitmasks_piranha[] = {
0x0000000000000000ul, /* first dbl word must be zero */
0xfdffe00000000000ul, /* RDR0 bitmask */
0x003f000000000000ul, /* RDR1 bitmask */
0x00fffffffffffffful, /* RDR20-RDR21 bitmask (158 bits) */
0xfffffffffffffffful,
0xfffffffc00000000ul,
0xfffffffffffffffful, /* RDR22-RDR23 bitmask (210 bits) */
0xfffffffffffffffful,
0xfffffffffffffffful,
0xfffc000000000000ul
};
static const uint64_t *bitmask_array; /* array of bitmasks to use */
/******************************************************************************
* Function Prototypes
*****************************************************************************/
static int perf_config(uint32_t *image_ptr);
static int perf_release(struct inode *inode, struct file *file);
static int perf_open(struct inode *inode, struct file *file);
static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
loff_t *ppos);
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
static void perf_start_counters(void);
static int perf_stop_counters(uint32_t *raddr);
static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer);
static int perf_rdr_clear(uint32_t rdr_num);
static int perf_write_image(uint64_t *memaddr);
static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
/* External Assembly Routines */
extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
extern void perf_intrigue_enable_perf_counters (void);
extern void perf_intrigue_disable_perf_counters (void);
/******************************************************************************
* Function Definitions
*****************************************************************************/
/*
* configure:
*
* Configure the cpu with a given data image. First turn off the counters,
* then download the image, then turn the counters back on.
*/
static int perf_config(uint32_t *image_ptr)
{
long error;
uint32_t raddr[4];
/* Stop the counters*/
error = perf_stop_counters(raddr);
if (error != 0) {
printk("perf_config: perf_stop_counters = %ld\n", error);
return -EINVAL;
}
printk("Preparing to write image\n");
/* Write the image to the chip */
error = perf_write_image((uint64_t *)image_ptr);
if (error != 0) {
printk("perf_config: DOWNLOAD = %ld\n", error);
return -EINVAL;
}
printk("Preparing to start counters\n");
/* Start the counters */
perf_start_counters();
return sizeof(uint32_t);
}
/*
* Open the device and initialize all of its memory. The device is only
* opened once, but can be "queried" by multiple processes that know its
* file descriptor.
*/
static int perf_open(struct inode *inode, struct file *file)
{
spin_lock(&perf_lock);
if (perf_enabled) {
spin_unlock(&perf_lock);
return -EBUSY;
}
perf_enabled = 1;
spin_unlock(&perf_lock);
return 0;
}
/*
* Close the device.
*/
static int perf_release(struct inode *inode, struct file *file)
{
spin_lock(&perf_lock);
perf_enabled = 0;
spin_unlock(&perf_lock);
return 0;
}
/*
* Read does nothing for this driver
*/
static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
{
return 0;
}
/*
* write:
*
* This routine downloads the image to the chip. It must be
* called on the processor that the download should happen
* on.
*/
static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
loff_t *ppos)
{
int err;
size_t image_size;
uint32_t image_type;
uint32_t interface_type;
uint32_t test;
if (perf_processor_interface == ONYX_INTF)
image_size = PCXU_IMAGE_SIZE;
else if (perf_processor_interface == CUDA_INTF)
image_size = PCXW_IMAGE_SIZE;
else
return -EFAULT;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (count != sizeof(uint32_t))
return -EIO;
if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0)
return err;
/* Get the interface type and test type */
interface_type = (image_type >> 16) & 0xffff;
test = (image_type & 0xffff);
/* Make sure everything makes sense */
/* First check the machine type is correct for
the requested image */
if (((perf_processor_interface == CUDA_INTF) &&
(interface_type != CUDA_INTF)) ||
((perf_processor_interface == ONYX_INTF) &&
(interface_type != ONYX_INTF)))
return -EINVAL;
/* Next check to make sure the requested image
is valid */
if (((interface_type == CUDA_INTF) &&
(test >= MAX_CUDA_IMAGES)) ||
((interface_type == ONYX_INTF) &&
(test >= MAX_ONYX_IMAGES)))
return -EINVAL;
/* Copy the image into the processor */
if (interface_type == CUDA_INTF)
return perf_config(cuda_images[test]);
else
return perf_config(onyx_images[test]);
return count;
}
/*
* Patch the images that need to know the IVA addresses.
*/
static void perf_patch_images(void)
{
#if 0 /* FIXME!! */
/*
* NOTE: this routine is VERY specific to the current TLB image.
* If the image is changed, this routine might also need to be changed.
*/
extern void $i_itlb_miss_2_0();
extern void $i_dtlb_miss_2_0();
extern void PA2_0_iva();
/*
* We can only use the lower 32-bits, the upper 32-bits should be 0
* anyway given this is in the kernel
*/
uint32_t itlb_addr = (uint32_t)&($i_itlb_miss_2_0);
uint32_t dtlb_addr = (uint32_t)&($i_dtlb_miss_2_0);
uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
if (perf_processor_interface == ONYX_INTF) {
/* clear last 2 bytes */
onyx_images[TLBMISS][15] &= 0xffffff00;
/* set 2 bytes */
onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
onyx_images[TLBMISS][17] = itlb_addr;
/* clear last 2 bytes */
onyx_images[TLBHANDMISS][15] &= 0xffffff00;
/* set 2 bytes */
onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
onyx_images[TLBHANDMISS][17] = itlb_addr;
/* clear last 2 bytes */
onyx_images[BIG_CPI][15] &= 0xffffff00;
/* set 2 bytes */
onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
onyx_images[BIG_CPI][17] = itlb_addr;
onyx_images[PANIC][15] &= 0xffffff00; /* clear last 2 bytes */
onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
} else if (perf_processor_interface == CUDA_INTF) {
/* Cuda interface */
cuda_images[TLBMISS][16] =
(cuda_images[TLBMISS][16]&0xffff0000) |
((dtlb_addr >> 8)&0x0000ffff);
cuda_images[TLBMISS][17] =
((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
cuda_images[TLBHANDMISS][16] =
(cuda_images[TLBHANDMISS][16]&0xffff0000) |
((dtlb_addr >> 8)&0x0000ffff);
cuda_images[TLBHANDMISS][17] =
((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
cuda_images[BIG_CPI][16] =
(cuda_images[BIG_CPI][16]&0xffff0000) |
((dtlb_addr >> 8)&0x0000ffff);
cuda_images[BIG_CPI][17] =
((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
} else {
/* Unknown type */
}
#endif
}
/*
* ioctl routine
* All routines effect the processor that they are executed on. Thus you
* must be running on the processor that you wish to change.
*/
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
long error_start;
uint32_t raddr[4];
int error = 0;
switch (cmd) {
case PA_PERF_ON:
/* Start the counters */
perf_start_counters();
break;
case PA_PERF_OFF:
error_start = perf_stop_counters(raddr);
if (error_start != 0) {
printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
error = -EFAULT;
break;
}
/* copy out the Counters */
if (copy_to_user((void __user *)arg, raddr,
sizeof (raddr)) != 0) {
error = -EFAULT;
break;
}
break;
case PA_PERF_VERSION:
/* Return the version # */
error = put_user(PERF_VERSION, (int *)arg);
break;
default:
error = -ENOTTY;
}
return error;
}
static const struct file_operations perf_fops = {
.llseek = no_llseek,
.read = perf_read,
.write = perf_write,
.unlocked_ioctl = perf_ioctl,
.compat_ioctl = perf_ioctl,
.open = perf_open,
.release = perf_release
};
static struct miscdevice perf_dev = {
MISC_DYNAMIC_MINOR,
PA_PERF_DEV,
&perf_fops
};
/*
* Initialize the module
*/
static int __init perf_init(void)
{
int ret;
/* Determine correct processor interface to use */
bitmask_array = perf_bitmasks;
if (boot_cpu_data.cpu_type == pcxu ||
boot_cpu_data.cpu_type == pcxu_) {
perf_processor_interface = ONYX_INTF;
} else if (boot_cpu_data.cpu_type == pcxw ||
boot_cpu_data.cpu_type == pcxw_ ||
boot_cpu_data.cpu_type == pcxw2 ||
boot_cpu_data.cpu_type == mako ||
boot_cpu_data.cpu_type == mako2) {
perf_processor_interface = CUDA_INTF;
if (boot_cpu_data.cpu_type == pcxw2 ||
boot_cpu_data.cpu_type == mako ||
boot_cpu_data.cpu_type == mako2)
bitmask_array = perf_bitmasks_piranha;
} else {
perf_processor_interface = UNKNOWN_INTF;
printk("Performance monitoring counters not supported on this processor\n");
return -ENODEV;
}
ret = misc_register(&perf_dev);
if (ret) {
printk(KERN_ERR "Performance monitoring counters: "
"cannot register misc device.\n");
return ret;
}
/* Patch the images to match the system */
perf_patch_images();
spin_lock_init(&perf_lock);
/* TODO: this only lets us access the first cpu.. what to do for SMP? */
cpu_device = cpu_data[0].dev;
printk("Performance monitoring counters enabled for %s\n",
cpu_data[0].dev->name);
return 0;
}
/*
* perf_start_counters(void)
*
* Start the counters.
*/
static void perf_start_counters(void)
{
/* Enable performance monitor counters */
perf_intrigue_enable_perf_counters();
}
/*
* perf_stop_counters
*
* Stop the performance counters and save counts
* in a per_processor array.
*/
static int perf_stop_counters(uint32_t *raddr)
{
uint64_t userbuf[MAX_RDR_WORDS];
/* Disable performance counters */
perf_intrigue_disable_perf_counters();
if (perf_processor_interface == ONYX_INTF) {
uint64_t tmp64;
/*
* Read the counters
*/
if (!perf_rdr_read_ubuf(16, userbuf))
return -13;
/* Counter0 is bits 1398 to 1429 */
tmp64 = (userbuf[21] << 22) & 0x00000000ffc00000;
tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
/* OR sticky0 (bit 1430) to counter0 bit 32 */
tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
raddr[0] = (uint32_t)tmp64;
/* Counter1 is bits 1431 to 1462 */
tmp64 = (userbuf[22] >> 9) & 0x00000000ffffffff;
/* OR sticky1 (bit 1463) to counter1 bit 32 */
tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
raddr[1] = (uint32_t)tmp64;
/* Counter2 is bits 1464 to 1495 */
tmp64 = (userbuf[22] << 24) & 0x00000000ff000000;
tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
/* OR sticky2 (bit 1496) to counter2 bit 32 */
tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
raddr[2] = (uint32_t)tmp64;
/* Counter3 is bits 1497 to 1528 */
tmp64 = (userbuf[23] >> 7) & 0x00000000ffffffff;
/* OR sticky3 (bit 1529) to counter3 bit 32 */
tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
raddr[3] = (uint32_t)tmp64;
/*
* Zero out the counters
*/
/*
* The counters and sticky-bits comprise the last 132 bits
* (1398 - 1529) of RDR16 on a U chip. We'll zero these
* out the easy way: zero out last 10 bits of dword 21,
* all of dword 22 and 58 bits (plus 6 don't care bits) of
* dword 23.
*/
userbuf[21] &= 0xfffffffffffffc00ul; /* 0 to last 10 bits */
userbuf[22] = 0;
userbuf[23] = 0;
/*
* Write back the zeroed bytes + the image given
* the read was destructive.
*/
perf_rdr_write(16, userbuf);
} else {
/*
* Read RDR-15 which contains the counters and sticky bits
*/
if (!perf_rdr_read_ubuf(15, userbuf)) {
return -13;
}
/*
* Clear out the counters
*/
perf_rdr_clear(15);
/*
* Copy the counters
*/
raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
}
return 0;
}
/*
* perf_rdr_get_entry
*
* Retrieve a pointer to the description of what this
* RDR contains.
*/
static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
{
if (perf_processor_interface == ONYX_INTF) {
return &perf_rdr_tbl_U[rdr_num];
} else {
return &perf_rdr_tbl_W[rdr_num];
}
}
/*
* perf_rdr_read_ubuf
*
* Read the RDR value into the buffer specified.
*/
static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer)
{
uint64_t data, data_mask = 0;
uint32_t width, xbits, i;
const struct rdr_tbl_ent *tentry;
tentry = perf_rdr_get_entry(rdr_num);
if ((width = tentry->width) == 0)
return 0;
/* Clear out buffer */
i = tentry->num_words;
while (i--) {
buffer[i] = 0;
}
/* Check for bits an even number of 64 */
if ((xbits = width & 0x03f) != 0) {
data_mask = 1;
data_mask <<= (64 - xbits);
data_mask--;
}
/* Grab all of the data */
i = tentry->num_words;
while (i--) {
if (perf_processor_interface == ONYX_INTF) {
data = perf_rdr_shift_in_U(rdr_num, width);
} else {
data = perf_rdr_shift_in_W(rdr_num, width);
}
if (xbits) {
buffer[i] |= (data << (64 - xbits));
if (i) {
buffer[i-1] |= ((data >> xbits) & data_mask);
}
} else {
buffer[i] = data;
}
}
return 1;
}
/*
* perf_rdr_clear
*
* Zero out the given RDR register
*/
static int perf_rdr_clear(uint32_t rdr_num)
{
const struct rdr_tbl_ent *tentry;
int32_t i;
tentry = perf_rdr_get_entry(rdr_num);
if (tentry->width == 0) {
return -1;
}
i = tentry->num_words;
while (i--) {
if (perf_processor_interface == ONYX_INTF) {
perf_rdr_shift_out_U(rdr_num, 0UL);
} else {
perf_rdr_shift_out_W(rdr_num, 0UL);
}
}
return 0;
}
/*
* perf_write_image
*
* Write the given image out to the processor
*/
static int perf_write_image(uint64_t *memaddr)
{
uint64_t buffer[MAX_RDR_WORDS];
uint64_t *bptr;
uint32_t dwords;
const uint32_t *intrigue_rdr;
const uint64_t *intrigue_bitmask;
uint64_t tmp64;
void __iomem *runway;
const struct rdr_tbl_ent *tentry;
int i;
/* Clear out counters */
if (perf_processor_interface == ONYX_INTF) {
perf_rdr_clear(16);
/* Toggle performance monitor */
perf_intrigue_enable_perf_counters();
perf_intrigue_disable_perf_counters();
intrigue_rdr = perf_rdrs_U;
} else {
perf_rdr_clear(15);
intrigue_rdr = perf_rdrs_W;
}
/* Write all RDRs */
while (*intrigue_rdr != -1) {
tentry = perf_rdr_get_entry(*intrigue_rdr);
perf_rdr_read_ubuf(*intrigue_rdr, buffer);
bptr = &buffer[0];
dwords = tentry->num_words;
if (tentry->write_control) {
intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
while (dwords--) {
tmp64 = *intrigue_bitmask & *memaddr++;
tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
*bptr++ = tmp64;
}
} else {
while (dwords--) {
*bptr++ = *memaddr++;
}
}
perf_rdr_write(*intrigue_rdr, buffer);
intrigue_rdr++;
}
/*
* Now copy out the Runway stuff which is not in RDRs
*/
if (cpu_device == NULL)
{
printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
return -1;
}
runway = ioremap_nocache(cpu_device->hpa.start, 4096);
/* Merge intrigue bits into Runway STATUS 0 */
tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
__raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
runway + RUNWAY_STATUS);
/* Write RUNWAY DEBUG registers */
for (i = 0; i < 8; i++) {
__raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
}
return 0;
}
/*
* perf_rdr_write
*
* Write the given RDR register with the contents
* of the given buffer.
*/
static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
{
const struct rdr_tbl_ent *tentry;
int32_t i;
printk("perf_rdr_write\n");
tentry = perf_rdr_get_entry(rdr_num);
if (tentry->width == 0) { return; }
i = tentry->num_words;
while (i--) {
if (perf_processor_interface == ONYX_INTF) {
perf_rdr_shift_out_U(rdr_num, buffer[i]);
} else {
perf_rdr_shift_out_W(rdr_num, buffer[i]);
}
}
printk("perf_rdr_write done\n");
}
module_init(perf_init);