2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 13:13:57 +08:00
linux-next/net/core/flow_dissector.c
Benjamin LaHaise 029c1ecbb2 flow_dissector: add mpls support (v2)
Add support for parsing MPLS flows to the flow dissector in preparation for
adding MPLS match support to cls_flower.

Signed-off-by: Benjamin LaHaise <benjamin.lahaise@netronome.com>
Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Simon Horman <simon.horman@netronome.com>
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Jiri Pirko <jiri@mellanox.com>
Cc: Eric Dumazet <jhs@mojatatu.com>
Cc: Hadar Hen Zion <hadarh@mellanox.com>
Cc: Gao Feng <fgao@ikuai8.com>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-24 14:30:46 -04:00

1175 lines
31 KiB
C

#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/export.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/gre.h>
#include <net/pptp.h>
#include <linux/igmp.h>
#include <linux/icmp.h>
#include <linux/sctp.h>
#include <linux/dccp.h>
#include <linux/if_tunnel.h>
#include <linux/if_pppox.h>
#include <linux/ppp_defs.h>
#include <linux/stddef.h>
#include <linux/if_ether.h>
#include <linux/mpls.h>
#include <net/flow_dissector.h>
#include <scsi/fc/fc_fcoe.h>
static void dissector_set_key(struct flow_dissector *flow_dissector,
enum flow_dissector_key_id key_id)
{
flow_dissector->used_keys |= (1 << key_id);
}
void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
const struct flow_dissector_key *key,
unsigned int key_count)
{
unsigned int i;
memset(flow_dissector, 0, sizeof(*flow_dissector));
for (i = 0; i < key_count; i++, key++) {
/* User should make sure that every key target offset is withing
* boundaries of unsigned short.
*/
BUG_ON(key->offset > USHRT_MAX);
BUG_ON(dissector_uses_key(flow_dissector,
key->key_id));
dissector_set_key(flow_dissector, key->key_id);
flow_dissector->offset[key->key_id] = key->offset;
}
/* Ensure that the dissector always includes control and basic key.
* That way we are able to avoid handling lack of these in fast path.
*/
BUG_ON(!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_CONTROL));
BUG_ON(!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_BASIC));
}
EXPORT_SYMBOL(skb_flow_dissector_init);
/**
* skb_flow_get_be16 - extract be16 entity
* @skb: sk_buff to extract from
* @poff: offset to extract at
* @data: raw buffer pointer to the packet
* @hlen: packet header length
*
* The function will try to retrieve a be32 entity at
* offset poff
*/
static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
void *data, int hlen)
{
__be16 *u, _u;
u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
if (u)
return *u;
return 0;
}
/**
* __skb_flow_get_ports - extract the upper layer ports and return them
* @skb: sk_buff to extract the ports from
* @thoff: transport header offset
* @ip_proto: protocol for which to get port offset
* @data: raw buffer pointer to the packet, if NULL use skb->data
* @hlen: packet header length, if @data is NULL use skb_headlen(skb)
*
* The function will try to retrieve the ports at offset thoff + poff where poff
* is the protocol port offset returned from proto_ports_offset
*/
__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
void *data, int hlen)
{
int poff = proto_ports_offset(ip_proto);
if (!data) {
data = skb->data;
hlen = skb_headlen(skb);
}
if (poff >= 0) {
__be32 *ports, _ports;
ports = __skb_header_pointer(skb, thoff + poff,
sizeof(_ports), data, hlen, &_ports);
if (ports)
return *ports;
}
return 0;
}
EXPORT_SYMBOL(__skb_flow_get_ports);
enum flow_dissect_ret {
FLOW_DISSECT_RET_OUT_GOOD,
FLOW_DISSECT_RET_OUT_BAD,
FLOW_DISSECT_RET_OUT_PROTO_AGAIN,
};
static enum flow_dissect_ret
__skb_flow_dissect_mpls(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, void *data, int nhoff, int hlen)
{
struct flow_dissector_key_keyid *key_keyid;
struct mpls_label *hdr, _hdr[2];
u32 entry, label;
if (!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
return FLOW_DISSECT_RET_OUT_GOOD;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
hlen, &_hdr);
if (!hdr)
return FLOW_DISSECT_RET_OUT_BAD;
entry = ntohl(hdr[0].entry);
label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
struct flow_dissector_key_mpls *key_mpls;
key_mpls = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_MPLS,
target_container);
key_mpls->mpls_label = label;
key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
>> MPLS_LS_TTL_SHIFT;
key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
>> MPLS_LS_TC_SHIFT;
key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
>> MPLS_LS_S_SHIFT;
}
if (label == MPLS_LABEL_ENTROPY) {
key_keyid = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
target_container);
key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
}
return FLOW_DISSECT_RET_OUT_GOOD;
}
static enum flow_dissect_ret
__skb_flow_dissect_arp(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, void *data, int nhoff, int hlen)
{
struct flow_dissector_key_arp *key_arp;
struct {
unsigned char ar_sha[ETH_ALEN];
unsigned char ar_sip[4];
unsigned char ar_tha[ETH_ALEN];
unsigned char ar_tip[4];
} *arp_eth, _arp_eth;
const struct arphdr *arp;
struct arphdr _arp;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
return FLOW_DISSECT_RET_OUT_GOOD;
arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
hlen, &_arp);
if (!arp)
return FLOW_DISSECT_RET_OUT_BAD;
if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
arp->ar_pro != htons(ETH_P_IP) ||
arp->ar_hln != ETH_ALEN ||
arp->ar_pln != 4 ||
(arp->ar_op != htons(ARPOP_REPLY) &&
arp->ar_op != htons(ARPOP_REQUEST)))
return FLOW_DISSECT_RET_OUT_BAD;
arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
sizeof(_arp_eth), data,
hlen, &_arp_eth);
if (!arp_eth)
return FLOW_DISSECT_RET_OUT_BAD;
key_arp = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ARP,
target_container);
memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
/* Only store the lower byte of the opcode;
* this covers ARPOP_REPLY and ARPOP_REQUEST.
*/
key_arp->op = ntohs(arp->ar_op) & 0xff;
ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
return FLOW_DISSECT_RET_OUT_GOOD;
}
static enum flow_dissect_ret
__skb_flow_dissect_gre(const struct sk_buff *skb,
struct flow_dissector_key_control *key_control,
struct flow_dissector *flow_dissector,
void *target_container, void *data,
__be16 *p_proto, int *p_nhoff, int *p_hlen,
unsigned int flags)
{
struct flow_dissector_key_keyid *key_keyid;
struct gre_base_hdr *hdr, _hdr;
int offset = 0;
u16 gre_ver;
hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
data, *p_hlen, &_hdr);
if (!hdr)
return FLOW_DISSECT_RET_OUT_BAD;
/* Only look inside GRE without routing */
if (hdr->flags & GRE_ROUTING)
return FLOW_DISSECT_RET_OUT_GOOD;
/* Only look inside GRE for version 0 and 1 */
gre_ver = ntohs(hdr->flags & GRE_VERSION);
if (gre_ver > 1)
return FLOW_DISSECT_RET_OUT_GOOD;
*p_proto = hdr->protocol;
if (gre_ver) {
/* Version1 must be PPTP, and check the flags */
if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
return FLOW_DISSECT_RET_OUT_GOOD;
}
offset += sizeof(struct gre_base_hdr);
if (hdr->flags & GRE_CSUM)
offset += sizeof(((struct gre_full_hdr *) 0)->csum) +
sizeof(((struct gre_full_hdr *) 0)->reserved1);
if (hdr->flags & GRE_KEY) {
const __be32 *keyid;
__be32 _keyid;
keyid = __skb_header_pointer(skb, *p_nhoff + offset,
sizeof(_keyid),
data, *p_hlen, &_keyid);
if (!keyid)
return FLOW_DISSECT_RET_OUT_BAD;
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_GRE_KEYID)) {
key_keyid = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_GRE_KEYID,
target_container);
if (gre_ver == 0)
key_keyid->keyid = *keyid;
else
key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
}
offset += sizeof(((struct gre_full_hdr *) 0)->key);
}
if (hdr->flags & GRE_SEQ)
offset += sizeof(((struct pptp_gre_header *) 0)->seq);
if (gre_ver == 0) {
if (*p_proto == htons(ETH_P_TEB)) {
const struct ethhdr *eth;
struct ethhdr _eth;
eth = __skb_header_pointer(skb, *p_nhoff + offset,
sizeof(_eth),
data, *p_hlen, &_eth);
if (!eth)
return FLOW_DISSECT_RET_OUT_BAD;
*p_proto = eth->h_proto;
offset += sizeof(*eth);
/* Cap headers that we access via pointers at the
* end of the Ethernet header as our maximum alignment
* at that point is only 2 bytes.
*/
if (NET_IP_ALIGN)
*p_hlen = *p_nhoff + offset;
}
} else { /* version 1, must be PPTP */
u8 _ppp_hdr[PPP_HDRLEN];
u8 *ppp_hdr;
if (hdr->flags & GRE_ACK)
offset += sizeof(((struct pptp_gre_header *) 0)->ack);
ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
sizeof(_ppp_hdr),
data, *p_hlen, _ppp_hdr);
if (!ppp_hdr)
return FLOW_DISSECT_RET_OUT_BAD;
switch (PPP_PROTOCOL(ppp_hdr)) {
case PPP_IP:
*p_proto = htons(ETH_P_IP);
break;
case PPP_IPV6:
*p_proto = htons(ETH_P_IPV6);
break;
default:
/* Could probably catch some more like MPLS */
break;
}
offset += PPP_HDRLEN;
}
*p_nhoff += offset;
key_control->flags |= FLOW_DIS_ENCAPSULATION;
if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
return FLOW_DISSECT_RET_OUT_GOOD;
return FLOW_DISSECT_RET_OUT_PROTO_AGAIN;
}
/**
* __skb_flow_dissect - extract the flow_keys struct and return it
* @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
* @flow_dissector: list of keys to dissect
* @target_container: target structure to put dissected values into
* @data: raw buffer pointer to the packet, if NULL use skb->data
* @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
* @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
* @hlen: packet header length, if @data is NULL use skb_headlen(skb)
*
* The function will try to retrieve individual keys into target specified
* by flow_dissector from either the skbuff or a raw buffer specified by the
* rest parameters.
*
* Caller must take care of zeroing target container memory.
*/
bool __skb_flow_dissect(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container,
void *data, __be16 proto, int nhoff, int hlen,
unsigned int flags)
{
struct flow_dissector_key_control *key_control;
struct flow_dissector_key_basic *key_basic;
struct flow_dissector_key_addrs *key_addrs;
struct flow_dissector_key_ports *key_ports;
struct flow_dissector_key_icmp *key_icmp;
struct flow_dissector_key_tags *key_tags;
struct flow_dissector_key_vlan *key_vlan;
bool skip_vlan = false;
u8 ip_proto = 0;
bool ret;
if (!data) {
data = skb->data;
proto = skb_vlan_tag_present(skb) ?
skb->vlan_proto : skb->protocol;
nhoff = skb_network_offset(skb);
hlen = skb_headlen(skb);
}
/* It is ensured by skb_flow_dissector_init() that control key will
* be always present.
*/
key_control = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_CONTROL,
target_container);
/* It is ensured by skb_flow_dissector_init() that basic key will
* be always present.
*/
key_basic = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_BASIC,
target_container);
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct ethhdr *eth = eth_hdr(skb);
struct flow_dissector_key_eth_addrs *key_eth_addrs;
key_eth_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ETH_ADDRS,
target_container);
memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
}
proto_again:
switch (proto) {
case htons(ETH_P_IP): {
const struct iphdr *iph;
struct iphdr _iph;
ip:
iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
if (!iph || iph->ihl < 5)
goto out_bad;
nhoff += iph->ihl * 4;
ip_proto = iph->protocol;
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IPV4_ADDRS,
target_container);
memcpy(&key_addrs->v4addrs, &iph->saddr,
sizeof(key_addrs->v4addrs));
key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
}
if (ip_is_fragment(iph)) {
key_control->flags |= FLOW_DIS_IS_FRAGMENT;
if (iph->frag_off & htons(IP_OFFSET)) {
goto out_good;
} else {
key_control->flags |= FLOW_DIS_FIRST_FRAG;
if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
goto out_good;
}
}
if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
goto out_good;
break;
}
case htons(ETH_P_IPV6): {
const struct ipv6hdr *iph;
struct ipv6hdr _iph;
ipv6:
iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
if (!iph)
goto out_bad;
ip_proto = iph->nexthdr;
nhoff += sizeof(struct ipv6hdr);
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS,
target_container);
memcpy(&key_addrs->v6addrs, &iph->saddr,
sizeof(key_addrs->v6addrs));
key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
}
if ((dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
(flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
ip6_flowlabel(iph)) {
__be32 flow_label = ip6_flowlabel(iph);
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
key_tags = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL,
target_container);
key_tags->flow_label = ntohl(flow_label);
}
if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
goto out_good;
}
if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
goto out_good;
break;
}
case htons(ETH_P_8021AD):
case htons(ETH_P_8021Q): {
const struct vlan_hdr *vlan;
struct vlan_hdr _vlan;
bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
if (vlan_tag_present)
proto = skb->protocol;
if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
data, hlen, &_vlan);
if (!vlan)
goto out_bad;
proto = vlan->h_vlan_encapsulated_proto;
nhoff += sizeof(*vlan);
if (skip_vlan)
goto proto_again;
}
skip_vlan = true;
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_VLAN)) {
key_vlan = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_VLAN,
target_container);
if (vlan_tag_present) {
key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
key_vlan->vlan_priority =
(skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
} else {
key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
VLAN_VID_MASK;
key_vlan->vlan_priority =
(ntohs(vlan->h_vlan_TCI) &
VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
}
}
goto proto_again;
}
case htons(ETH_P_PPP_SES): {
struct {
struct pppoe_hdr hdr;
__be16 proto;
} *hdr, _hdr;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
if (!hdr)
goto out_bad;
proto = hdr->proto;
nhoff += PPPOE_SES_HLEN;
switch (proto) {
case htons(PPP_IP):
goto ip;
case htons(PPP_IPV6):
goto ipv6;
default:
goto out_bad;
}
}
case htons(ETH_P_TIPC): {
struct {
__be32 pre[3];
__be32 srcnode;
} *hdr, _hdr;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
if (!hdr)
goto out_bad;
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_TIPC_ADDRS,
target_container);
key_addrs->tipcaddrs.srcnode = hdr->srcnode;
key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
}
goto out_good;
}
case htons(ETH_P_MPLS_UC):
case htons(ETH_P_MPLS_MC):
mpls:
switch (__skb_flow_dissect_mpls(skb, flow_dissector,
target_container, data,
nhoff, hlen)) {
case FLOW_DISSECT_RET_OUT_GOOD:
goto out_good;
case FLOW_DISSECT_RET_OUT_BAD:
default:
goto out_bad;
}
case htons(ETH_P_FCOE):
if ((hlen - nhoff) < FCOE_HEADER_LEN)
goto out_bad;
nhoff += FCOE_HEADER_LEN;
goto out_good;
case htons(ETH_P_ARP):
case htons(ETH_P_RARP):
switch (__skb_flow_dissect_arp(skb, flow_dissector,
target_container, data,
nhoff, hlen)) {
case FLOW_DISSECT_RET_OUT_GOOD:
goto out_good;
case FLOW_DISSECT_RET_OUT_BAD:
default:
goto out_bad;
}
default:
goto out_bad;
}
ip_proto_again:
switch (ip_proto) {
case IPPROTO_GRE:
switch (__skb_flow_dissect_gre(skb, key_control, flow_dissector,
target_container, data,
&proto, &nhoff, &hlen, flags)) {
case FLOW_DISSECT_RET_OUT_GOOD:
goto out_good;
case FLOW_DISSECT_RET_OUT_BAD:
goto out_bad;
case FLOW_DISSECT_RET_OUT_PROTO_AGAIN:
goto proto_again;
}
case NEXTHDR_HOP:
case NEXTHDR_ROUTING:
case NEXTHDR_DEST: {
u8 _opthdr[2], *opthdr;
if (proto != htons(ETH_P_IPV6))
break;
opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
data, hlen, &_opthdr);
if (!opthdr)
goto out_bad;
ip_proto = opthdr[0];
nhoff += (opthdr[1] + 1) << 3;
goto ip_proto_again;
}
case NEXTHDR_FRAGMENT: {
struct frag_hdr _fh, *fh;
if (proto != htons(ETH_P_IPV6))
break;
fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
data, hlen, &_fh);
if (!fh)
goto out_bad;
key_control->flags |= FLOW_DIS_IS_FRAGMENT;
nhoff += sizeof(_fh);
ip_proto = fh->nexthdr;
if (!(fh->frag_off & htons(IP6_OFFSET))) {
key_control->flags |= FLOW_DIS_FIRST_FRAG;
if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
goto ip_proto_again;
}
goto out_good;
}
case IPPROTO_IPIP:
proto = htons(ETH_P_IP);
key_control->flags |= FLOW_DIS_ENCAPSULATION;
if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
goto out_good;
goto ip;
case IPPROTO_IPV6:
proto = htons(ETH_P_IPV6);
key_control->flags |= FLOW_DIS_ENCAPSULATION;
if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
goto out_good;
goto ipv6;
case IPPROTO_MPLS:
proto = htons(ETH_P_MPLS_UC);
goto mpls;
default:
break;
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_PORTS)) {
key_ports = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_PORTS,
target_container);
key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
data, hlen);
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ICMP)) {
key_icmp = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ICMP,
target_container);
key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
}
out_good:
ret = true;
key_control->thoff = (u16)nhoff;
out:
key_basic->n_proto = proto;
key_basic->ip_proto = ip_proto;
return ret;
out_bad:
ret = false;
key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
goto out;
}
EXPORT_SYMBOL(__skb_flow_dissect);
static u32 hashrnd __read_mostly;
static __always_inline void __flow_hash_secret_init(void)
{
net_get_random_once(&hashrnd, sizeof(hashrnd));
}
static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
u32 keyval)
{
return jhash2(words, length, keyval);
}
static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
{
const void *p = flow;
BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
}
static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
{
size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
sizeof(*flow) - sizeof(flow->addrs));
switch (flow->control.addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
diff -= sizeof(flow->addrs.v4addrs);
break;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
diff -= sizeof(flow->addrs.v6addrs);
break;
case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
diff -= sizeof(flow->addrs.tipcaddrs);
break;
}
return (sizeof(*flow) - diff) / sizeof(u32);
}
__be32 flow_get_u32_src(const struct flow_keys *flow)
{
switch (flow->control.addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
return flow->addrs.v4addrs.src;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
return (__force __be32)ipv6_addr_hash(
&flow->addrs.v6addrs.src);
case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
return flow->addrs.tipcaddrs.srcnode;
default:
return 0;
}
}
EXPORT_SYMBOL(flow_get_u32_src);
__be32 flow_get_u32_dst(const struct flow_keys *flow)
{
switch (flow->control.addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
return flow->addrs.v4addrs.dst;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
return (__force __be32)ipv6_addr_hash(
&flow->addrs.v6addrs.dst);
default:
return 0;
}
}
EXPORT_SYMBOL(flow_get_u32_dst);
static inline void __flow_hash_consistentify(struct flow_keys *keys)
{
int addr_diff, i;
switch (keys->control.addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
addr_diff = (__force u32)keys->addrs.v4addrs.dst -
(__force u32)keys->addrs.v4addrs.src;
if ((addr_diff < 0) ||
(addr_diff == 0 &&
((__force u16)keys->ports.dst <
(__force u16)keys->ports.src))) {
swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
swap(keys->ports.src, keys->ports.dst);
}
break;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
addr_diff = memcmp(&keys->addrs.v6addrs.dst,
&keys->addrs.v6addrs.src,
sizeof(keys->addrs.v6addrs.dst));
if ((addr_diff < 0) ||
(addr_diff == 0 &&
((__force u16)keys->ports.dst <
(__force u16)keys->ports.src))) {
for (i = 0; i < 4; i++)
swap(keys->addrs.v6addrs.src.s6_addr32[i],
keys->addrs.v6addrs.dst.s6_addr32[i]);
swap(keys->ports.src, keys->ports.dst);
}
break;
}
}
static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
{
u32 hash;
__flow_hash_consistentify(keys);
hash = __flow_hash_words(flow_keys_hash_start(keys),
flow_keys_hash_length(keys), keyval);
if (!hash)
hash = 1;
return hash;
}
u32 flow_hash_from_keys(struct flow_keys *keys)
{
__flow_hash_secret_init();
return __flow_hash_from_keys(keys, hashrnd);
}
EXPORT_SYMBOL(flow_hash_from_keys);
static inline u32 ___skb_get_hash(const struct sk_buff *skb,
struct flow_keys *keys, u32 keyval)
{
skb_flow_dissect_flow_keys(skb, keys,
FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
return __flow_hash_from_keys(keys, keyval);
}
struct _flow_keys_digest_data {
__be16 n_proto;
u8 ip_proto;
u8 padding;
__be32 ports;
__be32 src;
__be32 dst;
};
void make_flow_keys_digest(struct flow_keys_digest *digest,
const struct flow_keys *flow)
{
struct _flow_keys_digest_data *data =
(struct _flow_keys_digest_data *)digest;
BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
memset(digest, 0, sizeof(*digest));
data->n_proto = flow->basic.n_proto;
data->ip_proto = flow->basic.ip_proto;
data->ports = flow->ports.ports;
data->src = flow->addrs.v4addrs.src;
data->dst = flow->addrs.v4addrs.dst;
}
EXPORT_SYMBOL(make_flow_keys_digest);
static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
{
struct flow_keys keys;
__flow_hash_secret_init();
memset(&keys, 0, sizeof(keys));
__skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
NULL, 0, 0, 0,
FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
return __flow_hash_from_keys(&keys, hashrnd);
}
EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
/**
* __skb_get_hash: calculate a flow hash
* @skb: sk_buff to calculate flow hash from
*
* This function calculates a flow hash based on src/dst addresses
* and src/dst port numbers. Sets hash in skb to non-zero hash value
* on success, zero indicates no valid hash. Also, sets l4_hash in skb
* if hash is a canonical 4-tuple hash over transport ports.
*/
void __skb_get_hash(struct sk_buff *skb)
{
struct flow_keys keys;
u32 hash;
__flow_hash_secret_init();
hash = ___skb_get_hash(skb, &keys, hashrnd);
__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
}
EXPORT_SYMBOL(__skb_get_hash);
__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
{
struct flow_keys keys;
return ___skb_get_hash(skb, &keys, perturb);
}
EXPORT_SYMBOL(skb_get_hash_perturb);
__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
{
struct flow_keys keys;
memset(&keys, 0, sizeof(keys));
memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
sizeof(keys.addrs.v6addrs.src));
memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
sizeof(keys.addrs.v6addrs.dst));
keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
keys.ports.src = fl6->fl6_sport;
keys.ports.dst = fl6->fl6_dport;
keys.keyid.keyid = fl6->fl6_gre_key;
keys.tags.flow_label = (__force u32)fl6->flowlabel;
keys.basic.ip_proto = fl6->flowi6_proto;
__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
flow_keys_have_l4(&keys));
return skb->hash;
}
EXPORT_SYMBOL(__skb_get_hash_flowi6);
__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
{
struct flow_keys keys;
memset(&keys, 0, sizeof(keys));
keys.addrs.v4addrs.src = fl4->saddr;
keys.addrs.v4addrs.dst = fl4->daddr;
keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
keys.ports.src = fl4->fl4_sport;
keys.ports.dst = fl4->fl4_dport;
keys.keyid.keyid = fl4->fl4_gre_key;
keys.basic.ip_proto = fl4->flowi4_proto;
__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
flow_keys_have_l4(&keys));
return skb->hash;
}
EXPORT_SYMBOL(__skb_get_hash_flowi4);
u32 __skb_get_poff(const struct sk_buff *skb, void *data,
const struct flow_keys *keys, int hlen)
{
u32 poff = keys->control.thoff;
/* skip L4 headers for fragments after the first */
if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
!(keys->control.flags & FLOW_DIS_FIRST_FRAG))
return poff;
switch (keys->basic.ip_proto) {
case IPPROTO_TCP: {
/* access doff as u8 to avoid unaligned access */
const u8 *doff;
u8 _doff;
doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
data, hlen, &_doff);
if (!doff)
return poff;
poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
break;
}
case IPPROTO_UDP:
case IPPROTO_UDPLITE:
poff += sizeof(struct udphdr);
break;
/* For the rest, we do not really care about header
* extensions at this point for now.
*/
case IPPROTO_ICMP:
poff += sizeof(struct icmphdr);
break;
case IPPROTO_ICMPV6:
poff += sizeof(struct icmp6hdr);
break;
case IPPROTO_IGMP:
poff += sizeof(struct igmphdr);
break;
case IPPROTO_DCCP:
poff += sizeof(struct dccp_hdr);
break;
case IPPROTO_SCTP:
poff += sizeof(struct sctphdr);
break;
}
return poff;
}
/**
* skb_get_poff - get the offset to the payload
* @skb: sk_buff to get the payload offset from
*
* The function will get the offset to the payload as far as it could
* be dissected. The main user is currently BPF, so that we can dynamically
* truncate packets without needing to push actual payload to the user
* space and can analyze headers only, instead.
*/
u32 skb_get_poff(const struct sk_buff *skb)
{
struct flow_keys keys;
if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
return 0;
return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
}
__u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
{
memset(keys, 0, sizeof(*keys));
memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
sizeof(keys->addrs.v6addrs.src));
memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
sizeof(keys->addrs.v6addrs.dst));
keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
keys->ports.src = fl6->fl6_sport;
keys->ports.dst = fl6->fl6_dport;
keys->keyid.keyid = fl6->fl6_gre_key;
keys->tags.flow_label = (__force u32)fl6->flowlabel;
keys->basic.ip_proto = fl6->flowi6_proto;
return flow_hash_from_keys(keys);
}
EXPORT_SYMBOL(__get_hash_from_flowi6);
__u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
{
memset(keys, 0, sizeof(*keys));
keys->addrs.v4addrs.src = fl4->saddr;
keys->addrs.v4addrs.dst = fl4->daddr;
keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
keys->ports.src = fl4->fl4_sport;
keys->ports.dst = fl4->fl4_dport;
keys->keyid.keyid = fl4->fl4_gre_key;
keys->basic.ip_proto = fl4->flowi4_proto;
return flow_hash_from_keys(keys);
}
EXPORT_SYMBOL(__get_hash_from_flowi4);
static const struct flow_dissector_key flow_keys_dissector_keys[] = {
{
.key_id = FLOW_DISSECTOR_KEY_CONTROL,
.offset = offsetof(struct flow_keys, control),
},
{
.key_id = FLOW_DISSECTOR_KEY_BASIC,
.offset = offsetof(struct flow_keys, basic),
},
{
.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
.offset = offsetof(struct flow_keys, addrs.v4addrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
.offset = offsetof(struct flow_keys, addrs.v6addrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
.offset = offsetof(struct flow_keys, addrs.tipcaddrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_PORTS,
.offset = offsetof(struct flow_keys, ports),
},
{
.key_id = FLOW_DISSECTOR_KEY_VLAN,
.offset = offsetof(struct flow_keys, vlan),
},
{
.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
.offset = offsetof(struct flow_keys, tags),
},
{
.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
.offset = offsetof(struct flow_keys, keyid),
},
};
static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
{
.key_id = FLOW_DISSECTOR_KEY_CONTROL,
.offset = offsetof(struct flow_keys, control),
},
{
.key_id = FLOW_DISSECTOR_KEY_BASIC,
.offset = offsetof(struct flow_keys, basic),
},
{
.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
.offset = offsetof(struct flow_keys, addrs.v4addrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
.offset = offsetof(struct flow_keys, addrs.v6addrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_PORTS,
.offset = offsetof(struct flow_keys, ports),
},
};
static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
{
.key_id = FLOW_DISSECTOR_KEY_CONTROL,
.offset = offsetof(struct flow_keys, control),
},
{
.key_id = FLOW_DISSECTOR_KEY_BASIC,
.offset = offsetof(struct flow_keys, basic),
},
};
struct flow_dissector flow_keys_dissector __read_mostly;
EXPORT_SYMBOL(flow_keys_dissector);
struct flow_dissector flow_keys_buf_dissector __read_mostly;
static int __init init_default_flow_dissectors(void)
{
skb_flow_dissector_init(&flow_keys_dissector,
flow_keys_dissector_keys,
ARRAY_SIZE(flow_keys_dissector_keys));
skb_flow_dissector_init(&flow_keys_dissector_symmetric,
flow_keys_dissector_symmetric_keys,
ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
skb_flow_dissector_init(&flow_keys_buf_dissector,
flow_keys_buf_dissector_keys,
ARRAY_SIZE(flow_keys_buf_dissector_keys));
return 0;
}
core_initcall(init_default_flow_dissectors);