2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
linux-next/drivers/media/video/cx25840/cx25840-audio.c
Hans Verkuil 8267761881 V4L/DVB (6051): cx25840: make proper use of SOFT_RESET
Whenever the 0x80b register is used the microcontroller should be reset.

Signed-off-by: Hans Verkuil <hverkuil@xs4all.nl>
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2007-10-09 22:05:38 -03:00

395 lines
9.4 KiB
C

/* cx25840 audio functions
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/videodev2.h>
#include <linux/i2c.h>
#include <media/v4l2-common.h>
#include <media/cx25840.h>
#include "cx25840-core.h"
static int set_audclk_freq(struct i2c_client *client, u32 freq)
{
struct cx25840_state *state = i2c_get_clientdata(client);
if (freq != 32000 && freq != 44100 && freq != 48000)
return -EINVAL;
/* common for all inputs and rates */
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x10 */
cx25840_write(client, 0x127, 0x50);
if (state->aud_input != CX25840_AUDIO_SERIAL) {
switch (freq) {
case 32000:
/* VID_PLL and AUX_PLL */
cx25840_write4(client, 0x108, 0x0f040610);
/* AUX_PLL_FRAC */
cx25840_write4(client, 0x110, 0xee39bb01);
if (state->is_cx25836)
break;
/* src3/4/6_ctl = 0x0801f77f */
cx25840_write4(client, 0x900, 0x7ff70108);
cx25840_write4(client, 0x904, 0x7ff70108);
cx25840_write4(client, 0x90c, 0x7ff70108);
break;
case 44100:
/* VID_PLL and AUX_PLL */
cx25840_write4(client, 0x108, 0x0f040910);
/* AUX_PLL_FRAC */
cx25840_write4(client, 0x110, 0xd66bec00);
if (state->is_cx25836)
break;
/* src3/4/6_ctl = 0x08016d59 */
cx25840_write4(client, 0x900, 0x596d0108);
cx25840_write4(client, 0x904, 0x596d0108);
cx25840_write4(client, 0x90c, 0x596d0108);
break;
case 48000:
/* VID_PLL and AUX_PLL */
cx25840_write4(client, 0x108, 0x0f040a10);
/* AUX_PLL_FRAC */
cx25840_write4(client, 0x110, 0xe5d69800);
if (state->is_cx25836)
break;
/* src3/4/6_ctl = 0x08014faa */
cx25840_write4(client, 0x900, 0xaa4f0108);
cx25840_write4(client, 0x904, 0xaa4f0108);
cx25840_write4(client, 0x90c, 0xaa4f0108);
break;
}
} else {
switch (freq) {
case 32000:
/* VID_PLL and AUX_PLL */
cx25840_write4(client, 0x108, 0x0f04081e);
/* AUX_PLL_FRAC */
cx25840_write4(client, 0x110, 0x69082a01);
if (state->is_cx25836)
break;
/* src1_ctl = 0x08010000 */
cx25840_write4(client, 0x8f8, 0x00000108);
/* src3/4/6_ctl = 0x08020000 */
cx25840_write4(client, 0x900, 0x00000208);
cx25840_write4(client, 0x904, 0x00000208);
cx25840_write4(client, 0x90c, 0x00000208);
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x14 */
cx25840_write(client, 0x127, 0x54);
break;
case 44100:
/* VID_PLL and AUX_PLL */
cx25840_write4(client, 0x108, 0x0f040918);
/* AUX_PLL_FRAC */
cx25840_write4(client, 0x110, 0xd66bec00);
if (state->is_cx25836)
break;
/* src1_ctl = 0x08010000 */
cx25840_write4(client, 0x8f8, 0xcd600108);
/* src3/4/6_ctl = 0x08020000 */
cx25840_write4(client, 0x900, 0x85730108);
cx25840_write4(client, 0x904, 0x85730108);
cx25840_write4(client, 0x90c, 0x85730108);
break;
case 48000:
/* VID_PLL and AUX_PLL */
cx25840_write4(client, 0x108, 0x0f040a18);
/* AUX_PLL_FRAC */
cx25840_write4(client, 0x110, 0xe5d69800);
if (state->is_cx25836)
break;
/* src1_ctl = 0x08010000 */
cx25840_write4(client, 0x8f8, 0x00800108);
/* src3/4/6_ctl = 0x08020000 */
cx25840_write4(client, 0x900, 0x55550108);
cx25840_write4(client, 0x904, 0x55550108);
cx25840_write4(client, 0x90c, 0x55550108);
break;
}
}
state->audclk_freq = freq;
return 0;
}
void cx25840_audio_set_path(struct i2c_client *client)
{
struct cx25840_state *state = i2c_get_clientdata(client);
/* assert soft reset */
cx25840_and_or(client, 0x810, ~0x1, 0x01);
/* stop microcontroller */
cx25840_and_or(client, 0x803, ~0x10, 0);
/* Mute everything to prevent the PFFT! */
cx25840_write(client, 0x8d3, 0x1f);
if (state->aud_input == CX25840_AUDIO_SERIAL) {
/* Set Path1 to Serial Audio Input */
cx25840_write4(client, 0x8d0, 0x12100101);
/* The microcontroller should not be started for the
* non-tuner inputs: autodetection is specific for
* TV audio. */
} else {
/* Set Path1 to Analog Demod Main Channel */
cx25840_write4(client, 0x8d0, 0x7038061f);
}
set_audclk_freq(client, state->audclk_freq);
if (state->aud_input != CX25840_AUDIO_SERIAL) {
/* When the microcontroller detects the
* audio format, it will unmute the lines */
cx25840_and_or(client, 0x803, ~0x10, 0x10);
}
/* deassert soft reset */
cx25840_and_or(client, 0x810, ~0x1, 0x00);
}
static int get_volume(struct i2c_client *client)
{
struct cx25840_state *state = i2c_get_clientdata(client);
int vol;
if (state->unmute_volume >= 0)
return state->unmute_volume;
/* Volume runs +18dB to -96dB in 1/2dB steps
* change to fit the msp3400 -114dB to +12dB range */
/* check PATH1_VOLUME */
vol = 228 - cx25840_read(client, 0x8d4);
vol = (vol / 2) + 23;
return vol << 9;
}
static void set_volume(struct i2c_client *client, int volume)
{
struct cx25840_state *state = i2c_get_clientdata(client);
int vol;
if (state->unmute_volume >= 0) {
state->unmute_volume = volume;
return;
}
/* Convert the volume to msp3400 values (0-127) */
vol = volume >> 9;
/* now scale it up to cx25840 values
* -114dB to -96dB maps to 0
* this should be 19, but in my testing that was 4dB too loud */
if (vol <= 23) {
vol = 0;
} else {
vol -= 23;
}
/* PATH1_VOLUME */
cx25840_write(client, 0x8d4, 228 - (vol * 2));
}
static int get_bass(struct i2c_client *client)
{
/* bass is 49 steps +12dB to -12dB */
/* check PATH1_EQ_BASS_VOL */
int bass = cx25840_read(client, 0x8d9) & 0x3f;
bass = (((48 - bass) * 0xffff) + 47) / 48;
return bass;
}
static void set_bass(struct i2c_client *client, int bass)
{
/* PATH1_EQ_BASS_VOL */
cx25840_and_or(client, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff));
}
static int get_treble(struct i2c_client *client)
{
/* treble is 49 steps +12dB to -12dB */
/* check PATH1_EQ_TREBLE_VOL */
int treble = cx25840_read(client, 0x8db) & 0x3f;
treble = (((48 - treble) * 0xffff) + 47) / 48;
return treble;
}
static void set_treble(struct i2c_client *client, int treble)
{
/* PATH1_EQ_TREBLE_VOL */
cx25840_and_or(client, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff));
}
static int get_balance(struct i2c_client *client)
{
/* balance is 7 bit, 0 to -96dB */
/* check PATH1_BAL_LEVEL */
int balance = cx25840_read(client, 0x8d5) & 0x7f;
/* check PATH1_BAL_LEFT */
if ((cx25840_read(client, 0x8d5) & 0x80) == 0)
balance = 0x80 - balance;
else
balance = 0x80 + balance;
return balance << 8;
}
static void set_balance(struct i2c_client *client, int balance)
{
int bal = balance >> 8;
if (bal > 0x80) {
/* PATH1_BAL_LEFT */
cx25840_and_or(client, 0x8d5, 0x7f, 0x80);
/* PATH1_BAL_LEVEL */
cx25840_and_or(client, 0x8d5, ~0x7f, bal & 0x7f);
} else {
/* PATH1_BAL_LEFT */
cx25840_and_or(client, 0x8d5, 0x7f, 0x00);
/* PATH1_BAL_LEVEL */
cx25840_and_or(client, 0x8d5, ~0x7f, 0x80 - bal);
}
}
static int get_mute(struct i2c_client *client)
{
struct cx25840_state *state = i2c_get_clientdata(client);
return state->unmute_volume >= 0;
}
static void set_mute(struct i2c_client *client, int mute)
{
struct cx25840_state *state = i2c_get_clientdata(client);
if (mute && state->unmute_volume == -1) {
int vol = get_volume(client);
set_volume(client, 0);
state->unmute_volume = vol;
}
else if (!mute && state->unmute_volume != -1) {
int vol = state->unmute_volume;
state->unmute_volume = -1;
set_volume(client, vol);
}
}
int cx25840_audio(struct i2c_client *client, unsigned int cmd, void *arg)
{
struct cx25840_state *state = i2c_get_clientdata(client);
struct v4l2_control *ctrl = arg;
int retval;
switch (cmd) {
case VIDIOC_INT_AUDIO_CLOCK_FREQ:
if (!state->is_cx25836)
cx25840_and_or(client, 0x810, ~0x1, 1);
if (state->aud_input != CX25840_AUDIO_SERIAL) {
cx25840_and_or(client, 0x803, ~0x10, 0);
cx25840_write(client, 0x8d3, 0x1f);
}
retval = set_audclk_freq(client, *(u32 *)arg);
if (state->aud_input != CX25840_AUDIO_SERIAL) {
cx25840_and_or(client, 0x803, ~0x10, 0x10);
}
if (!state->is_cx25836)
cx25840_and_or(client, 0x810, ~0x1, 0);
return retval;
case VIDIOC_G_CTRL:
switch (ctrl->id) {
case V4L2_CID_AUDIO_VOLUME:
ctrl->value = get_volume(client);
break;
case V4L2_CID_AUDIO_BASS:
ctrl->value = get_bass(client);
break;
case V4L2_CID_AUDIO_TREBLE:
ctrl->value = get_treble(client);
break;
case V4L2_CID_AUDIO_BALANCE:
ctrl->value = get_balance(client);
break;
case V4L2_CID_AUDIO_MUTE:
ctrl->value = get_mute(client);
break;
default:
return -EINVAL;
}
break;
case VIDIOC_S_CTRL:
switch (ctrl->id) {
case V4L2_CID_AUDIO_VOLUME:
set_volume(client, ctrl->value);
break;
case V4L2_CID_AUDIO_BASS:
set_bass(client, ctrl->value);
break;
case V4L2_CID_AUDIO_TREBLE:
set_treble(client, ctrl->value);
break;
case V4L2_CID_AUDIO_BALANCE:
set_balance(client, ctrl->value);
break;
case V4L2_CID_AUDIO_MUTE:
set_mute(client, ctrl->value);
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return 0;
}