mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-06 20:53:54 +08:00
314beb9bca
hpa bringed into my attention some security related issues with BPF JIT on x86. This patch makes sure the bpf generated code is marked read only, as other kernel text sections. It also splits the unused space (we vmalloc() and only use a fraction of the page) in two parts, so that the generated bpf code not starts at a known offset in the page, but a pseudo random one. Refs: http://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html Reported-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
785 lines
22 KiB
C
785 lines
22 KiB
C
/* bpf_jit_comp.c : BPF JIT compiler
|
|
*
|
|
* Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; version 2
|
|
* of the License.
|
|
*/
|
|
#include <linux/moduleloader.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/random.h>
|
|
|
|
/*
|
|
* Conventions :
|
|
* EAX : BPF A accumulator
|
|
* EBX : BPF X accumulator
|
|
* RDI : pointer to skb (first argument given to JIT function)
|
|
* RBP : frame pointer (even if CONFIG_FRAME_POINTER=n)
|
|
* ECX,EDX,ESI : scratch registers
|
|
* r9d : skb->len - skb->data_len (headlen)
|
|
* r8 : skb->data
|
|
* -8(RBP) : saved RBX value
|
|
* -16(RBP)..-80(RBP) : BPF_MEMWORDS values
|
|
*/
|
|
int bpf_jit_enable __read_mostly;
|
|
|
|
/*
|
|
* assembly code in arch/x86/net/bpf_jit.S
|
|
*/
|
|
extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
|
|
extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
|
|
extern u8 sk_load_byte_positive_offset[], sk_load_byte_msh_positive_offset[];
|
|
extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
|
|
extern u8 sk_load_byte_negative_offset[], sk_load_byte_msh_negative_offset[];
|
|
|
|
static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
|
|
{
|
|
if (len == 1)
|
|
*ptr = bytes;
|
|
else if (len == 2)
|
|
*(u16 *)ptr = bytes;
|
|
else {
|
|
*(u32 *)ptr = bytes;
|
|
barrier();
|
|
}
|
|
return ptr + len;
|
|
}
|
|
|
|
#define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0)
|
|
|
|
#define EMIT1(b1) EMIT(b1, 1)
|
|
#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
|
|
#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
|
|
#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
|
|
#define EMIT1_off32(b1, off) do { EMIT1(b1); EMIT(off, 4);} while (0)
|
|
|
|
#define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */
|
|
#define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */
|
|
|
|
static inline bool is_imm8(int value)
|
|
{
|
|
return value <= 127 && value >= -128;
|
|
}
|
|
|
|
static inline bool is_near(int offset)
|
|
{
|
|
return offset <= 127 && offset >= -128;
|
|
}
|
|
|
|
#define EMIT_JMP(offset) \
|
|
do { \
|
|
if (offset) { \
|
|
if (is_near(offset)) \
|
|
EMIT2(0xeb, offset); /* jmp .+off8 */ \
|
|
else \
|
|
EMIT1_off32(0xe9, offset); /* jmp .+off32 */ \
|
|
} \
|
|
} while (0)
|
|
|
|
/* list of x86 cond jumps opcodes (. + s8)
|
|
* Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
|
|
*/
|
|
#define X86_JB 0x72
|
|
#define X86_JAE 0x73
|
|
#define X86_JE 0x74
|
|
#define X86_JNE 0x75
|
|
#define X86_JBE 0x76
|
|
#define X86_JA 0x77
|
|
|
|
#define EMIT_COND_JMP(op, offset) \
|
|
do { \
|
|
if (is_near(offset)) \
|
|
EMIT2(op, offset); /* jxx .+off8 */ \
|
|
else { \
|
|
EMIT2(0x0f, op + 0x10); \
|
|
EMIT(offset, 4); /* jxx .+off32 */ \
|
|
} \
|
|
} while (0)
|
|
|
|
#define COND_SEL(CODE, TOP, FOP) \
|
|
case CODE: \
|
|
t_op = TOP; \
|
|
f_op = FOP; \
|
|
goto cond_branch
|
|
|
|
|
|
#define SEEN_DATAREF 1 /* might call external helpers */
|
|
#define SEEN_XREG 2 /* ebx is used */
|
|
#define SEEN_MEM 4 /* use mem[] for temporary storage */
|
|
|
|
static inline void bpf_flush_icache(void *start, void *end)
|
|
{
|
|
mm_segment_t old_fs = get_fs();
|
|
|
|
set_fs(KERNEL_DS);
|
|
smp_wmb();
|
|
flush_icache_range((unsigned long)start, (unsigned long)end);
|
|
set_fs(old_fs);
|
|
}
|
|
|
|
#define CHOOSE_LOAD_FUNC(K, func) \
|
|
((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
|
|
|
|
/* Helper to find the offset of pkt_type in sk_buff
|
|
* We want to make sure its still a 3bit field starting at a byte boundary.
|
|
*/
|
|
#define PKT_TYPE_MAX 7
|
|
static int pkt_type_offset(void)
|
|
{
|
|
struct sk_buff skb_probe = {
|
|
.pkt_type = ~0,
|
|
};
|
|
char *ct = (char *)&skb_probe;
|
|
unsigned int off;
|
|
|
|
for (off = 0; off < sizeof(struct sk_buff); off++) {
|
|
if (ct[off] == PKT_TYPE_MAX)
|
|
return off;
|
|
}
|
|
pr_err_once("Please fix pkt_type_offset(), as pkt_type couldn't be found\n");
|
|
return -1;
|
|
}
|
|
|
|
struct bpf_binary_header {
|
|
unsigned int pages;
|
|
/* Note : for security reasons, bpf code will follow a randomly
|
|
* sized amount of int3 instructions
|
|
*/
|
|
u8 image[];
|
|
};
|
|
|
|
static struct bpf_binary_header *bpf_alloc_binary(unsigned int proglen,
|
|
u8 **image_ptr)
|
|
{
|
|
unsigned int sz, hole;
|
|
struct bpf_binary_header *header;
|
|
|
|
/* Most of BPF filters are really small,
|
|
* but if some of them fill a page, allow at least
|
|
* 128 extra bytes to insert a random section of int3
|
|
*/
|
|
sz = round_up(proglen + sizeof(*header) + 128, PAGE_SIZE);
|
|
header = module_alloc(sz);
|
|
if (!header)
|
|
return NULL;
|
|
|
|
memset(header, 0xcc, sz); /* fill whole space with int3 instructions */
|
|
|
|
header->pages = sz / PAGE_SIZE;
|
|
hole = sz - (proglen + sizeof(*header));
|
|
|
|
/* insert a random number of int3 instructions before BPF code */
|
|
*image_ptr = &header->image[prandom_u32() % hole];
|
|
return header;
|
|
}
|
|
|
|
void bpf_jit_compile(struct sk_filter *fp)
|
|
{
|
|
u8 temp[64];
|
|
u8 *prog;
|
|
unsigned int proglen, oldproglen = 0;
|
|
int ilen, i;
|
|
int t_offset, f_offset;
|
|
u8 t_op, f_op, seen = 0, pass;
|
|
u8 *image = NULL;
|
|
struct bpf_binary_header *header = NULL;
|
|
u8 *func;
|
|
int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */
|
|
unsigned int cleanup_addr; /* epilogue code offset */
|
|
unsigned int *addrs;
|
|
const struct sock_filter *filter = fp->insns;
|
|
int flen = fp->len;
|
|
|
|
if (!bpf_jit_enable)
|
|
return;
|
|
|
|
addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
|
|
if (addrs == NULL)
|
|
return;
|
|
|
|
/* Before first pass, make a rough estimation of addrs[]
|
|
* each bpf instruction is translated to less than 64 bytes
|
|
*/
|
|
for (proglen = 0, i = 0; i < flen; i++) {
|
|
proglen += 64;
|
|
addrs[i] = proglen;
|
|
}
|
|
cleanup_addr = proglen; /* epilogue address */
|
|
|
|
for (pass = 0; pass < 10; pass++) {
|
|
u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
|
|
/* no prologue/epilogue for trivial filters (RET something) */
|
|
proglen = 0;
|
|
prog = temp;
|
|
|
|
if (seen_or_pass0) {
|
|
EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */
|
|
EMIT4(0x48, 0x83, 0xec, 96); /* subq $96,%rsp */
|
|
/* note : must save %rbx in case bpf_error is hit */
|
|
if (seen_or_pass0 & (SEEN_XREG | SEEN_DATAREF))
|
|
EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */
|
|
if (seen_or_pass0 & SEEN_XREG)
|
|
CLEAR_X(); /* make sure we dont leek kernel memory */
|
|
|
|
/*
|
|
* If this filter needs to access skb data,
|
|
* loads r9 and r8 with :
|
|
* r9 = skb->len - skb->data_len
|
|
* r8 = skb->data
|
|
*/
|
|
if (seen_or_pass0 & SEEN_DATAREF) {
|
|
if (offsetof(struct sk_buff, len) <= 127)
|
|
/* mov off8(%rdi),%r9d */
|
|
EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len));
|
|
else {
|
|
/* mov off32(%rdi),%r9d */
|
|
EMIT3(0x44, 0x8b, 0x8f);
|
|
EMIT(offsetof(struct sk_buff, len), 4);
|
|
}
|
|
if (is_imm8(offsetof(struct sk_buff, data_len)))
|
|
/* sub off8(%rdi),%r9d */
|
|
EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len));
|
|
else {
|
|
EMIT3(0x44, 0x2b, 0x8f);
|
|
EMIT(offsetof(struct sk_buff, data_len), 4);
|
|
}
|
|
|
|
if (is_imm8(offsetof(struct sk_buff, data)))
|
|
/* mov off8(%rdi),%r8 */
|
|
EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data));
|
|
else {
|
|
/* mov off32(%rdi),%r8 */
|
|
EMIT3(0x4c, 0x8b, 0x87);
|
|
EMIT(offsetof(struct sk_buff, data), 4);
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (filter[0].code) {
|
|
case BPF_S_RET_K:
|
|
case BPF_S_LD_W_LEN:
|
|
case BPF_S_ANC_PROTOCOL:
|
|
case BPF_S_ANC_IFINDEX:
|
|
case BPF_S_ANC_MARK:
|
|
case BPF_S_ANC_RXHASH:
|
|
case BPF_S_ANC_CPU:
|
|
case BPF_S_ANC_VLAN_TAG:
|
|
case BPF_S_ANC_VLAN_TAG_PRESENT:
|
|
case BPF_S_ANC_QUEUE:
|
|
case BPF_S_ANC_PKTTYPE:
|
|
case BPF_S_LD_W_ABS:
|
|
case BPF_S_LD_H_ABS:
|
|
case BPF_S_LD_B_ABS:
|
|
/* first instruction sets A register (or is RET 'constant') */
|
|
break;
|
|
default:
|
|
/* make sure we dont leak kernel information to user */
|
|
CLEAR_A(); /* A = 0 */
|
|
}
|
|
|
|
for (i = 0; i < flen; i++) {
|
|
unsigned int K = filter[i].k;
|
|
|
|
switch (filter[i].code) {
|
|
case BPF_S_ALU_ADD_X: /* A += X; */
|
|
seen |= SEEN_XREG;
|
|
EMIT2(0x01, 0xd8); /* add %ebx,%eax */
|
|
break;
|
|
case BPF_S_ALU_ADD_K: /* A += K; */
|
|
if (!K)
|
|
break;
|
|
if (is_imm8(K))
|
|
EMIT3(0x83, 0xc0, K); /* add imm8,%eax */
|
|
else
|
|
EMIT1_off32(0x05, K); /* add imm32,%eax */
|
|
break;
|
|
case BPF_S_ALU_SUB_X: /* A -= X; */
|
|
seen |= SEEN_XREG;
|
|
EMIT2(0x29, 0xd8); /* sub %ebx,%eax */
|
|
break;
|
|
case BPF_S_ALU_SUB_K: /* A -= K */
|
|
if (!K)
|
|
break;
|
|
if (is_imm8(K))
|
|
EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */
|
|
else
|
|
EMIT1_off32(0x2d, K); /* sub imm32,%eax */
|
|
break;
|
|
case BPF_S_ALU_MUL_X: /* A *= X; */
|
|
seen |= SEEN_XREG;
|
|
EMIT3(0x0f, 0xaf, 0xc3); /* imul %ebx,%eax */
|
|
break;
|
|
case BPF_S_ALU_MUL_K: /* A *= K */
|
|
if (is_imm8(K))
|
|
EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */
|
|
else {
|
|
EMIT2(0x69, 0xc0); /* imul imm32,%eax */
|
|
EMIT(K, 4);
|
|
}
|
|
break;
|
|
case BPF_S_ALU_DIV_X: /* A /= X; */
|
|
seen |= SEEN_XREG;
|
|
EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
|
|
if (pc_ret0 > 0) {
|
|
/* addrs[pc_ret0 - 1] is start address of target
|
|
* (addrs[i] - 4) is the address following this jmp
|
|
* ("xor %edx,%edx; div %ebx" being 4 bytes long)
|
|
*/
|
|
EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
|
|
(addrs[i] - 4));
|
|
} else {
|
|
EMIT_COND_JMP(X86_JNE, 2 + 5);
|
|
CLEAR_A();
|
|
EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */
|
|
}
|
|
EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */
|
|
break;
|
|
case BPF_S_ALU_MOD_X: /* A %= X; */
|
|
seen |= SEEN_XREG;
|
|
EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
|
|
if (pc_ret0 > 0) {
|
|
/* addrs[pc_ret0 - 1] is start address of target
|
|
* (addrs[i] - 6) is the address following this jmp
|
|
* ("xor %edx,%edx; div %ebx;mov %edx,%eax" being 6 bytes long)
|
|
*/
|
|
EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
|
|
(addrs[i] - 6));
|
|
} else {
|
|
EMIT_COND_JMP(X86_JNE, 2 + 5);
|
|
CLEAR_A();
|
|
EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 6)); /* jmp .+off32 */
|
|
}
|
|
EMIT2(0x31, 0xd2); /* xor %edx,%edx */
|
|
EMIT2(0xf7, 0xf3); /* div %ebx */
|
|
EMIT2(0x89, 0xd0); /* mov %edx,%eax */
|
|
break;
|
|
case BPF_S_ALU_MOD_K: /* A %= K; */
|
|
EMIT2(0x31, 0xd2); /* xor %edx,%edx */
|
|
EMIT1(0xb9);EMIT(K, 4); /* mov imm32,%ecx */
|
|
EMIT2(0xf7, 0xf1); /* div %ecx */
|
|
EMIT2(0x89, 0xd0); /* mov %edx,%eax */
|
|
break;
|
|
case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
|
|
EMIT3(0x48, 0x69, 0xc0); /* imul imm32,%rax,%rax */
|
|
EMIT(K, 4);
|
|
EMIT4(0x48, 0xc1, 0xe8, 0x20); /* shr $0x20,%rax */
|
|
break;
|
|
case BPF_S_ALU_AND_X:
|
|
seen |= SEEN_XREG;
|
|
EMIT2(0x21, 0xd8); /* and %ebx,%eax */
|
|
break;
|
|
case BPF_S_ALU_AND_K:
|
|
if (K >= 0xFFFFFF00) {
|
|
EMIT2(0x24, K & 0xFF); /* and imm8,%al */
|
|
} else if (K >= 0xFFFF0000) {
|
|
EMIT2(0x66, 0x25); /* and imm16,%ax */
|
|
EMIT(K, 2);
|
|
} else {
|
|
EMIT1_off32(0x25, K); /* and imm32,%eax */
|
|
}
|
|
break;
|
|
case BPF_S_ALU_OR_X:
|
|
seen |= SEEN_XREG;
|
|
EMIT2(0x09, 0xd8); /* or %ebx,%eax */
|
|
break;
|
|
case BPF_S_ALU_OR_K:
|
|
if (is_imm8(K))
|
|
EMIT3(0x83, 0xc8, K); /* or imm8,%eax */
|
|
else
|
|
EMIT1_off32(0x0d, K); /* or imm32,%eax */
|
|
break;
|
|
case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
|
|
case BPF_S_ALU_XOR_X:
|
|
seen |= SEEN_XREG;
|
|
EMIT2(0x31, 0xd8); /* xor %ebx,%eax */
|
|
break;
|
|
case BPF_S_ALU_XOR_K: /* A ^= K; */
|
|
if (K == 0)
|
|
break;
|
|
if (is_imm8(K))
|
|
EMIT3(0x83, 0xf0, K); /* xor imm8,%eax */
|
|
else
|
|
EMIT1_off32(0x35, K); /* xor imm32,%eax */
|
|
break;
|
|
case BPF_S_ALU_LSH_X: /* A <<= X; */
|
|
seen |= SEEN_XREG;
|
|
EMIT4(0x89, 0xd9, 0xd3, 0xe0); /* mov %ebx,%ecx; shl %cl,%eax */
|
|
break;
|
|
case BPF_S_ALU_LSH_K:
|
|
if (K == 0)
|
|
break;
|
|
else if (K == 1)
|
|
EMIT2(0xd1, 0xe0); /* shl %eax */
|
|
else
|
|
EMIT3(0xc1, 0xe0, K);
|
|
break;
|
|
case BPF_S_ALU_RSH_X: /* A >>= X; */
|
|
seen |= SEEN_XREG;
|
|
EMIT4(0x89, 0xd9, 0xd3, 0xe8); /* mov %ebx,%ecx; shr %cl,%eax */
|
|
break;
|
|
case BPF_S_ALU_RSH_K: /* A >>= K; */
|
|
if (K == 0)
|
|
break;
|
|
else if (K == 1)
|
|
EMIT2(0xd1, 0xe8); /* shr %eax */
|
|
else
|
|
EMIT3(0xc1, 0xe8, K);
|
|
break;
|
|
case BPF_S_ALU_NEG:
|
|
EMIT2(0xf7, 0xd8); /* neg %eax */
|
|
break;
|
|
case BPF_S_RET_K:
|
|
if (!K) {
|
|
if (pc_ret0 == -1)
|
|
pc_ret0 = i;
|
|
CLEAR_A();
|
|
} else {
|
|
EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
|
|
}
|
|
/* fallinto */
|
|
case BPF_S_RET_A:
|
|
if (seen_or_pass0) {
|
|
if (i != flen - 1) {
|
|
EMIT_JMP(cleanup_addr - addrs[i]);
|
|
break;
|
|
}
|
|
if (seen_or_pass0 & SEEN_XREG)
|
|
EMIT4(0x48, 0x8b, 0x5d, 0xf8); /* mov -8(%rbp),%rbx */
|
|
EMIT1(0xc9); /* leaveq */
|
|
}
|
|
EMIT1(0xc3); /* ret */
|
|
break;
|
|
case BPF_S_MISC_TAX: /* X = A */
|
|
seen |= SEEN_XREG;
|
|
EMIT2(0x89, 0xc3); /* mov %eax,%ebx */
|
|
break;
|
|
case BPF_S_MISC_TXA: /* A = X */
|
|
seen |= SEEN_XREG;
|
|
EMIT2(0x89, 0xd8); /* mov %ebx,%eax */
|
|
break;
|
|
case BPF_S_LD_IMM: /* A = K */
|
|
if (!K)
|
|
CLEAR_A();
|
|
else
|
|
EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
|
|
break;
|
|
case BPF_S_LDX_IMM: /* X = K */
|
|
seen |= SEEN_XREG;
|
|
if (!K)
|
|
CLEAR_X();
|
|
else
|
|
EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */
|
|
break;
|
|
case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */
|
|
seen |= SEEN_MEM;
|
|
EMIT3(0x8b, 0x45, 0xf0 - K*4);
|
|
break;
|
|
case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */
|
|
seen |= SEEN_XREG | SEEN_MEM;
|
|
EMIT3(0x8b, 0x5d, 0xf0 - K*4);
|
|
break;
|
|
case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */
|
|
seen |= SEEN_MEM;
|
|
EMIT3(0x89, 0x45, 0xf0 - K*4);
|
|
break;
|
|
case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */
|
|
seen |= SEEN_XREG | SEEN_MEM;
|
|
EMIT3(0x89, 0x5d, 0xf0 - K*4);
|
|
break;
|
|
case BPF_S_LD_W_LEN: /* A = skb->len; */
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
|
|
if (is_imm8(offsetof(struct sk_buff, len)))
|
|
/* mov off8(%rdi),%eax */
|
|
EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len));
|
|
else {
|
|
EMIT2(0x8b, 0x87);
|
|
EMIT(offsetof(struct sk_buff, len), 4);
|
|
}
|
|
break;
|
|
case BPF_S_LDX_W_LEN: /* X = skb->len; */
|
|
seen |= SEEN_XREG;
|
|
if (is_imm8(offsetof(struct sk_buff, len)))
|
|
/* mov off8(%rdi),%ebx */
|
|
EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len));
|
|
else {
|
|
EMIT2(0x8b, 0x9f);
|
|
EMIT(offsetof(struct sk_buff, len), 4);
|
|
}
|
|
break;
|
|
case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
|
|
if (is_imm8(offsetof(struct sk_buff, protocol))) {
|
|
/* movzwl off8(%rdi),%eax */
|
|
EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol));
|
|
} else {
|
|
EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
|
|
EMIT(offsetof(struct sk_buff, protocol), 4);
|
|
}
|
|
EMIT2(0x86, 0xc4); /* ntohs() : xchg %al,%ah */
|
|
break;
|
|
case BPF_S_ANC_IFINDEX:
|
|
if (is_imm8(offsetof(struct sk_buff, dev))) {
|
|
/* movq off8(%rdi),%rax */
|
|
EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev));
|
|
} else {
|
|
EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */
|
|
EMIT(offsetof(struct sk_buff, dev), 4);
|
|
}
|
|
EMIT3(0x48, 0x85, 0xc0); /* test %rax,%rax */
|
|
EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6));
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
|
|
EMIT2(0x8b, 0x80); /* mov off32(%rax),%eax */
|
|
EMIT(offsetof(struct net_device, ifindex), 4);
|
|
break;
|
|
case BPF_S_ANC_MARK:
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
|
|
if (is_imm8(offsetof(struct sk_buff, mark))) {
|
|
/* mov off8(%rdi),%eax */
|
|
EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark));
|
|
} else {
|
|
EMIT2(0x8b, 0x87);
|
|
EMIT(offsetof(struct sk_buff, mark), 4);
|
|
}
|
|
break;
|
|
case BPF_S_ANC_RXHASH:
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
|
|
if (is_imm8(offsetof(struct sk_buff, rxhash))) {
|
|
/* mov off8(%rdi),%eax */
|
|
EMIT3(0x8b, 0x47, offsetof(struct sk_buff, rxhash));
|
|
} else {
|
|
EMIT2(0x8b, 0x87);
|
|
EMIT(offsetof(struct sk_buff, rxhash), 4);
|
|
}
|
|
break;
|
|
case BPF_S_ANC_QUEUE:
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
|
|
if (is_imm8(offsetof(struct sk_buff, queue_mapping))) {
|
|
/* movzwl off8(%rdi),%eax */
|
|
EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping));
|
|
} else {
|
|
EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
|
|
EMIT(offsetof(struct sk_buff, queue_mapping), 4);
|
|
}
|
|
break;
|
|
case BPF_S_ANC_CPU:
|
|
#ifdef CONFIG_SMP
|
|
EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */
|
|
EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */
|
|
#else
|
|
CLEAR_A();
|
|
#endif
|
|
break;
|
|
case BPF_S_ANC_VLAN_TAG:
|
|
case BPF_S_ANC_VLAN_TAG_PRESENT:
|
|
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
|
|
if (is_imm8(offsetof(struct sk_buff, vlan_tci))) {
|
|
/* movzwl off8(%rdi),%eax */
|
|
EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, vlan_tci));
|
|
} else {
|
|
EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
|
|
EMIT(offsetof(struct sk_buff, vlan_tci), 4);
|
|
}
|
|
BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
|
|
if (filter[i].code == BPF_S_ANC_VLAN_TAG) {
|
|
EMIT3(0x80, 0xe4, 0xef); /* and $0xef,%ah */
|
|
} else {
|
|
EMIT3(0xc1, 0xe8, 0x0c); /* shr $0xc,%eax */
|
|
EMIT3(0x83, 0xe0, 0x01); /* and $0x1,%eax */
|
|
}
|
|
break;
|
|
case BPF_S_ANC_PKTTYPE:
|
|
{
|
|
int off = pkt_type_offset();
|
|
|
|
if (off < 0)
|
|
goto out;
|
|
if (is_imm8(off)) {
|
|
/* movzbl off8(%rdi),%eax */
|
|
EMIT4(0x0f, 0xb6, 0x47, off);
|
|
} else {
|
|
/* movbl off32(%rdi),%eax */
|
|
EMIT3(0x0f, 0xb6, 0x87);
|
|
EMIT(off, 4);
|
|
}
|
|
EMIT3(0x83, 0xe0, PKT_TYPE_MAX); /* and $0x7,%eax */
|
|
break;
|
|
}
|
|
case BPF_S_LD_W_ABS:
|
|
func = CHOOSE_LOAD_FUNC(K, sk_load_word);
|
|
common_load: seen |= SEEN_DATAREF;
|
|
t_offset = func - (image + addrs[i]);
|
|
EMIT1_off32(0xbe, K); /* mov imm32,%esi */
|
|
EMIT1_off32(0xe8, t_offset); /* call */
|
|
break;
|
|
case BPF_S_LD_H_ABS:
|
|
func = CHOOSE_LOAD_FUNC(K, sk_load_half);
|
|
goto common_load;
|
|
case BPF_S_LD_B_ABS:
|
|
func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
|
|
goto common_load;
|
|
case BPF_S_LDX_B_MSH:
|
|
func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
|
|
seen |= SEEN_DATAREF | SEEN_XREG;
|
|
t_offset = func - (image + addrs[i]);
|
|
EMIT1_off32(0xbe, K); /* mov imm32,%esi */
|
|
EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */
|
|
break;
|
|
case BPF_S_LD_W_IND:
|
|
func = sk_load_word;
|
|
common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
|
|
t_offset = func - (image + addrs[i]);
|
|
if (K) {
|
|
if (is_imm8(K)) {
|
|
EMIT3(0x8d, 0x73, K); /* lea imm8(%rbx), %esi */
|
|
} else {
|
|
EMIT2(0x8d, 0xb3); /* lea imm32(%rbx),%esi */
|
|
EMIT(K, 4);
|
|
}
|
|
} else {
|
|
EMIT2(0x89,0xde); /* mov %ebx,%esi */
|
|
}
|
|
EMIT1_off32(0xe8, t_offset); /* call sk_load_xxx_ind */
|
|
break;
|
|
case BPF_S_LD_H_IND:
|
|
func = sk_load_half;
|
|
goto common_load_ind;
|
|
case BPF_S_LD_B_IND:
|
|
func = sk_load_byte;
|
|
goto common_load_ind;
|
|
case BPF_S_JMP_JA:
|
|
t_offset = addrs[i + K] - addrs[i];
|
|
EMIT_JMP(t_offset);
|
|
break;
|
|
COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE);
|
|
COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB);
|
|
COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE);
|
|
COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE);
|
|
COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE);
|
|
COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB);
|
|
COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE);
|
|
COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE);
|
|
|
|
cond_branch: f_offset = addrs[i + filter[i].jf] - addrs[i];
|
|
t_offset = addrs[i + filter[i].jt] - addrs[i];
|
|
|
|
/* same targets, can avoid doing the test :) */
|
|
if (filter[i].jt == filter[i].jf) {
|
|
EMIT_JMP(t_offset);
|
|
break;
|
|
}
|
|
|
|
switch (filter[i].code) {
|
|
case BPF_S_JMP_JGT_X:
|
|
case BPF_S_JMP_JGE_X:
|
|
case BPF_S_JMP_JEQ_X:
|
|
seen |= SEEN_XREG;
|
|
EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */
|
|
break;
|
|
case BPF_S_JMP_JSET_X:
|
|
seen |= SEEN_XREG;
|
|
EMIT2(0x85, 0xd8); /* test %ebx,%eax */
|
|
break;
|
|
case BPF_S_JMP_JEQ_K:
|
|
if (K == 0) {
|
|
EMIT2(0x85, 0xc0); /* test %eax,%eax */
|
|
break;
|
|
}
|
|
case BPF_S_JMP_JGT_K:
|
|
case BPF_S_JMP_JGE_K:
|
|
if (K <= 127)
|
|
EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */
|
|
else
|
|
EMIT1_off32(0x3d, K); /* cmp imm32,%eax */
|
|
break;
|
|
case BPF_S_JMP_JSET_K:
|
|
if (K <= 0xFF)
|
|
EMIT2(0xa8, K); /* test imm8,%al */
|
|
else if (!(K & 0xFFFF00FF))
|
|
EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */
|
|
else if (K <= 0xFFFF) {
|
|
EMIT2(0x66, 0xa9); /* test imm16,%ax */
|
|
EMIT(K, 2);
|
|
} else {
|
|
EMIT1_off32(0xa9, K); /* test imm32,%eax */
|
|
}
|
|
break;
|
|
}
|
|
if (filter[i].jt != 0) {
|
|
if (filter[i].jf && f_offset)
|
|
t_offset += is_near(f_offset) ? 2 : 5;
|
|
EMIT_COND_JMP(t_op, t_offset);
|
|
if (filter[i].jf)
|
|
EMIT_JMP(f_offset);
|
|
break;
|
|
}
|
|
EMIT_COND_JMP(f_op, f_offset);
|
|
break;
|
|
default:
|
|
/* hmm, too complex filter, give up with jit compiler */
|
|
goto out;
|
|
}
|
|
ilen = prog - temp;
|
|
if (image) {
|
|
if (unlikely(proglen + ilen > oldproglen)) {
|
|
pr_err("bpb_jit_compile fatal error\n");
|
|
kfree(addrs);
|
|
module_free(NULL, header);
|
|
return;
|
|
}
|
|
memcpy(image + proglen, temp, ilen);
|
|
}
|
|
proglen += ilen;
|
|
addrs[i] = proglen;
|
|
prog = temp;
|
|
}
|
|
/* last bpf instruction is always a RET :
|
|
* use it to give the cleanup instruction(s) addr
|
|
*/
|
|
cleanup_addr = proglen - 1; /* ret */
|
|
if (seen_or_pass0)
|
|
cleanup_addr -= 1; /* leaveq */
|
|
if (seen_or_pass0 & SEEN_XREG)
|
|
cleanup_addr -= 4; /* mov -8(%rbp),%rbx */
|
|
|
|
if (image) {
|
|
if (proglen != oldproglen)
|
|
pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", proglen, oldproglen);
|
|
break;
|
|
}
|
|
if (proglen == oldproglen) {
|
|
header = bpf_alloc_binary(proglen, &image);
|
|
if (!header)
|
|
goto out;
|
|
}
|
|
oldproglen = proglen;
|
|
}
|
|
|
|
if (bpf_jit_enable > 1)
|
|
bpf_jit_dump(flen, proglen, pass, image);
|
|
|
|
if (image) {
|
|
bpf_flush_icache(header, image + proglen);
|
|
set_memory_ro((unsigned long)header, header->pages);
|
|
fp->bpf_func = (void *)image;
|
|
}
|
|
out:
|
|
kfree(addrs);
|
|
return;
|
|
}
|
|
|
|
void bpf_jit_free(struct sk_filter *fp)
|
|
{
|
|
if (fp->bpf_func != sk_run_filter) {
|
|
unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
|
|
struct bpf_binary_header *header = (void *)addr;
|
|
|
|
set_memory_rw(addr, header->pages);
|
|
module_free(NULL, header);
|
|
}
|
|
}
|