2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 22:24:09 +08:00
linux-next/drivers/md/dm-log-writes.c
Linus Torvalds 9f3a0941fb libnvdimm for 4.17
* A rework of the filesytem-dax implementation provides for detection of
   unmap operations (truncate / hole punch) colliding with in-progress
   device-DMA. A fix for these collisions remains a work-in-progress
   pending resolution of truncate latency and starvation regressions.
 
 * The of_pmem driver expands the users of libnvdimm outside of x86 and
   ACPI to describe an implementation of persistent memory on PowerPC with
   Open Firmware / Device tree.
 
 * Address Range Scrub (ARS) handling is completely rewritten to account for
   the fact that ARS may run for 100s of seconds and there is no platform
   defined way to cancel it. ARS will now no longer block namespace
   initialization.
 
 * The NVDIMM Namespace Label implementation is updated to handle label
   areas as small as 1K, down from 128K.
 
 * Miscellaneous cleanups and updates to unit test infrastructure.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJazDt5AAoJEB7SkWpmfYgCqGMQALLwdPeY87cUK7AvQ2IXj46B
 lJgeVuHPzyQDbC03AS5uUYnnU3I5lFd7i4y7ZrywNpFs4lsb/bNmbUpQE5xp+Yvc
 1MJ/JYDIP5X4misWYm3VJo85N49+VqSRgAQk52PBigwnZ7M6/u4cSptXM9//c9JL
 /NYbat6IjjY6Tx49Tec6+F3GMZjsFLcuTVkQcREoOyOqVJE4YpP0vhNjEe0vq6vr
 EsSWiqEI5VFH4PfJwKdKj/64IKB4FGKj2A5cEgjQBxW2vw7tTJnkRkdE3jDUjqtg
 xYAqGp/Dqs4+bgdYlT817YhiOVrcr5mOHj7TKWQrBPgzKCbcG5eKDmfT8t+3NEga
 9kBlgisqIcG72lwZNA7QkEHxq1Omy9yc1hUv9qz2YA0G+J1WE8l1T15k1DOFwV57
 qIrLLUypklNZLxvrzNjclempboKc4JCUlj+TdN5E5Y6pRs55UWTXaP7Xf5O7z0vf
 l/uiiHkc3MPH73YD2PSEGFJ8m8EU0N8xhrcz3M9E2sHgYCnbty1Lw3FH0/GhThVA
 ya1mMeDdb8A2P7gWCBk1Lqeig+rJKXSey4hKM6D0njOEtMQO1H4tFqGjyfDX1xlJ
 3plUR9WBVEYzN5+9xWbwGag/ezGZ+NfcVO2gmy6yXiEph796BxRAZx/18zKRJr0m
 9eGJG1H+JspcbtLF9iHn
 =acZQ
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.17' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:
 "This cycle was was not something I ever want to repeat as there were
  several late changes that have only now just settled.

  Half of the branch up to commit d2c997c0f1 ("fs, dax: use
  page->mapping to warn...") have been in -next for several releases.
  The of_pmem driver and the address range scrub rework were late
  arrivals, and the dax work was scaled back at the last moment.

  The of_pmem driver missed a previous merge window due to an oversight.
  A sense of obligation to rectify that miss is why it is included for
  4.17. It has acks from PowerPC folks. Stephen reported a build failure
  that only occurs when merging it with your latest tree, for now I have
  fixed that up by disabling modular builds of of_pmem. A test merge
  with your tree has received a build success report from the 0day robot
  over 156 configs.

  An initial version of the ARS rework was submitted before the merge
  window. It is self contained to libnvdimm, a net code reduction, and
  passing all unit tests.

  The filesystem-dax changes are based on the wait_var_event()
  functionality from tip/sched/core. However, late review feedback
  showed that those changes regressed truncate performance to a large
  degree. The branch was rewound to drop the truncate behavior change
  and now only includes preparation patches and cleanups (with full acks
  and reviews). The finalization of this dax-dma-vs-trnucate work will
  need to wait for 4.18.

  Summary:

   - A rework of the filesytem-dax implementation provides for detection
     of unmap operations (truncate / hole punch) colliding with
     in-progress device-DMA. A fix for these collisions remains a
     work-in-progress pending resolution of truncate latency and
     starvation regressions.

   - The of_pmem driver expands the users of libnvdimm outside of x86
     and ACPI to describe an implementation of persistent memory on
     PowerPC with Open Firmware / Device tree.

   - Address Range Scrub (ARS) handling is completely rewritten to
     account for the fact that ARS may run for 100s of seconds and there
     is no platform defined way to cancel it. ARS will now no longer
     block namespace initialization.

   - The NVDIMM Namespace Label implementation is updated to handle
     label areas as small as 1K, down from 128K.

   - Miscellaneous cleanups and updates to unit test infrastructure"

* tag 'libnvdimm-for-4.17' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (39 commits)
  libnvdimm, of_pmem: workaround OF_NUMA=n build error
  nfit, address-range-scrub: add module option to skip initial ars
  nfit, address-range-scrub: rework and simplify ARS state machine
  nfit, address-range-scrub: determine one platform max_ars value
  powerpc/powernv: Create platform devs for nvdimm buses
  doc/devicetree: Persistent memory region bindings
  libnvdimm: Add device-tree based driver
  libnvdimm: Add of_node to region and bus descriptors
  libnvdimm, region: quiet region probe
  libnvdimm, namespace: use a safe lookup for dimm device name
  libnvdimm, dimm: fix dpa reservation vs uninitialized label area
  libnvdimm, testing: update the default smart ctrl_temperature
  libnvdimm, testing: Add emulation for smart injection commands
  nfit, address-range-scrub: introduce nfit_spa->ars_state
  libnvdimm: add an api to cast a 'struct nd_region' to its 'struct device'
  nfit, address-range-scrub: fix scrub in-progress reporting
  dax, dm: allow device-mapper to operate without dax support
  dax: introduce CONFIG_DAX_DRIVER
  fs, dax: use page->mapping to warn if truncate collides with a busy page
  ext2, dax: introduce ext2_dax_aops
  ...
2018-04-10 10:25:57 -07:00

1008 lines
25 KiB
C

/*
* Copyright (C) 2014 Facebook. All rights reserved.
*
* This file is released under the GPL.
*/
#include <linux/device-mapper.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/dax.h>
#include <linux/slab.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/uio.h>
#define DM_MSG_PREFIX "log-writes"
/*
* This target will sequentially log all writes to the target device onto the
* log device. This is helpful for replaying writes to check for fs consistency
* at all times. This target provides a mechanism to mark specific events to
* check data at a later time. So for example you would:
*
* write data
* fsync
* dmsetup message /dev/whatever mark mymark
* unmount /mnt/test
*
* Then replay the log up to mymark and check the contents of the replay to
* verify it matches what was written.
*
* We log writes only after they have been flushed, this makes the log describe
* close to the order in which the data hits the actual disk, not its cache. So
* for example the following sequence (W means write, C means complete)
*
* Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
*
* Would result in the log looking like this:
*
* c,a,flush,fuad,b,<other writes>,<next flush>
*
* This is meant to help expose problems where file systems do not properly wait
* on data being written before invoking a FLUSH. FUA bypasses cache so once it
* completes it is added to the log as it should be on disk.
*
* We treat DISCARDs as if they don't bypass cache so that they are logged in
* order of completion along with the normal writes. If we didn't do it this
* way we would process all the discards first and then write all the data, when
* in fact we want to do the data and the discard in the order that they
* completed.
*/
#define LOG_FLUSH_FLAG (1 << 0)
#define LOG_FUA_FLAG (1 << 1)
#define LOG_DISCARD_FLAG (1 << 2)
#define LOG_MARK_FLAG (1 << 3)
#define LOG_METADATA_FLAG (1 << 4)
#define WRITE_LOG_VERSION 1ULL
#define WRITE_LOG_MAGIC 0x6a736677736872ULL
/*
* The disk format for this is braindead simple.
*
* At byte 0 we have our super, followed by the following sequence for
* nr_entries:
*
* [ 1 sector ][ entry->nr_sectors ]
* [log_write_entry][ data written ]
*
* The log_write_entry takes up a full sector so we can have arbitrary length
* marks and it leaves us room for extra content in the future.
*/
/*
* Basic info about the log for userspace.
*/
struct log_write_super {
__le64 magic;
__le64 version;
__le64 nr_entries;
__le32 sectorsize;
};
/*
* sector - the sector we wrote.
* nr_sectors - the number of sectors we wrote.
* flags - flags for this log entry.
* data_len - the size of the data in this log entry, this is for private log
* entry stuff, the MARK data provided by userspace for example.
*/
struct log_write_entry {
__le64 sector;
__le64 nr_sectors;
__le64 flags;
__le64 data_len;
};
struct log_writes_c {
struct dm_dev *dev;
struct dm_dev *logdev;
u64 logged_entries;
u32 sectorsize;
u32 sectorshift;
atomic_t io_blocks;
atomic_t pending_blocks;
sector_t next_sector;
sector_t end_sector;
bool logging_enabled;
bool device_supports_discard;
spinlock_t blocks_lock;
struct list_head unflushed_blocks;
struct list_head logging_blocks;
wait_queue_head_t wait;
struct task_struct *log_kthread;
};
struct pending_block {
int vec_cnt;
u64 flags;
sector_t sector;
sector_t nr_sectors;
char *data;
u32 datalen;
struct list_head list;
struct bio_vec vecs[0];
};
struct per_bio_data {
struct pending_block *block;
};
static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
sector_t sectors)
{
return sectors >> (lc->sectorshift - SECTOR_SHIFT);
}
static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
sector_t sectors)
{
return sectors << (lc->sectorshift - SECTOR_SHIFT);
}
static void put_pending_block(struct log_writes_c *lc)
{
if (atomic_dec_and_test(&lc->pending_blocks)) {
smp_mb__after_atomic();
if (waitqueue_active(&lc->wait))
wake_up(&lc->wait);
}
}
static void put_io_block(struct log_writes_c *lc)
{
if (atomic_dec_and_test(&lc->io_blocks)) {
smp_mb__after_atomic();
if (waitqueue_active(&lc->wait))
wake_up(&lc->wait);
}
}
static void log_end_io(struct bio *bio)
{
struct log_writes_c *lc = bio->bi_private;
if (bio->bi_status) {
unsigned long flags;
DMERR("Error writing log block, error=%d", bio->bi_status);
spin_lock_irqsave(&lc->blocks_lock, flags);
lc->logging_enabled = false;
spin_unlock_irqrestore(&lc->blocks_lock, flags);
}
bio_free_pages(bio);
put_io_block(lc);
bio_put(bio);
}
/*
* Meant to be called if there is an error, it will free all the pages
* associated with the block.
*/
static void free_pending_block(struct log_writes_c *lc,
struct pending_block *block)
{
int i;
for (i = 0; i < block->vec_cnt; i++) {
if (block->vecs[i].bv_page)
__free_page(block->vecs[i].bv_page);
}
kfree(block->data);
kfree(block);
put_pending_block(lc);
}
static int write_metadata(struct log_writes_c *lc, void *entry,
size_t entrylen, void *data, size_t datalen,
sector_t sector)
{
struct bio *bio;
struct page *page;
void *ptr;
size_t ret;
bio = bio_alloc(GFP_KERNEL, 1);
if (!bio) {
DMERR("Couldn't alloc log bio");
goto error;
}
bio->bi_iter.bi_size = 0;
bio->bi_iter.bi_sector = sector;
bio_set_dev(bio, lc->logdev->bdev);
bio->bi_end_io = log_end_io;
bio->bi_private = lc;
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
page = alloc_page(GFP_KERNEL);
if (!page) {
DMERR("Couldn't alloc log page");
bio_put(bio);
goto error;
}
ptr = kmap_atomic(page);
memcpy(ptr, entry, entrylen);
if (datalen)
memcpy(ptr + entrylen, data, datalen);
memset(ptr + entrylen + datalen, 0,
lc->sectorsize - entrylen - datalen);
kunmap_atomic(ptr);
ret = bio_add_page(bio, page, lc->sectorsize, 0);
if (ret != lc->sectorsize) {
DMERR("Couldn't add page to the log block");
goto error_bio;
}
submit_bio(bio);
return 0;
error_bio:
bio_put(bio);
__free_page(page);
error:
put_io_block(lc);
return -1;
}
static int write_inline_data(struct log_writes_c *lc, void *entry,
size_t entrylen, void *data, size_t datalen,
sector_t sector)
{
int num_pages, bio_pages, pg_datalen, pg_sectorlen, i;
struct page *page;
struct bio *bio;
size_t ret;
void *ptr;
while (datalen) {
num_pages = ALIGN(datalen, PAGE_SIZE) >> PAGE_SHIFT;
bio_pages = min(num_pages, BIO_MAX_PAGES);
atomic_inc(&lc->io_blocks);
bio = bio_alloc(GFP_KERNEL, bio_pages);
if (!bio) {
DMERR("Couldn't alloc inline data bio");
goto error;
}
bio->bi_iter.bi_size = 0;
bio->bi_iter.bi_sector = sector;
bio_set_dev(bio, lc->logdev->bdev);
bio->bi_end_io = log_end_io;
bio->bi_private = lc;
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
for (i = 0; i < bio_pages; i++) {
pg_datalen = min_t(int, datalen, PAGE_SIZE);
pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
page = alloc_page(GFP_KERNEL);
if (!page) {
DMERR("Couldn't alloc inline data page");
goto error_bio;
}
ptr = kmap_atomic(page);
memcpy(ptr, data, pg_datalen);
if (pg_sectorlen > pg_datalen)
memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
kunmap_atomic(ptr);
ret = bio_add_page(bio, page, pg_sectorlen, 0);
if (ret != pg_sectorlen) {
DMERR("Couldn't add page of inline data");
__free_page(page);
goto error_bio;
}
datalen -= pg_datalen;
data += pg_datalen;
}
submit_bio(bio);
sector += bio_pages * PAGE_SECTORS;
}
return 0;
error_bio:
bio_free_pages(bio);
bio_put(bio);
error:
put_io_block(lc);
return -1;
}
static int log_one_block(struct log_writes_c *lc,
struct pending_block *block, sector_t sector)
{
struct bio *bio;
struct log_write_entry entry;
size_t metadatalen, ret;
int i;
entry.sector = cpu_to_le64(block->sector);
entry.nr_sectors = cpu_to_le64(block->nr_sectors);
entry.flags = cpu_to_le64(block->flags);
entry.data_len = cpu_to_le64(block->datalen);
metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
if (write_metadata(lc, &entry, sizeof(entry), block->data,
metadatalen, sector)) {
free_pending_block(lc, block);
return -1;
}
sector += dev_to_bio_sectors(lc, 1);
if (block->datalen && metadatalen == 0) {
if (write_inline_data(lc, &entry, sizeof(entry), block->data,
block->datalen, sector)) {
free_pending_block(lc, block);
return -1;
}
/* we don't support both inline data & bio data */
goto out;
}
if (!block->vec_cnt)
goto out;
atomic_inc(&lc->io_blocks);
bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt, BIO_MAX_PAGES));
if (!bio) {
DMERR("Couldn't alloc log bio");
goto error;
}
bio->bi_iter.bi_size = 0;
bio->bi_iter.bi_sector = sector;
bio_set_dev(bio, lc->logdev->bdev);
bio->bi_end_io = log_end_io;
bio->bi_private = lc;
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
for (i = 0; i < block->vec_cnt; i++) {
/*
* The page offset is always 0 because we allocate a new page
* for every bvec in the original bio for simplicity sake.
*/
ret = bio_add_page(bio, block->vecs[i].bv_page,
block->vecs[i].bv_len, 0);
if (ret != block->vecs[i].bv_len) {
atomic_inc(&lc->io_blocks);
submit_bio(bio);
bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt - i, BIO_MAX_PAGES));
if (!bio) {
DMERR("Couldn't alloc log bio");
goto error;
}
bio->bi_iter.bi_size = 0;
bio->bi_iter.bi_sector = sector;
bio_set_dev(bio, lc->logdev->bdev);
bio->bi_end_io = log_end_io;
bio->bi_private = lc;
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
ret = bio_add_page(bio, block->vecs[i].bv_page,
block->vecs[i].bv_len, 0);
if (ret != block->vecs[i].bv_len) {
DMERR("Couldn't add page on new bio?");
bio_put(bio);
goto error;
}
}
sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
}
submit_bio(bio);
out:
kfree(block->data);
kfree(block);
put_pending_block(lc);
return 0;
error:
free_pending_block(lc, block);
put_io_block(lc);
return -1;
}
static int log_super(struct log_writes_c *lc)
{
struct log_write_super super;
super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
super.version = cpu_to_le64(WRITE_LOG_VERSION);
super.nr_entries = cpu_to_le64(lc->logged_entries);
super.sectorsize = cpu_to_le32(lc->sectorsize);
if (write_metadata(lc, &super, sizeof(super), NULL, 0, 0)) {
DMERR("Couldn't write super");
return -1;
}
return 0;
}
static inline sector_t logdev_last_sector(struct log_writes_c *lc)
{
return i_size_read(lc->logdev->bdev->bd_inode) >> SECTOR_SHIFT;
}
static int log_writes_kthread(void *arg)
{
struct log_writes_c *lc = (struct log_writes_c *)arg;
sector_t sector = 0;
while (!kthread_should_stop()) {
bool super = false;
bool logging_enabled;
struct pending_block *block = NULL;
int ret;
spin_lock_irq(&lc->blocks_lock);
if (!list_empty(&lc->logging_blocks)) {
block = list_first_entry(&lc->logging_blocks,
struct pending_block, list);
list_del_init(&block->list);
if (!lc->logging_enabled)
goto next;
sector = lc->next_sector;
if (!(block->flags & LOG_DISCARD_FLAG))
lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
lc->next_sector += dev_to_bio_sectors(lc, 1);
/*
* Apparently the size of the device may not be known
* right away, so handle this properly.
*/
if (!lc->end_sector)
lc->end_sector = logdev_last_sector(lc);
if (lc->end_sector &&
lc->next_sector >= lc->end_sector) {
DMERR("Ran out of space on the logdev");
lc->logging_enabled = false;
goto next;
}
lc->logged_entries++;
atomic_inc(&lc->io_blocks);
super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
if (super)
atomic_inc(&lc->io_blocks);
}
next:
logging_enabled = lc->logging_enabled;
spin_unlock_irq(&lc->blocks_lock);
if (block) {
if (logging_enabled) {
ret = log_one_block(lc, block, sector);
if (!ret && super)
ret = log_super(lc);
if (ret) {
spin_lock_irq(&lc->blocks_lock);
lc->logging_enabled = false;
spin_unlock_irq(&lc->blocks_lock);
}
} else
free_pending_block(lc, block);
continue;
}
if (!try_to_freeze()) {
set_current_state(TASK_INTERRUPTIBLE);
if (!kthread_should_stop() &&
list_empty(&lc->logging_blocks))
schedule();
__set_current_state(TASK_RUNNING);
}
}
return 0;
}
/*
* Construct a log-writes mapping:
* log-writes <dev_path> <log_dev_path>
*/
static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
{
struct log_writes_c *lc;
struct dm_arg_set as;
const char *devname, *logdevname;
int ret;
as.argc = argc;
as.argv = argv;
if (argc < 2) {
ti->error = "Invalid argument count";
return -EINVAL;
}
lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
if (!lc) {
ti->error = "Cannot allocate context";
return -ENOMEM;
}
spin_lock_init(&lc->blocks_lock);
INIT_LIST_HEAD(&lc->unflushed_blocks);
INIT_LIST_HEAD(&lc->logging_blocks);
init_waitqueue_head(&lc->wait);
atomic_set(&lc->io_blocks, 0);
atomic_set(&lc->pending_blocks, 0);
devname = dm_shift_arg(&as);
ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
if (ret) {
ti->error = "Device lookup failed";
goto bad;
}
logdevname = dm_shift_arg(&as);
ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
&lc->logdev);
if (ret) {
ti->error = "Log device lookup failed";
dm_put_device(ti, lc->dev);
goto bad;
}
lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
lc->sectorshift = ilog2(lc->sectorsize);
lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
if (IS_ERR(lc->log_kthread)) {
ret = PTR_ERR(lc->log_kthread);
ti->error = "Couldn't alloc kthread";
dm_put_device(ti, lc->dev);
dm_put_device(ti, lc->logdev);
goto bad;
}
/*
* next_sector is in 512b sectors to correspond to what bi_sector expects.
* The super starts at sector 0, and the next_sector is the next logical
* one based on the sectorsize of the device.
*/
lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
lc->logging_enabled = true;
lc->end_sector = logdev_last_sector(lc);
lc->device_supports_discard = true;
ti->num_flush_bios = 1;
ti->flush_supported = true;
ti->num_discard_bios = 1;
ti->discards_supported = true;
ti->per_io_data_size = sizeof(struct per_bio_data);
ti->private = lc;
return 0;
bad:
kfree(lc);
return ret;
}
static int log_mark(struct log_writes_c *lc, char *data)
{
struct pending_block *block;
size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
if (!block) {
DMERR("Error allocating pending block");
return -ENOMEM;
}
block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
if (!block->data) {
DMERR("Error copying mark data");
kfree(block);
return -ENOMEM;
}
atomic_inc(&lc->pending_blocks);
block->datalen = strlen(block->data);
block->flags |= LOG_MARK_FLAG;
spin_lock_irq(&lc->blocks_lock);
list_add_tail(&block->list, &lc->logging_blocks);
spin_unlock_irq(&lc->blocks_lock);
wake_up_process(lc->log_kthread);
return 0;
}
static void log_writes_dtr(struct dm_target *ti)
{
struct log_writes_c *lc = ti->private;
spin_lock_irq(&lc->blocks_lock);
list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
spin_unlock_irq(&lc->blocks_lock);
/*
* This is just nice to have since it'll update the super to include the
* unflushed blocks, if it fails we don't really care.
*/
log_mark(lc, "dm-log-writes-end");
wake_up_process(lc->log_kthread);
wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
!atomic_read(&lc->pending_blocks));
kthread_stop(lc->log_kthread);
WARN_ON(!list_empty(&lc->logging_blocks));
WARN_ON(!list_empty(&lc->unflushed_blocks));
dm_put_device(ti, lc->dev);
dm_put_device(ti, lc->logdev);
kfree(lc);
}
static void normal_map_bio(struct dm_target *ti, struct bio *bio)
{
struct log_writes_c *lc = ti->private;
bio_set_dev(bio, lc->dev->bdev);
}
static int log_writes_map(struct dm_target *ti, struct bio *bio)
{
struct log_writes_c *lc = ti->private;
struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
struct pending_block *block;
struct bvec_iter iter;
struct bio_vec bv;
size_t alloc_size;
int i = 0;
bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
bool fua_bio = (bio->bi_opf & REQ_FUA);
bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
bool meta_bio = (bio->bi_opf & REQ_META);
pb->block = NULL;
/* Don't bother doing anything if logging has been disabled */
if (!lc->logging_enabled)
goto map_bio;
/*
* Map reads as normal.
*/
if (bio_data_dir(bio) == READ)
goto map_bio;
/* No sectors and not a flush? Don't care */
if (!bio_sectors(bio) && !flush_bio)
goto map_bio;
/*
* Discards will have bi_size set but there's no actual data, so just
* allocate the size of the pending block.
*/
if (discard_bio)
alloc_size = sizeof(struct pending_block);
else
alloc_size = sizeof(struct pending_block) + sizeof(struct bio_vec) * bio_segments(bio);
block = kzalloc(alloc_size, GFP_NOIO);
if (!block) {
DMERR("Error allocating pending block");
spin_lock_irq(&lc->blocks_lock);
lc->logging_enabled = false;
spin_unlock_irq(&lc->blocks_lock);
return DM_MAPIO_KILL;
}
INIT_LIST_HEAD(&block->list);
pb->block = block;
atomic_inc(&lc->pending_blocks);
if (flush_bio)
block->flags |= LOG_FLUSH_FLAG;
if (fua_bio)
block->flags |= LOG_FUA_FLAG;
if (discard_bio)
block->flags |= LOG_DISCARD_FLAG;
if (meta_bio)
block->flags |= LOG_METADATA_FLAG;
block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
/* We don't need the data, just submit */
if (discard_bio) {
WARN_ON(flush_bio || fua_bio);
if (lc->device_supports_discard)
goto map_bio;
bio_endio(bio);
return DM_MAPIO_SUBMITTED;
}
/* Flush bio, splice the unflushed blocks onto this list and submit */
if (flush_bio && !bio_sectors(bio)) {
spin_lock_irq(&lc->blocks_lock);
list_splice_init(&lc->unflushed_blocks, &block->list);
spin_unlock_irq(&lc->blocks_lock);
goto map_bio;
}
/*
* We will write this bio somewhere else way later so we need to copy
* the actual contents into new pages so we know the data will always be
* there.
*
* We do this because this could be a bio from O_DIRECT in which case we
* can't just hold onto the page until some later point, we have to
* manually copy the contents.
*/
bio_for_each_segment(bv, bio, iter) {
struct page *page;
void *src, *dst;
page = alloc_page(GFP_NOIO);
if (!page) {
DMERR("Error allocing page");
free_pending_block(lc, block);
spin_lock_irq(&lc->blocks_lock);
lc->logging_enabled = false;
spin_unlock_irq(&lc->blocks_lock);
return DM_MAPIO_KILL;
}
src = kmap_atomic(bv.bv_page);
dst = kmap_atomic(page);
memcpy(dst, src + bv.bv_offset, bv.bv_len);
kunmap_atomic(dst);
kunmap_atomic(src);
block->vecs[i].bv_page = page;
block->vecs[i].bv_len = bv.bv_len;
block->vec_cnt++;
i++;
}
/* Had a flush with data in it, weird */
if (flush_bio) {
spin_lock_irq(&lc->blocks_lock);
list_splice_init(&lc->unflushed_blocks, &block->list);
spin_unlock_irq(&lc->blocks_lock);
}
map_bio:
normal_map_bio(ti, bio);
return DM_MAPIO_REMAPPED;
}
static int normal_end_io(struct dm_target *ti, struct bio *bio,
blk_status_t *error)
{
struct log_writes_c *lc = ti->private;
struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
if (bio_data_dir(bio) == WRITE && pb->block) {
struct pending_block *block = pb->block;
unsigned long flags;
spin_lock_irqsave(&lc->blocks_lock, flags);
if (block->flags & LOG_FLUSH_FLAG) {
list_splice_tail_init(&block->list, &lc->logging_blocks);
list_add_tail(&block->list, &lc->logging_blocks);
wake_up_process(lc->log_kthread);
} else if (block->flags & LOG_FUA_FLAG) {
list_add_tail(&block->list, &lc->logging_blocks);
wake_up_process(lc->log_kthread);
} else
list_add_tail(&block->list, &lc->unflushed_blocks);
spin_unlock_irqrestore(&lc->blocks_lock, flags);
}
return DM_ENDIO_DONE;
}
/*
* INFO format: <logged entries> <highest allocated sector>
*/
static void log_writes_status(struct dm_target *ti, status_type_t type,
unsigned status_flags, char *result,
unsigned maxlen)
{
unsigned sz = 0;
struct log_writes_c *lc = ti->private;
switch (type) {
case STATUSTYPE_INFO:
DMEMIT("%llu %llu", lc->logged_entries,
(unsigned long long)lc->next_sector - 1);
if (!lc->logging_enabled)
DMEMIT(" logging_disabled");
break;
case STATUSTYPE_TABLE:
DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
break;
}
}
static int log_writes_prepare_ioctl(struct dm_target *ti,
struct block_device **bdev)
{
struct log_writes_c *lc = ti->private;
struct dm_dev *dev = lc->dev;
*bdev = dev->bdev;
/*
* Only pass ioctls through if the device sizes match exactly.
*/
if (ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT)
return 1;
return 0;
}
static int log_writes_iterate_devices(struct dm_target *ti,
iterate_devices_callout_fn fn,
void *data)
{
struct log_writes_c *lc = ti->private;
return fn(ti, lc->dev, 0, ti->len, data);
}
/*
* Messages supported:
* mark <mark data> - specify the marked data.
*/
static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv,
char *result, unsigned maxlen)
{
int r = -EINVAL;
struct log_writes_c *lc = ti->private;
if (argc != 2) {
DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
return r;
}
if (!strcasecmp(argv[0], "mark"))
r = log_mark(lc, argv[1]);
else
DMWARN("Unrecognised log writes target message received: %s", argv[0]);
return r;
}
static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
{
struct log_writes_c *lc = ti->private;
struct request_queue *q = bdev_get_queue(lc->dev->bdev);
if (!q || !blk_queue_discard(q)) {
lc->device_supports_discard = false;
limits->discard_granularity = lc->sectorsize;
limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
}
limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
limits->io_min = limits->physical_block_size;
}
#if IS_ENABLED(CONFIG_DAX_DRIVER)
static int log_dax(struct log_writes_c *lc, sector_t sector, size_t bytes,
struct iov_iter *i)
{
struct pending_block *block;
if (!bytes)
return 0;
block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
if (!block) {
DMERR("Error allocating dax pending block");
return -ENOMEM;
}
block->data = kzalloc(bytes, GFP_KERNEL);
if (!block->data) {
DMERR("Error allocating dax data space");
kfree(block);
return -ENOMEM;
}
/* write data provided via the iterator */
if (!copy_from_iter(block->data, bytes, i)) {
DMERR("Error copying dax data");
kfree(block->data);
kfree(block);
return -EIO;
}
/* rewind the iterator so that the block driver can use it */
iov_iter_revert(i, bytes);
block->datalen = bytes;
block->sector = bio_to_dev_sectors(lc, sector);
block->nr_sectors = ALIGN(bytes, lc->sectorsize) >> lc->sectorshift;
atomic_inc(&lc->pending_blocks);
spin_lock_irq(&lc->blocks_lock);
list_add_tail(&block->list, &lc->unflushed_blocks);
spin_unlock_irq(&lc->blocks_lock);
wake_up_process(lc->log_kthread);
return 0;
}
static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
long nr_pages, void **kaddr, pfn_t *pfn)
{
struct log_writes_c *lc = ti->private;
sector_t sector = pgoff * PAGE_SECTORS;
int ret;
ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages * PAGE_SIZE, &pgoff);
if (ret)
return ret;
return dax_direct_access(lc->dev->dax_dev, pgoff, nr_pages, kaddr, pfn);
}
static size_t log_writes_dax_copy_from_iter(struct dm_target *ti,
pgoff_t pgoff, void *addr, size_t bytes,
struct iov_iter *i)
{
struct log_writes_c *lc = ti->private;
sector_t sector = pgoff * PAGE_SECTORS;
int err;
if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
return 0;
/* Don't bother doing anything if logging has been disabled */
if (!lc->logging_enabled)
goto dax_copy;
err = log_dax(lc, sector, bytes, i);
if (err) {
DMWARN("Error %d logging DAX write", err);
return 0;
}
dax_copy:
return dax_copy_from_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
}
#else
#define log_writes_dax_direct_access NULL
#define log_writes_dax_copy_from_iter NULL
#endif
static struct target_type log_writes_target = {
.name = "log-writes",
.version = {1, 1, 0},
.module = THIS_MODULE,
.ctr = log_writes_ctr,
.dtr = log_writes_dtr,
.map = log_writes_map,
.end_io = normal_end_io,
.status = log_writes_status,
.prepare_ioctl = log_writes_prepare_ioctl,
.message = log_writes_message,
.iterate_devices = log_writes_iterate_devices,
.io_hints = log_writes_io_hints,
.direct_access = log_writes_dax_direct_access,
.dax_copy_from_iter = log_writes_dax_copy_from_iter,
};
static int __init dm_log_writes_init(void)
{
int r = dm_register_target(&log_writes_target);
if (r < 0)
DMERR("register failed %d", r);
return r;
}
static void __exit dm_log_writes_exit(void)
{
dm_unregister_target(&log_writes_target);
}
module_init(dm_log_writes_init);
module_exit(dm_log_writes_exit);
MODULE_DESCRIPTION(DM_NAME " log writes target");
MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
MODULE_LICENSE("GPL");