2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 09:03:59 +08:00
linux-next/drivers/infiniband/hw/qib/qib_sd7220.c
Masanari Iida 142ad5db2b IB: Fix typos in infiniband drivers
Correct spelling typos in comments in drivers/infiniband.

Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Roland Dreier <roland@purestorage.com>
2012-08-15 11:56:19 -07:00

1450 lines
40 KiB
C

/*
* Copyright (c) 2012 Intel Corporation. All rights reserved.
* Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* This file contains all of the code that is specific to the SerDes
* on the QLogic_IB 7220 chip.
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/firmware.h>
#include "qib.h"
#include "qib_7220.h"
#define SD7220_FW_NAME "qlogic/sd7220.fw"
MODULE_FIRMWARE(SD7220_FW_NAME);
/*
* Same as in qib_iba7220.c, but just the registers needed here.
* Could move whole set to qib_7220.h, but decided better to keep
* local.
*/
#define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
#define kr_hwerrclear KREG_IDX(HwErrClear)
#define kr_hwerrmask KREG_IDX(HwErrMask)
#define kr_hwerrstatus KREG_IDX(HwErrStatus)
#define kr_ibcstatus KREG_IDX(IBCStatus)
#define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
#define kr_scratch KREG_IDX(Scratch)
#define kr_xgxs_cfg KREG_IDX(XGXSCfg)
/* these are used only here, not in qib_iba7220.c */
#define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
#define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
#define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
#define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
#define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
/*
* The IBSerDesMappTable is a memory that holds values to be stored in
* various SerDes registers by IBC.
*/
#define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
/*
* Below used for sdnum parameter, selecting one of the two sections
* used for PCIe, or the single SerDes used for IB.
*/
#define PCIE_SERDES0 0
#define PCIE_SERDES1 1
/*
* The EPB requires addressing in a particular form. EPB_LOC() is intended
* to make #definitions a little more readable.
*/
#define EPB_ADDR_SHF 8
#define EPB_LOC(chn, elt, reg) \
(((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
EPB_ADDR_SHF)
#define EPB_IB_QUAD0_CS_SHF (25)
#define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF)
#define EPB_IB_UC_CS_SHF (26)
#define EPB_PCIE_UC_CS_SHF (27)
#define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
/* Forward declarations. */
static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
u32 data, u32 mask);
static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
int mask);
static int qib_sd_trimdone_poll(struct qib_devdata *dd);
static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
static int qib_sd_setvals(struct qib_devdata *dd);
static int qib_sd_early(struct qib_devdata *dd);
static int qib_sd_dactrim(struct qib_devdata *dd);
static int qib_internal_presets(struct qib_devdata *dd);
/* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
static int qib_sd_trimself(struct qib_devdata *dd, int val);
static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
static int qib_sd7220_ib_load(struct qib_devdata *dd,
const struct firmware *fw);
static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
const struct firmware *fw);
/*
* Below keeps track of whether the "once per power-on" initialization has
* been done, because uC code Version 1.32.17 or higher allows the uC to
* be reset at will, and Automatic Equalization may require it. So the
* state of the reset "pin", is no longer valid. Instead, we check for the
* actual uC code having been loaded.
*/
static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
const struct firmware *fw)
{
struct qib_devdata *dd = ppd->dd;
if (!dd->cspec->serdes_first_init_done &&
qib_sd7220_ib_vfy(dd, fw) > 0)
dd->cspec->serdes_first_init_done = 1;
return dd->cspec->serdes_first_init_done;
}
/* repeat #define for local use. "Real" #define is in qib_iba7220.c */
#define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL
#define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
#define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
#define UC_PAR_CLR_D 8
#define UC_PAR_CLR_M 0xC
#define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
#define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
{
int ret;
/* clear, then re-enable parity errs */
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
UC_PAR_CLR_D, UC_PAR_CLR_M);
if (ret < 0) {
qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
goto bail;
}
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
UC_PAR_CLR_M);
qib_read_kreg32(dd, kr_scratch);
udelay(4);
qib_write_kreg(dd, kr_hwerrclear,
QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
qib_read_kreg32(dd, kr_scratch);
bail:
return;
}
/*
* After a reset or other unusual event, the epb interface may need
* to be re-synchronized, between the host and the uC.
* returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
*/
#define IBSD_RESYNC_TRIES 3
#define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
#define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
static int qib_resync_ibepb(struct qib_devdata *dd)
{
int ret, pat, tries, chn;
u32 loc;
ret = -1;
chn = 0;
for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
loc = IB_PGUDP(chn);
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
if (ret < 0) {
qib_dev_err(dd, "Failed read in resync\n");
continue;
}
if (ret != 0xF0 && ret != 0x55 && tries == 0)
qib_dev_err(dd, "unexpected pattern in resync\n");
pat = ret ^ 0xA5; /* alternate F0 and 55 */
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
if (ret < 0) {
qib_dev_err(dd, "Failed write in resync\n");
continue;
}
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
if (ret < 0) {
qib_dev_err(dd, "Failed re-read in resync\n");
continue;
}
if (ret != pat) {
qib_dev_err(dd, "Failed compare1 in resync\n");
continue;
}
loc = IB_CMUDONE(chn);
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
if (ret < 0) {
qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
continue;
}
if ((ret & 0x70) != ((chn << 4) | 0x40)) {
qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
ret, chn);
continue;
}
if (++chn == 4)
break; /* Success */
}
return (ret > 0) ? 0 : ret;
}
/*
* Localize the stuff that should be done to change IB uC reset
* returns <0 for errors.
*/
static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
{
u64 rst_val;
int ret = 0;
unsigned long flags;
rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
if (assert_rst) {
/*
* Vendor recommends "interrupting" uC before reset, to
* minimize possible glitches.
*/
spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
epb_access(dd, IB_7220_SERDES, 1);
rst_val |= 1ULL;
/* Squelch possible parity error from _asserting_ reset */
qib_write_kreg(dd, kr_hwerrmask,
dd->cspec->hwerrmask &
~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
/* flush write, delay to ensure it took effect */
qib_read_kreg32(dd, kr_scratch);
udelay(2);
/* once it's reset, can remove interrupt */
epb_access(dd, IB_7220_SERDES, -1);
spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
} else {
/*
* Before we de-assert reset, we need to deal with
* possible glitch on the Parity-error line.
* Suppress it around the reset, both in chip-level
* hwerrmask and in IB uC control reg. uC will allow
* it again during startup.
*/
u64 val;
rst_val &= ~(1ULL);
qib_write_kreg(dd, kr_hwerrmask,
dd->cspec->hwerrmask &
~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
ret = qib_resync_ibepb(dd);
if (ret < 0)
qib_dev_err(dd, "unable to re-sync IB EPB\n");
/* set uC control regs to suppress parity errs */
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
if (ret < 0)
goto bail;
/* IB uC code past Version 1.32.17 allow suppression of wdog */
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
0x80);
if (ret < 0) {
qib_dev_err(dd, "Failed to set WDOG disable\n");
goto bail;
}
qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
/* flush write, delay for startup */
qib_read_kreg32(dd, kr_scratch);
udelay(1);
/* clear, then re-enable parity errs */
qib_sd7220_clr_ibpar(dd);
val = qib_read_kreg64(dd, kr_hwerrstatus);
if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
qib_dev_err(dd, "IBUC Parity still set after RST\n");
dd->cspec->hwerrmask &=
~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
}
qib_write_kreg(dd, kr_hwerrmask,
dd->cspec->hwerrmask);
}
bail:
return ret;
}
static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
const char *where)
{
int ret, chn, baduns;
u64 val;
if (!where)
where = "?";
/* give time for reset to settle out in EPB */
udelay(2);
ret = qib_resync_ibepb(dd);
if (ret < 0)
qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
/* Do "sacrificial read" to get EPB in sane state after reset */
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
if (ret < 0)
qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
/* Check/show "summary" Trim-done bit in IBCStatus */
val = qib_read_kreg64(dd, kr_ibcstatus);
if (!(val & (1ULL << 11)))
qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
/*
* Do "dummy read/mod/wr" to get EPB in sane state after reset
* The default value for MPREG6 is 0.
*/
udelay(2);
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
if (ret < 0)
qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
udelay(10);
baduns = 0;
for (chn = 3; chn >= 0; --chn) {
/* Read CTRL reg for each channel to check TRIMDONE */
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
IB_CTRL2(chn), 0, 0);
if (ret < 0)
qib_dev_err(dd,
"Failed checking TRIMDONE, chn %d (%s)\n",
chn, where);
if (!(ret & 0x10)) {
int probe;
baduns |= (1 << chn);
qib_dev_err(dd,
"TRIMDONE cleared on chn %d (%02X). (%s)\n",
chn, ret, where);
probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
IB_PGUDP(0), 0, 0);
qib_dev_err(dd, "probe is %d (%02X)\n",
probe, probe);
probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
IB_CTRL2(chn), 0, 0);
qib_dev_err(dd, "re-read: %d (%02X)\n",
probe, probe);
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
IB_CTRL2(chn), 0x10, 0x10);
if (ret < 0)
qib_dev_err(dd,
"Err on TRIMDONE rewrite1\n");
}
}
for (chn = 3; chn >= 0; --chn) {
/* Read CTRL reg for each channel to check TRIMDONE */
if (baduns & (1 << chn)) {
qib_dev_err(dd,
"Resetting TRIMDONE on chn %d (%s)\n",
chn, where);
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
IB_CTRL2(chn), 0x10, 0x10);
if (ret < 0)
qib_dev_err(dd,
"Failed re-setting TRIMDONE, chn %d (%s)\n",
chn, where);
}
}
}
/*
* Below is portion of IBA7220-specific bringup_serdes() that actually
* deals with registers and memory within the SerDes itself.
* Post IB uC code version 1.32.17, was_reset being 1 is not really
* informative, so we double-check.
*/
int qib_sd7220_init(struct qib_devdata *dd)
{
const struct firmware *fw;
int ret = 1; /* default to failure */
int first_reset, was_reset;
/* SERDES MPU reset recorded in D0 */
was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
if (!was_reset) {
/* entered with reset not asserted, we need to do it */
qib_ibsd_reset(dd, 1);
qib_sd_trimdone_monitor(dd, "Driver-reload");
}
ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
if (ret) {
qib_dev_err(dd, "Failed to load IB SERDES image\n");
goto done;
}
/* Substitute our deduced value for was_reset */
ret = qib_ibsd_ucode_loaded(dd->pport, fw);
if (ret < 0)
goto bail;
first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
/*
* Alter some regs per vendor latest doc, reset-defaults
* are not right for IB.
*/
ret = qib_sd_early(dd);
if (ret < 0) {
qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
goto bail;
}
/*
* Set DAC manual trim IB.
* We only do this once after chip has been reset (usually
* same as once per system boot).
*/
if (first_reset) {
ret = qib_sd_dactrim(dd);
if (ret < 0) {
qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
goto bail;
}
}
/*
* Set various registers (DDS and RXEQ) that will be
* controlled by IBC (in 1.2 mode) to reasonable preset values
* Calling the "internal" version avoids the "check for needed"
* and "trimdone monitor" that might be counter-productive.
*/
ret = qib_internal_presets(dd);
if (ret < 0) {
qib_dev_err(dd, "Failed to set IB SERDES presets\n");
goto bail;
}
ret = qib_sd_trimself(dd, 0x80);
if (ret < 0) {
qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
goto bail;
}
/* Load image, then try to verify */
ret = 0; /* Assume success */
if (first_reset) {
int vfy;
int trim_done;
ret = qib_sd7220_ib_load(dd, fw);
if (ret < 0) {
qib_dev_err(dd, "Failed to load IB SERDES image\n");
goto bail;
} else {
/* Loaded image, try to verify */
vfy = qib_sd7220_ib_vfy(dd, fw);
if (vfy != ret) {
qib_dev_err(dd, "SERDES PRAM VFY failed\n");
goto bail;
} /* end if verified */
} /* end if loaded */
/*
* Loaded and verified. Almost good...
* hold "success" in ret
*/
ret = 0;
/*
* Prev steps all worked, continue bringup
* De-assert RESET to uC, only in first reset, to allow
* trimming.
*
* Since our default setup sets START_EQ1 to
* PRESET, we need to clear that for this very first run.
*/
ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
if (ret < 0) {
qib_dev_err(dd, "Failed clearing START_EQ1\n");
goto bail;
}
qib_ibsd_reset(dd, 0);
/*
* If this is not the first reset, trimdone should be set
* already. We may need to check about this.
*/
trim_done = qib_sd_trimdone_poll(dd);
/*
* Whether or not trimdone succeeded, we need to put the
* uC back into reset to avoid a possible fight with the
* IBC state-machine.
*/
qib_ibsd_reset(dd, 1);
if (!trim_done) {
qib_dev_err(dd, "No TRIMDONE seen\n");
goto bail;
}
/*
* DEBUG: check each time we reset if trimdone bits have
* gotten cleared, and re-set them.
*/
qib_sd_trimdone_monitor(dd, "First-reset");
/* Remember so we do not re-do the load, dactrim, etc. */
dd->cspec->serdes_first_init_done = 1;
}
/*
* setup for channel training and load values for
* RxEq and DDS in tables used by IBC in IB1.2 mode
*/
ret = 0;
if (qib_sd_setvals(dd) >= 0)
goto done;
bail:
ret = 1;
done:
/* start relock timer regardless, but start at 1 second */
set_7220_relock_poll(dd, -1);
release_firmware(fw);
return ret;
}
#define EPB_ACC_REQ 1
#define EPB_ACC_GNT 0x100
#define EPB_DATA_MASK 0xFF
#define EPB_RD (1ULL << 24)
#define EPB_TRANS_RDY (1ULL << 31)
#define EPB_TRANS_ERR (1ULL << 30)
#define EPB_TRANS_TRIES 5
/*
* query, claim, release ownership of the EPB (External Parallel Bus)
* for a specified SERDES.
* the "claim" parameter is >0 to claim, <0 to release, 0 to query.
* Returns <0 for errors, >0 if we had ownership, else 0.
*/
static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
{
u16 acc;
u64 accval;
int owned = 0;
u64 oct_sel = 0;
switch (sdnum) {
case IB_7220_SERDES:
/*
* The IB SERDES "ownership" is fairly simple. A single each
* request/grant.
*/
acc = kr_ibsd_epb_access_ctrl;
break;
case PCIE_SERDES0:
case PCIE_SERDES1:
/* PCIe SERDES has two "octants", need to select which */
acc = kr_pciesd_epb_access_ctrl;
oct_sel = (2 << (sdnum - PCIE_SERDES0));
break;
default:
return 0;
}
/* Make sure any outstanding transaction was seen */
qib_read_kreg32(dd, kr_scratch);
udelay(15);
accval = qib_read_kreg32(dd, acc);
owned = !!(accval & EPB_ACC_GNT);
if (claim < 0) {
/* Need to release */
u64 pollval;
/*
* The only writeable bits are the request and CS.
* Both should be clear
*/
u64 newval = 0;
qib_write_kreg(dd, acc, newval);
/* First read after write is not trustworthy */
pollval = qib_read_kreg32(dd, acc);
udelay(5);
pollval = qib_read_kreg32(dd, acc);
if (pollval & EPB_ACC_GNT)
owned = -1;
} else if (claim > 0) {
/* Need to claim */
u64 pollval;
u64 newval = EPB_ACC_REQ | oct_sel;
qib_write_kreg(dd, acc, newval);
/* First read after write is not trustworthy */
pollval = qib_read_kreg32(dd, acc);
udelay(5);
pollval = qib_read_kreg32(dd, acc);
if (!(pollval & EPB_ACC_GNT))
owned = -1;
}
return owned;
}
/*
* Lemma to deal with race condition of write..read to epb regs
*/
static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
{
int tries;
u64 transval;
qib_write_kreg(dd, reg, i_val);
/* Throw away first read, as RDY bit may be stale */
transval = qib_read_kreg64(dd, reg);
for (tries = EPB_TRANS_TRIES; tries; --tries) {
transval = qib_read_kreg32(dd, reg);
if (transval & EPB_TRANS_RDY)
break;
udelay(5);
}
if (transval & EPB_TRANS_ERR)
return -1;
if (tries > 0 && o_vp)
*o_vp = transval;
return tries;
}
/**
* qib_sd7220_reg_mod - modify SERDES register
* @dd: the qlogic_ib device
* @sdnum: which SERDES to access
* @loc: location - channel, element, register, as packed by EPB_LOC() macro.
* @wd: Write Data - value to set in register
* @mask: ones where data should be spliced into reg.
*
* Basic register read/modify/write, with un-needed acesses elided. That is,
* a mask of zero will prevent write, while a mask of 0xFF will prevent read.
* returns current (presumed, if a write was done) contents of selected
* register, or <0 if errors.
*/
static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
u32 wd, u32 mask)
{
u16 trans;
u64 transval;
int owned;
int tries, ret;
unsigned long flags;
switch (sdnum) {
case IB_7220_SERDES:
trans = kr_ibsd_epb_transaction_reg;
break;
case PCIE_SERDES0:
case PCIE_SERDES1:
trans = kr_pciesd_epb_transaction_reg;
break;
default:
return -1;
}
/*
* All access is locked in software (vs other host threads) and
* hardware (vs uC access).
*/
spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
owned = epb_access(dd, sdnum, 1);
if (owned < 0) {
spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
return -1;
}
ret = 0;
for (tries = EPB_TRANS_TRIES; tries; --tries) {
transval = qib_read_kreg32(dd, trans);
if (transval & EPB_TRANS_RDY)
break;
udelay(5);
}
if (tries > 0) {
tries = 1; /* to make read-skip work */
if (mask != 0xFF) {
/*
* Not a pure write, so need to read.
* loc encodes chip-select as well as address
*/
transval = loc | EPB_RD;
tries = epb_trans(dd, trans, transval, &transval);
}
if (tries > 0 && mask != 0) {
/*
* Not a pure read, so need to write.
*/
wd = (wd & mask) | (transval & ~mask);
transval = loc | (wd & EPB_DATA_MASK);
tries = epb_trans(dd, trans, transval, &transval);
}
}
/* else, failed to see ready, what error-handling? */
/*
* Release bus. Failure is an error.
*/
if (epb_access(dd, sdnum, -1) < 0)
ret = -1;
else
ret = transval & EPB_DATA_MASK;
spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
if (tries <= 0)
ret = -1;
return ret;
}
#define EPB_ROM_R (2)
#define EPB_ROM_W (1)
/*
* Below, all uC-related, use appropriate UC_CS, depending
* on which SerDes is used.
*/
#define EPB_UC_CTL EPB_LOC(6, 0, 0)
#define EPB_MADDRL EPB_LOC(6, 0, 2)
#define EPB_MADDRH EPB_LOC(6, 0, 3)
#define EPB_ROMDATA EPB_LOC(6, 0, 4)
#define EPB_RAMDATA EPB_LOC(6, 0, 5)
/* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
u8 *buf, int cnt, int rd_notwr)
{
u16 trans;
u64 transval;
u64 csbit;
int owned;
int tries;
int sofar;
int addr;
int ret;
unsigned long flags;
const char *op;
/* Pick appropriate transaction reg and "Chip select" for this serdes */
switch (sdnum) {
case IB_7220_SERDES:
csbit = 1ULL << EPB_IB_UC_CS_SHF;
trans = kr_ibsd_epb_transaction_reg;
break;
case PCIE_SERDES0:
case PCIE_SERDES1:
/* PCIe SERDES has uC "chip select" in different bit, too */
csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
trans = kr_pciesd_epb_transaction_reg;
break;
default:
return -1;
}
op = rd_notwr ? "Rd" : "Wr";
spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
owned = epb_access(dd, sdnum, 1);
if (owned < 0) {
spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
return -1;
}
/*
* In future code, we may need to distinguish several address ranges,
* and select various memories based on this. For now, just trim
* "loc" (location including address and memory select) to
* "addr" (address within memory). we will only support PRAM
* The memory is 8KB.
*/
addr = loc & 0x1FFF;
for (tries = EPB_TRANS_TRIES; tries; --tries) {
transval = qib_read_kreg32(dd, trans);
if (transval & EPB_TRANS_RDY)
break;
udelay(5);
}
sofar = 0;
if (tries > 0) {
/*
* Every "memory" access is doubly-indirect.
* We set two bytes of address, then read/write
* one or mores bytes of data.
*/
/* First, we set control to "Read" or "Write" */
transval = csbit | EPB_UC_CTL |
(rd_notwr ? EPB_ROM_R : EPB_ROM_W);
tries = epb_trans(dd, trans, transval, &transval);
while (tries > 0 && sofar < cnt) {
if (!sofar) {
/* Only set address at start of chunk */
int addrbyte = (addr + sofar) >> 8;
transval = csbit | EPB_MADDRH | addrbyte;
tries = epb_trans(dd, trans, transval,
&transval);
if (tries <= 0)
break;
addrbyte = (addr + sofar) & 0xFF;
transval = csbit | EPB_MADDRL | addrbyte;
tries = epb_trans(dd, trans, transval,
&transval);
if (tries <= 0)
break;
}
if (rd_notwr)
transval = csbit | EPB_ROMDATA | EPB_RD;
else
transval = csbit | EPB_ROMDATA | buf[sofar];
tries = epb_trans(dd, trans, transval, &transval);
if (tries <= 0)
break;
if (rd_notwr)
buf[sofar] = transval & EPB_DATA_MASK;
++sofar;
}
/* Finally, clear control-bit for Read or Write */
transval = csbit | EPB_UC_CTL;
tries = epb_trans(dd, trans, transval, &transval);
}
ret = sofar;
/* Release bus. Failure is an error */
if (epb_access(dd, sdnum, -1) < 0)
ret = -1;
spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
if (tries <= 0)
ret = -1;
return ret;
}
#define PROG_CHUNK 64
static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
const u8 *img, int len, int offset)
{
int cnt, sofar, req;
sofar = 0;
while (sofar < len) {
req = len - sofar;
if (req > PROG_CHUNK)
req = PROG_CHUNK;
cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
(u8 *)img + sofar, req, 0);
if (cnt < req) {
sofar = -1;
break;
}
sofar += req;
}
return sofar;
}
#define VFY_CHUNK 64
#define SD_PRAM_ERROR_LIMIT 42
static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
const u8 *img, int len, int offset)
{
int cnt, sofar, req, idx, errors;
unsigned char readback[VFY_CHUNK];
errors = 0;
sofar = 0;
while (sofar < len) {
req = len - sofar;
if (req > VFY_CHUNK)
req = VFY_CHUNK;
cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
readback, req, 1);
if (cnt < req) {
/* failed in read itself */
sofar = -1;
break;
}
for (idx = 0; idx < cnt; ++idx) {
if (readback[idx] != img[idx+sofar])
++errors;
}
sofar += cnt;
}
return errors ? -errors : sofar;
}
static int
qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
{
return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
}
static int
qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
{
return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
}
/*
* IRQ not set up at this point in init, so we poll.
*/
#define IB_SERDES_TRIM_DONE (1ULL << 11)
#define TRIM_TMO (30)
static int qib_sd_trimdone_poll(struct qib_devdata *dd)
{
int trim_tmo, ret;
uint64_t val;
/*
* Default to failure, so IBC will not start
* without IB_SERDES_TRIM_DONE.
*/
ret = 0;
for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
val = qib_read_kreg64(dd, kr_ibcstatus);
if (val & IB_SERDES_TRIM_DONE) {
ret = 1;
break;
}
msleep(10);
}
if (trim_tmo >= TRIM_TMO) {
qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
ret = 0;
}
return ret;
}
#define TX_FAST_ELT (9)
/*
* Set the "negotiation" values for SERDES. These are used by the IB1.2
* link negotiation. Macros below are attempt to keep the values a
* little more human-editable.
* First, values related to Drive De-emphasis Settings.
*/
#define NUM_DDS_REGS 6
#define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
#define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
{ { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
(main_d << 3) | 4 | (ipre_d >> 2), \
(main_s << 3) | 4 | (ipre_s >> 2), \
((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
static struct dds_init {
uint8_t reg_vals[NUM_DDS_REGS];
} dds_init_vals[] = {
/* DDR(FDR) SDR(HDR) */
/* Vendor recommends below for 3m cable */
#define DDS_3M 0
DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0),
DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0),
DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0),
DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0),
DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0),
DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0),
/* Vendor recommends below for 1m cable */
#define DDS_1M 13
DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0),
DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0),
DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0)
};
/*
* Now the RXEQ section of the table.
*/
/* Hardware packs an element number and register address thus: */
#define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
#define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
{RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
#define RXEQ_VAL_ALL(elt, adr, val) \
{RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
#define RXEQ_SDR_DFELTH 0
#define RXEQ_SDR_TLTH 0
#define RXEQ_SDR_G1CNT_Z1CNT 0x11
#define RXEQ_SDR_ZCNT 23
static struct rxeq_init {
u16 rdesc; /* in form used in SerDesDDSRXEQ */
u8 rdata[4];
} rxeq_init_vals[] = {
/* Set Rcv Eq. to Preset node */
RXEQ_VAL_ALL(7, 0x27, 0x10),
/* Set DFELTHFDR/HDR thresholds */
RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
/* Set TLTHFDR/HDR theshold */
RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was 0, 1, 2, 3 */
/* Set Preamp setting 2 (ZFR/ZCNT) */
RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
/* Set Preamp DC gain and Setting 1 (GFR/GHR) */
RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
/* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
};
/* There are 17 values from vendor, but IBC only accesses the first 16 */
#define DDS_ROWS (16)
#define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
static int qib_sd_setvals(struct qib_devdata *dd)
{
int idx, midx;
int min_idx; /* Minimum index for this portion of table */
uint32_t dds_reg_map;
u64 __iomem *taddr, *iaddr;
uint64_t data;
uint64_t sdctl;
taddr = dd->kregbase + kr_serdes_maptable;
iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
/*
* Init the DDS section of the table.
* Each "row" of the table provokes NUM_DDS_REG writes, to the
* registers indicated in DDS_REG_MAP.
*/
sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
/*
* Iterate down table within loop for each register to store.
*/
dds_reg_map = DDS_REG_MAP;
for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
writeq(data, iaddr + idx);
mmiowb();
qib_read_kreg32(dd, kr_scratch);
dds_reg_map >>= 4;
for (midx = 0; midx < DDS_ROWS; ++midx) {
u64 __iomem *daddr = taddr + ((midx << 4) + idx);
data = dds_init_vals[midx].reg_vals[idx];
writeq(data, daddr);
mmiowb();
qib_read_kreg32(dd, kr_scratch);
} /* End inner for (vals for this reg, each row) */
} /* end outer for (regs to be stored) */
/*
* Init the RXEQ section of the table.
* This runs in a different order, as the pattern of
* register references is more complex, but there are only
* four "data" values per register.
*/
min_idx = idx; /* RXEQ indices pick up where DDS left off */
taddr += 0x100; /* RXEQ data is in second half of table */
/* Iterate through RXEQ register addresses */
for (idx = 0; idx < RXEQ_ROWS; ++idx) {
int didx; /* "destination" */
int vidx;
/* didx is offset by min_idx to address RXEQ range of regs */
didx = idx + min_idx;
/* Store the next RXEQ register address */
writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
mmiowb();
qib_read_kreg32(dd, kr_scratch);
/* Iterate through RXEQ values */
for (vidx = 0; vidx < 4; vidx++) {
data = rxeq_init_vals[idx].rdata[vidx];
writeq(data, taddr + (vidx << 6) + idx);
mmiowb();
qib_read_kreg32(dd, kr_scratch);
}
} /* end outer for (Reg-writes for RXEQ) */
return 0;
}
#define CMUCTRL5 EPB_LOC(7, 0, 0x15)
#define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
#define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
#define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
#define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
#define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
/*
* Repeat a "store" across all channels of the IB SerDes.
* Although nominally it inherits the "read value" of the last
* channel it modified, the only really useful return is <0 for
* failure, >= 0 for success. The parameter 'loc' is assumed to
* be the location in some channel of the register to be modified
* The caller can specify use of the "gang write" option of EPB,
* in which case we use the specified channel data for any fields
* not explicitely written.
*/
static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
int mask)
{
int ret = -1;
int chnl;
if (loc & EPB_GLOBAL_WR) {
/*
* Our caller has assured us that we can set all four
* channels at once. Trust that. If mask is not 0xFF,
* we will read the _specified_ channel for our starting
* value.
*/
loc |= (1U << EPB_IB_QUAD0_CS_SHF);
chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
if (mask != 0xFF) {
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
loc & ~EPB_GLOBAL_WR, 0, 0);
if (ret < 0) {
int sloc = loc >> EPB_ADDR_SHF;
qib_dev_err(dd,
"pre-read failed: elt %d, addr 0x%X, chnl %d\n",
(sloc & 0xF),
(sloc >> 9) & 0x3f, chnl);
return ret;
}
val = (ret & ~mask) | (val & mask);
}
loc &= ~(7 << (4+EPB_ADDR_SHF));
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
if (ret < 0) {
int sloc = loc >> EPB_ADDR_SHF;
qib_dev_err(dd,
"Global WR failed: elt %d, addr 0x%X, val %02X\n",
(sloc & 0xF), (sloc >> 9) & 0x3f, val);
}
return ret;
}
/* Clear "channel" and set CS so we can simply iterate */
loc &= ~(7 << (4+EPB_ADDR_SHF));
loc |= (1U << EPB_IB_QUAD0_CS_SHF);
for (chnl = 0; chnl < 4; ++chnl) {
int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
if (ret < 0) {
int sloc = loc >> EPB_ADDR_SHF;
qib_dev_err(dd,
"Write failed: elt %d, addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n",
(sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
val & 0xFF, mask & 0xFF);
break;
}
}
return ret;
}
/*
* Set the Tx values normally modified by IBC in IB1.2 mode to default
* values, as gotten from first row of init table.
*/
static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
{
int ret;
int idx, reg, data;
uint32_t regmap;
regmap = DDS_REG_MAP;
for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
reg = (regmap & 0xF);
regmap >>= 4;
data = ddi->reg_vals[idx];
/* Vendor says RMW not needed for these regs, use 0xFF mask */
ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
if (ret < 0)
break;
}
return ret;
}
/*
* Set the Rx values normally modified by IBC in IB1.2 mode to default
* values, as gotten from selected column of init table.
*/
static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
{
int ret;
int ridx;
int cnt = ARRAY_SIZE(rxeq_init_vals);
for (ridx = 0; ridx < cnt; ++ridx) {
int elt, reg, val, loc;
elt = rxeq_init_vals[ridx].rdesc & 0xF;
reg = rxeq_init_vals[ridx].rdesc >> 4;
loc = EPB_LOC(0, elt, reg);
val = rxeq_init_vals[ridx].rdata[vsel];
/* mask of 0xFF, because hardware does full-byte store. */
ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
if (ret < 0)
break;
}
return ret;
}
/*
* Set the default values (row 0) for DDR Driver Demphasis.
* we do this initially and whenever we turn off IB-1.2
*
* The "default" values for Rx equalization are also stored to
* SerDes registers. Formerly (and still default), we used set 2.
* For experimenting with cables and link-partners, we allow changing
* that via a module parameter.
*/
static unsigned qib_rxeq_set = 2;
module_param_named(rxeq_default_set, qib_rxeq_set, uint,
S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(rxeq_default_set,
"Which set [0..3] of Rx Equalization values is default");
static int qib_internal_presets(struct qib_devdata *dd)
{
int ret = 0;
ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
if (ret < 0)
qib_dev_err(dd, "Failed to set default DDS values\n");
ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
if (ret < 0)
qib_dev_err(dd, "Failed to set default RXEQ values\n");
return ret;
}
int qib_sd7220_presets(struct qib_devdata *dd)
{
int ret = 0;
if (!dd->cspec->presets_needed)
return ret;
dd->cspec->presets_needed = 0;
/* Assert uC reset, so we don't clash with it. */
qib_ibsd_reset(dd, 1);
udelay(2);
qib_sd_trimdone_monitor(dd, "link-down");
ret = qib_internal_presets(dd);
return ret;
}
static int qib_sd_trimself(struct qib_devdata *dd, int val)
{
int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
}
static int qib_sd_early(struct qib_devdata *dd)
{
int ret;
ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
if (ret < 0)
goto bail;
ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
if (ret < 0)
goto bail;
ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
bail:
return ret;
}
#define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
#define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
#define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
static int qib_sd_dactrim(struct qib_devdata *dd)
{
int ret;
ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
if (ret < 0)
goto bail;
/* more fine-tuning of what will be default */
ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
if (ret < 0)
goto bail;
ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
if (ret < 0)
goto bail;
ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
if (ret < 0)
goto bail;
ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
if (ret < 0)
goto bail;
/*
* Delay for max possible number of steps, with slop.
* Each step is about 4usec.
*/
udelay(415);
ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
bail:
return ret;
}
#define RELOCK_FIRST_MS 3
#define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
void toggle_7220_rclkrls(struct qib_devdata *dd)
{
int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
int ret;
ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
if (ret < 0)
qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
else {
udelay(1);
ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
}
/* And again for good measure */
udelay(1);
ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
if (ret < 0)
qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
else {
udelay(1);
ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
}
/* Now reset xgxs and IBC to complete the recovery */
dd->f_xgxs_reset(dd->pport);
}
/*
* Shut down the timer that polls for relock occasions, if needed
* this is "hooked" from qib_7220_quiet_serdes(), which is called
* just before qib_shutdown_device() in qib_driver.c shuts down all
* the other timers
*/
void shutdown_7220_relock_poll(struct qib_devdata *dd)
{
if (dd->cspec->relock_timer_active)
del_timer_sync(&dd->cspec->relock_timer);
}
static unsigned qib_relock_by_timer = 1;
module_param_named(relock_by_timer, qib_relock_by_timer, uint,
S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
static void qib_run_relock(unsigned long opaque)
{
struct qib_devdata *dd = (struct qib_devdata *)opaque;
struct qib_pportdata *ppd = dd->pport;
struct qib_chip_specific *cs = dd->cspec;
int timeoff;
/*
* Check link-training state for "stuck" state, when down.
* if found, try relock and schedule another try at
* exponentially growing delay, maxed at one second.
* if not stuck, our work is done.
*/
if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
(QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
QIBL_LINKACTIVE))) {
if (qib_relock_by_timer) {
if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
toggle_7220_rclkrls(dd);
}
/* re-set timer for next check */
timeoff = cs->relock_interval << 1;
if (timeoff > HZ)
timeoff = HZ;
cs->relock_interval = timeoff;
} else
timeoff = HZ;
mod_timer(&cs->relock_timer, jiffies + timeoff);
}
void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
{
struct qib_chip_specific *cs = dd->cspec;
if (ibup) {
/* We are now up, relax timer to 1 second interval */
if (cs->relock_timer_active) {
cs->relock_interval = HZ;
mod_timer(&cs->relock_timer, jiffies + HZ);
}
} else {
/* Transition to down, (re-)set timer to short interval. */
unsigned int timeout;
timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
if (timeout == 0)
timeout = 1;
/* If timer has not yet been started, do so. */
if (!cs->relock_timer_active) {
cs->relock_timer_active = 1;
init_timer(&cs->relock_timer);
cs->relock_timer.function = qib_run_relock;
cs->relock_timer.data = (unsigned long) dd;
cs->relock_interval = timeout;
cs->relock_timer.expires = jiffies + timeout;
add_timer(&cs->relock_timer);
} else {
cs->relock_interval = timeout;
mod_timer(&cs->relock_timer, jiffies + timeout);
}
}
}