mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-08 13:44:01 +08:00
b339dc79b4
Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Bryan Wu <cooloney@kernel.org>
1233 lines
35 KiB
C
1233 lines
35 KiB
C
/*
|
|
* File: arch/blackfin/kernel/traps.c
|
|
* Based on:
|
|
* Author: Hamish Macdonald
|
|
*
|
|
* Created:
|
|
* Description: uses S/W interrupt 15 for the system calls
|
|
*
|
|
* Modified:
|
|
* Copyright 2004-2006 Analog Devices Inc.
|
|
*
|
|
* Bugs: Enter bugs at http://blackfin.uclinux.org/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see the file COPYING, or write
|
|
* to the Free Software Foundation, Inc.,
|
|
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/fs.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cplb.h>
|
|
#include <asm/blackfin.h>
|
|
#include <asm/irq_handler.h>
|
|
#include <linux/irq.h>
|
|
#include <asm/trace.h>
|
|
#include <asm/fixed_code.h>
|
|
|
|
#ifdef CONFIG_KGDB
|
|
# include <linux/kgdb.h>
|
|
|
|
# define CHK_DEBUGGER_TRAP() \
|
|
do { \
|
|
kgdb_handle_exception(trapnr, sig, info.si_code, fp); \
|
|
} while (0)
|
|
# define CHK_DEBUGGER_TRAP_MAYBE() \
|
|
do { \
|
|
if (kgdb_connected) \
|
|
CHK_DEBUGGER_TRAP(); \
|
|
} while (0)
|
|
#else
|
|
# define CHK_DEBUGGER_TRAP() do { } while (0)
|
|
# define CHK_DEBUGGER_TRAP_MAYBE() do { } while (0)
|
|
#endif
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
#define verbose_printk(fmt, arg...) \
|
|
printk(fmt, ##arg)
|
|
#else
|
|
#define verbose_printk(fmt, arg...) \
|
|
({ if (0) printk(fmt, ##arg); 0; })
|
|
#endif
|
|
|
|
/* Initiate the event table handler */
|
|
void __init trap_init(void)
|
|
{
|
|
CSYNC();
|
|
bfin_write_EVT3(trap);
|
|
CSYNC();
|
|
}
|
|
|
|
static void decode_address(char *buf, unsigned long address)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
struct vm_list_struct *vml;
|
|
struct task_struct *p;
|
|
struct mm_struct *mm;
|
|
unsigned long flags, offset;
|
|
unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
|
|
|
|
#ifdef CONFIG_KALLSYMS
|
|
unsigned long symsize;
|
|
const char *symname;
|
|
char *modname;
|
|
char *delim = ":";
|
|
char namebuf[128];
|
|
|
|
/* look up the address and see if we are in kernel space */
|
|
symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
|
|
|
|
if (symname) {
|
|
/* yeah! kernel space! */
|
|
if (!modname)
|
|
modname = delim = "";
|
|
sprintf(buf, "<0x%p> { %s%s%s%s + 0x%lx }",
|
|
(void *)address, delim, modname, delim, symname,
|
|
(unsigned long)offset);
|
|
return;
|
|
|
|
}
|
|
#endif
|
|
|
|
/* Problem in fixed code section? */
|
|
if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
|
|
sprintf(buf, "<0x%p> /* Maybe fixed code section */", (void *)address);
|
|
return;
|
|
}
|
|
|
|
/* Problem somewhere before the kernel start address */
|
|
if (address < CONFIG_BOOT_LOAD) {
|
|
sprintf(buf, "<0x%p> /* Maybe null pointer? */", (void *)address);
|
|
return;
|
|
}
|
|
|
|
/* looks like we're off in user-land, so let's walk all the
|
|
* mappings of all our processes and see if we can't be a whee
|
|
* bit more specific
|
|
*/
|
|
write_lock_irqsave(&tasklist_lock, flags);
|
|
for_each_process(p) {
|
|
mm = (in_atomic ? p->mm : get_task_mm(p));
|
|
if (!mm)
|
|
continue;
|
|
|
|
vml = mm->context.vmlist;
|
|
while (vml) {
|
|
struct vm_area_struct *vma = vml->vma;
|
|
|
|
if (address >= vma->vm_start && address < vma->vm_end) {
|
|
char _tmpbuf[256];
|
|
char *name = p->comm;
|
|
struct file *file = vma->vm_file;
|
|
|
|
if (file) {
|
|
char *d_name = d_path(&file->f_path, _tmpbuf,
|
|
sizeof(_tmpbuf));
|
|
if (!IS_ERR(d_name))
|
|
name = d_name;
|
|
}
|
|
|
|
/* FLAT does not have its text aligned to the start of
|
|
* the map while FDPIC ELF does ...
|
|
*/
|
|
|
|
/* before we can check flat/fdpic, we need to
|
|
* make sure current is valid
|
|
*/
|
|
if ((unsigned long)current >= FIXED_CODE_START &&
|
|
!((unsigned long)current & 0x3)) {
|
|
if (current->mm &&
|
|
(address > current->mm->start_code) &&
|
|
(address < current->mm->end_code))
|
|
offset = address - current->mm->start_code;
|
|
else
|
|
offset = (address - vma->vm_start) +
|
|
(vma->vm_pgoff << PAGE_SHIFT);
|
|
|
|
sprintf(buf, "<0x%p> [ %s + 0x%lx ]",
|
|
(void *)address, name, offset);
|
|
} else
|
|
sprintf(buf, "<0x%p> [ %s vma:0x%lx-0x%lx]",
|
|
(void *)address, name,
|
|
vma->vm_start, vma->vm_end);
|
|
|
|
if (!in_atomic)
|
|
mmput(mm);
|
|
|
|
if (!strlen(buf))
|
|
sprintf(buf, "<0x%p> [ %s ] dynamic memory", (void *)address, name);
|
|
|
|
goto done;
|
|
}
|
|
|
|
vml = vml->next;
|
|
}
|
|
if (!in_atomic)
|
|
mmput(mm);
|
|
}
|
|
|
|
/* we were unable to find this address anywhere */
|
|
sprintf(buf, "<0x%p> /* kernel dynamic memory */", (void *)address);
|
|
|
|
done:
|
|
write_unlock_irqrestore(&tasklist_lock, flags);
|
|
#else
|
|
sprintf(buf, " ");
|
|
#endif
|
|
}
|
|
|
|
asmlinkage void double_fault_c(struct pt_regs *fp)
|
|
{
|
|
console_verbose();
|
|
oops_in_progress = 1;
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
printk(KERN_EMERG "\n" KERN_EMERG "Double Fault\n");
|
|
#ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
|
|
if (((long)fp->seqstat & SEQSTAT_EXCAUSE) == VEC_UNCOV) {
|
|
unsigned int cpu = smp_processor_id();
|
|
char buf[150];
|
|
decode_address(buf, cpu_pda[cpu].retx);
|
|
printk(KERN_EMERG "While handling exception (EXCAUSE = 0x%x) at %s:\n",
|
|
(unsigned int)cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE, buf);
|
|
decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
|
|
printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %s\n", buf);
|
|
decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
|
|
printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %s\n", buf);
|
|
|
|
decode_address(buf, fp->retx);
|
|
printk(KERN_NOTICE "The instruction at %s caused a double exception\n", buf);
|
|
} else
|
|
#endif
|
|
{
|
|
dump_bfin_process(fp);
|
|
dump_bfin_mem(fp);
|
|
show_regs(fp);
|
|
}
|
|
#endif
|
|
panic("Double Fault - unrecoverable event\n");
|
|
|
|
}
|
|
|
|
asmlinkage void trap_c(struct pt_regs *fp)
|
|
{
|
|
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
|
|
int j;
|
|
#endif
|
|
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
|
|
unsigned int cpu = smp_processor_id();
|
|
#endif
|
|
int sig = 0;
|
|
siginfo_t info;
|
|
unsigned long trapnr = fp->seqstat & SEQSTAT_EXCAUSE;
|
|
|
|
trace_buffer_save(j);
|
|
|
|
/* Important - be very careful dereferncing pointers - will lead to
|
|
* double faults if the stack has become corrupt
|
|
*/
|
|
|
|
/* If the fault was caused by a kernel thread, or interrupt handler
|
|
* we will kernel panic, so the system reboots.
|
|
* If KGDB is enabled, don't set this for kernel breakpoints
|
|
*/
|
|
|
|
/* TODO: check to see if we are in some sort of deferred HWERR
|
|
* that we should be able to recover from, not kernel panic
|
|
*/
|
|
if ((bfin_read_IPEND() & 0xFFC0) && (trapnr != VEC_STEP)
|
|
#ifdef CONFIG_KGDB
|
|
&& (trapnr != VEC_EXCPT02)
|
|
#endif
|
|
){
|
|
console_verbose();
|
|
oops_in_progress = 1;
|
|
} else if (current) {
|
|
if (current->mm == NULL) {
|
|
console_verbose();
|
|
oops_in_progress = 1;
|
|
}
|
|
}
|
|
|
|
/* trap_c() will be called for exceptions. During exceptions
|
|
* processing, the pc value should be set with retx value.
|
|
* With this change we can cleanup some code in signal.c- TODO
|
|
*/
|
|
fp->orig_pc = fp->retx;
|
|
/* printk("exception: 0x%x, ipend=%x, reti=%x, retx=%x\n",
|
|
trapnr, fp->ipend, fp->pc, fp->retx); */
|
|
|
|
/* send the appropriate signal to the user program */
|
|
switch (trapnr) {
|
|
|
|
/* This table works in conjuction with the one in ./mach-common/entry.S
|
|
* Some exceptions are handled there (in assembly, in exception space)
|
|
* Some are handled here, (in C, in interrupt space)
|
|
* Some, like CPLB, are handled in both, where the normal path is
|
|
* handled in assembly/exception space, and the error path is handled
|
|
* here
|
|
*/
|
|
|
|
/* 0x00 - Linux Syscall, getting here is an error */
|
|
/* 0x01 - userspace gdb breakpoint, handled here */
|
|
case VEC_EXCPT01:
|
|
info.si_code = TRAP_ILLTRAP;
|
|
sig = SIGTRAP;
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
/* Check if this is a breakpoint in kernel space */
|
|
if (fp->ipend & 0xffc0)
|
|
return;
|
|
else
|
|
break;
|
|
/* 0x03 - User Defined, userspace stack overflow */
|
|
case VEC_EXCPT03:
|
|
info.si_code = SEGV_STACKFLOW;
|
|
sig = SIGSEGV;
|
|
verbose_printk(KERN_NOTICE EXC_0x03(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x02 - KGDB initial connection and break signal trap */
|
|
case VEC_EXCPT02:
|
|
#ifdef CONFIG_KGDB
|
|
info.si_code = TRAP_ILLTRAP;
|
|
sig = SIGTRAP;
|
|
CHK_DEBUGGER_TRAP();
|
|
return;
|
|
#endif
|
|
/* 0x04 - User Defined */
|
|
/* 0x05 - User Defined */
|
|
/* 0x06 - User Defined */
|
|
/* 0x07 - User Defined */
|
|
/* 0x08 - User Defined */
|
|
/* 0x09 - User Defined */
|
|
/* 0x0A - User Defined */
|
|
/* 0x0B - User Defined */
|
|
/* 0x0C - User Defined */
|
|
/* 0x0D - User Defined */
|
|
/* 0x0E - User Defined */
|
|
/* 0x0F - User Defined */
|
|
/* If we got here, it is most likely that someone was trying to use a
|
|
* custom exception handler, and it is not actually installed properly
|
|
*/
|
|
case VEC_EXCPT04 ... VEC_EXCPT15:
|
|
info.si_code = ILL_ILLPARAOP;
|
|
sig = SIGILL;
|
|
verbose_printk(KERN_NOTICE EXC_0x04(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x10 HW Single step, handled here */
|
|
case VEC_STEP:
|
|
info.si_code = TRAP_STEP;
|
|
sig = SIGTRAP;
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
/* Check if this is a single step in kernel space */
|
|
if (fp->ipend & 0xffc0)
|
|
return;
|
|
else
|
|
break;
|
|
/* 0x11 - Trace Buffer Full, handled here */
|
|
case VEC_OVFLOW:
|
|
info.si_code = TRAP_TRACEFLOW;
|
|
sig = SIGTRAP;
|
|
verbose_printk(KERN_NOTICE EXC_0x11(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x12 - Reserved, Caught by default */
|
|
/* 0x13 - Reserved, Caught by default */
|
|
/* 0x14 - Reserved, Caught by default */
|
|
/* 0x15 - Reserved, Caught by default */
|
|
/* 0x16 - Reserved, Caught by default */
|
|
/* 0x17 - Reserved, Caught by default */
|
|
/* 0x18 - Reserved, Caught by default */
|
|
/* 0x19 - Reserved, Caught by default */
|
|
/* 0x1A - Reserved, Caught by default */
|
|
/* 0x1B - Reserved, Caught by default */
|
|
/* 0x1C - Reserved, Caught by default */
|
|
/* 0x1D - Reserved, Caught by default */
|
|
/* 0x1E - Reserved, Caught by default */
|
|
/* 0x1F - Reserved, Caught by default */
|
|
/* 0x20 - Reserved, Caught by default */
|
|
/* 0x21 - Undefined Instruction, handled here */
|
|
case VEC_UNDEF_I:
|
|
info.si_code = ILL_ILLOPC;
|
|
sig = SIGILL;
|
|
verbose_printk(KERN_NOTICE EXC_0x21(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x22 - Illegal Instruction Combination, handled here */
|
|
case VEC_ILGAL_I:
|
|
info.si_code = ILL_ILLPARAOP;
|
|
sig = SIGILL;
|
|
verbose_printk(KERN_NOTICE EXC_0x22(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x23 - Data CPLB protection violation, handled here */
|
|
case VEC_CPLB_VL:
|
|
info.si_code = ILL_CPLB_VI;
|
|
sig = SIGBUS;
|
|
verbose_printk(KERN_NOTICE EXC_0x23(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x24 - Data access misaligned, handled here */
|
|
case VEC_MISALI_D:
|
|
info.si_code = BUS_ADRALN;
|
|
sig = SIGBUS;
|
|
verbose_printk(KERN_NOTICE EXC_0x24(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x25 - Unrecoverable Event, handled here */
|
|
case VEC_UNCOV:
|
|
info.si_code = ILL_ILLEXCPT;
|
|
sig = SIGILL;
|
|
verbose_printk(KERN_NOTICE EXC_0x25(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x26 - Data CPLB Miss, normal case is handled in _cplb_hdr,
|
|
error case is handled here */
|
|
case VEC_CPLB_M:
|
|
info.si_code = BUS_ADRALN;
|
|
sig = SIGBUS;
|
|
verbose_printk(KERN_NOTICE EXC_0x26(KERN_NOTICE));
|
|
break;
|
|
/* 0x27 - Data CPLB Multiple Hits - Linux Trap Zero, handled here */
|
|
case VEC_CPLB_MHIT:
|
|
info.si_code = ILL_CPLB_MULHIT;
|
|
sig = SIGSEGV;
|
|
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
|
|
if (cpu_pda[cpu].dcplb_fault_addr < FIXED_CODE_START)
|
|
verbose_printk(KERN_NOTICE "NULL pointer access\n");
|
|
else
|
|
#endif
|
|
verbose_printk(KERN_NOTICE EXC_0x27(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x28 - Emulation Watchpoint, handled here */
|
|
case VEC_WATCH:
|
|
info.si_code = TRAP_WATCHPT;
|
|
sig = SIGTRAP;
|
|
pr_debug(EXC_0x28(KERN_DEBUG));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
/* Check if this is a watchpoint in kernel space */
|
|
if (fp->ipend & 0xffc0)
|
|
return;
|
|
else
|
|
break;
|
|
#ifdef CONFIG_BF535
|
|
/* 0x29 - Instruction fetch access error (535 only) */
|
|
case VEC_ISTRU_VL: /* ADSP-BF535 only (MH) */
|
|
info.si_code = BUS_OPFETCH;
|
|
sig = SIGBUS;
|
|
verbose_printk(KERN_NOTICE "BF535: VEC_ISTRU_VL\n");
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
#else
|
|
/* 0x29 - Reserved, Caught by default */
|
|
#endif
|
|
/* 0x2A - Instruction fetch misaligned, handled here */
|
|
case VEC_MISALI_I:
|
|
info.si_code = BUS_ADRALN;
|
|
sig = SIGBUS;
|
|
verbose_printk(KERN_NOTICE EXC_0x2A(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x2B - Instruction CPLB protection violation, handled here */
|
|
case VEC_CPLB_I_VL:
|
|
info.si_code = ILL_CPLB_VI;
|
|
sig = SIGBUS;
|
|
verbose_printk(KERN_NOTICE EXC_0x2B(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x2C - Instruction CPLB miss, handled in _cplb_hdr */
|
|
case VEC_CPLB_I_M:
|
|
info.si_code = ILL_CPLB_MISS;
|
|
sig = SIGBUS;
|
|
verbose_printk(KERN_NOTICE EXC_0x2C(KERN_NOTICE));
|
|
break;
|
|
/* 0x2D - Instruction CPLB Multiple Hits, handled here */
|
|
case VEC_CPLB_I_MHIT:
|
|
info.si_code = ILL_CPLB_MULHIT;
|
|
sig = SIGSEGV;
|
|
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
|
|
if (cpu_pda[cpu].icplb_fault_addr < FIXED_CODE_START)
|
|
verbose_printk(KERN_NOTICE "Jump to NULL address\n");
|
|
else
|
|
#endif
|
|
verbose_printk(KERN_NOTICE EXC_0x2D(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x2E - Illegal use of Supervisor Resource, handled here */
|
|
case VEC_ILL_RES:
|
|
info.si_code = ILL_PRVOPC;
|
|
sig = SIGILL;
|
|
verbose_printk(KERN_NOTICE EXC_0x2E(KERN_NOTICE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/* 0x2F - Reserved, Caught by default */
|
|
/* 0x30 - Reserved, Caught by default */
|
|
/* 0x31 - Reserved, Caught by default */
|
|
/* 0x32 - Reserved, Caught by default */
|
|
/* 0x33 - Reserved, Caught by default */
|
|
/* 0x34 - Reserved, Caught by default */
|
|
/* 0x35 - Reserved, Caught by default */
|
|
/* 0x36 - Reserved, Caught by default */
|
|
/* 0x37 - Reserved, Caught by default */
|
|
/* 0x38 - Reserved, Caught by default */
|
|
/* 0x39 - Reserved, Caught by default */
|
|
/* 0x3A - Reserved, Caught by default */
|
|
/* 0x3B - Reserved, Caught by default */
|
|
/* 0x3C - Reserved, Caught by default */
|
|
/* 0x3D - Reserved, Caught by default */
|
|
/* 0x3E - Reserved, Caught by default */
|
|
/* 0x3F - Reserved, Caught by default */
|
|
case VEC_HWERR:
|
|
info.si_code = BUS_ADRALN;
|
|
sig = SIGBUS;
|
|
switch (fp->seqstat & SEQSTAT_HWERRCAUSE) {
|
|
/* System MMR Error */
|
|
case (SEQSTAT_HWERRCAUSE_SYSTEM_MMR):
|
|
info.si_code = BUS_ADRALN;
|
|
sig = SIGBUS;
|
|
verbose_printk(KERN_NOTICE HWC_x2(KERN_NOTICE));
|
|
break;
|
|
/* External Memory Addressing Error */
|
|
case (SEQSTAT_HWERRCAUSE_EXTERN_ADDR):
|
|
info.si_code = BUS_ADRERR;
|
|
sig = SIGBUS;
|
|
verbose_printk(KERN_NOTICE HWC_x3(KERN_NOTICE));
|
|
break;
|
|
/* Performance Monitor Overflow */
|
|
case (SEQSTAT_HWERRCAUSE_PERF_FLOW):
|
|
verbose_printk(KERN_NOTICE HWC_x12(KERN_NOTICE));
|
|
break;
|
|
/* RAISE 5 instruction */
|
|
case (SEQSTAT_HWERRCAUSE_RAISE_5):
|
|
printk(KERN_NOTICE HWC_x18(KERN_NOTICE));
|
|
break;
|
|
default: /* Reserved */
|
|
printk(KERN_NOTICE HWC_default(KERN_NOTICE));
|
|
break;
|
|
}
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
/*
|
|
* We should be handling all known exception types above,
|
|
* if we get here we hit a reserved one, so panic
|
|
*/
|
|
default:
|
|
oops_in_progress = 1;
|
|
info.si_code = ILL_ILLPARAOP;
|
|
sig = SIGILL;
|
|
verbose_printk(KERN_EMERG "Caught Unhandled Exception, code = %08lx\n",
|
|
(fp->seqstat & SEQSTAT_EXCAUSE));
|
|
CHK_DEBUGGER_TRAP_MAYBE();
|
|
break;
|
|
}
|
|
|
|
BUG_ON(sig == 0);
|
|
|
|
if (sig != SIGTRAP) {
|
|
dump_bfin_process(fp);
|
|
dump_bfin_mem(fp);
|
|
show_regs(fp);
|
|
|
|
/* Print out the trace buffer if it makes sense */
|
|
#ifndef CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE
|
|
if (trapnr == VEC_CPLB_I_M || trapnr == VEC_CPLB_M)
|
|
verbose_printk(KERN_NOTICE "No trace since you do not have "
|
|
"CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE enabled\n"
|
|
KERN_NOTICE "\n");
|
|
else
|
|
#endif
|
|
dump_bfin_trace_buffer();
|
|
|
|
if (oops_in_progress) {
|
|
/* Dump the current kernel stack */
|
|
verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "Kernel Stack\n");
|
|
show_stack(current, NULL);
|
|
print_modules();
|
|
#ifndef CONFIG_ACCESS_CHECK
|
|
verbose_printk(KERN_EMERG "Please turn on "
|
|
"CONFIG_ACCESS_CHECK\n");
|
|
#endif
|
|
panic("Kernel exception");
|
|
} else {
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
unsigned long *stack;
|
|
/* Dump the user space stack */
|
|
stack = (unsigned long *)rdusp();
|
|
verbose_printk(KERN_NOTICE "Userspace Stack\n");
|
|
show_stack(NULL, stack);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_IPIPE
|
|
if (!ipipe_trap_notify(fp->seqstat & 0x3f, fp))
|
|
#endif
|
|
{
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_addr = (void __user *)fp->pc;
|
|
force_sig_info(sig, &info, current);
|
|
}
|
|
|
|
trace_buffer_restore(j);
|
|
return;
|
|
}
|
|
|
|
/* Typical exception handling routines */
|
|
|
|
#define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
|
|
|
|
/*
|
|
* Similar to get_user, do some address checking, then dereference
|
|
* Return true on sucess, false on bad address
|
|
*/
|
|
static bool get_instruction(unsigned short *val, unsigned short *address)
|
|
{
|
|
|
|
unsigned long addr;
|
|
|
|
addr = (unsigned long)address;
|
|
|
|
/* Check for odd addresses */
|
|
if (addr & 0x1)
|
|
return false;
|
|
|
|
/* Check that things do not wrap around */
|
|
if (addr > (addr + 2))
|
|
return false;
|
|
|
|
/*
|
|
* Since we are in exception context, we need to do a little address checking
|
|
* We need to make sure we are only accessing valid memory, and
|
|
* we don't read something in the async space that can hang forever
|
|
*/
|
|
if ((addr >= FIXED_CODE_START && (addr + 2) <= physical_mem_end) ||
|
|
#if L2_LENGTH != 0
|
|
(addr >= L2_START && (addr + 2) <= (L2_START + L2_LENGTH)) ||
|
|
#endif
|
|
(addr >= BOOT_ROM_START && (addr + 2) <= (BOOT_ROM_START + BOOT_ROM_LENGTH)) ||
|
|
#if L1_DATA_A_LENGTH != 0
|
|
(addr >= L1_DATA_A_START && (addr + 2) <= (L1_DATA_A_START + L1_DATA_A_LENGTH)) ||
|
|
#endif
|
|
#if L1_DATA_B_LENGTH != 0
|
|
(addr >= L1_DATA_B_START && (addr + 2) <= (L1_DATA_B_START + L1_DATA_B_LENGTH)) ||
|
|
#endif
|
|
(addr >= L1_SCRATCH_START && (addr + 2) <= (L1_SCRATCH_START + L1_SCRATCH_LENGTH)) ||
|
|
(!(bfin_read_EBIU_AMBCTL0() & B0RDYEN) &&
|
|
addr >= ASYNC_BANK0_BASE && (addr + 2) <= (ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)) ||
|
|
(!(bfin_read_EBIU_AMBCTL0() & B1RDYEN) &&
|
|
addr >= ASYNC_BANK1_BASE && (addr + 2) <= (ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)) ||
|
|
(!(bfin_read_EBIU_AMBCTL1() & B2RDYEN) &&
|
|
addr >= ASYNC_BANK2_BASE && (addr + 2) <= (ASYNC_BANK2_BASE + ASYNC_BANK1_SIZE)) ||
|
|
(!(bfin_read_EBIU_AMBCTL1() & B3RDYEN) &&
|
|
addr >= ASYNC_BANK3_BASE && (addr + 2) <= (ASYNC_BANK3_BASE + ASYNC_BANK1_SIZE))) {
|
|
*val = *address;
|
|
return true;
|
|
}
|
|
|
|
#if L1_CODE_LENGTH != 0
|
|
if (addr >= L1_CODE_START && (addr + 2) <= (L1_CODE_START + L1_CODE_LENGTH)) {
|
|
isram_memcpy(val, address, 2);
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* decode the instruction if we are printing out the trace, as it
|
|
* makes things easier to follow, without running it through objdump
|
|
* These are the normal instructions which cause change of flow, which
|
|
* would be at the source of the trace buffer
|
|
*/
|
|
#if defined(CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_BFIN_HWTRACE_ON)
|
|
static void decode_instruction(unsigned short *address)
|
|
{
|
|
unsigned short opcode;
|
|
|
|
if (get_instruction(&opcode, address)) {
|
|
if (opcode == 0x0010)
|
|
verbose_printk("RTS");
|
|
else if (opcode == 0x0011)
|
|
verbose_printk("RTI");
|
|
else if (opcode == 0x0012)
|
|
verbose_printk("RTX");
|
|
else if (opcode >= 0x0050 && opcode <= 0x0057)
|
|
verbose_printk("JUMP (P%i)", opcode & 7);
|
|
else if (opcode >= 0x0060 && opcode <= 0x0067)
|
|
verbose_printk("CALL (P%i)", opcode & 7);
|
|
else if (opcode >= 0x0070 && opcode <= 0x0077)
|
|
verbose_printk("CALL (PC+P%i)", opcode & 7);
|
|
else if (opcode >= 0x0080 && opcode <= 0x0087)
|
|
verbose_printk("JUMP (PC+P%i)", opcode & 7);
|
|
else if ((opcode >= 0x1000 && opcode <= 0x13FF) || (opcode >= 0x1800 && opcode <= 0x1BFF))
|
|
verbose_printk("IF !CC JUMP");
|
|
else if ((opcode >= 0x1400 && opcode <= 0x17ff) || (opcode >= 0x1c00 && opcode <= 0x1fff))
|
|
verbose_printk("IF CC JUMP");
|
|
else if (opcode >= 0x2000 && opcode <= 0x2fff)
|
|
verbose_printk("JUMP.S");
|
|
else if (opcode >= 0xe080 && opcode <= 0xe0ff)
|
|
verbose_printk("LSETUP");
|
|
else if (opcode >= 0xe200 && opcode <= 0xe2ff)
|
|
verbose_printk("JUMP.L");
|
|
else if (opcode >= 0xe300 && opcode <= 0xe3ff)
|
|
verbose_printk("CALL pcrel");
|
|
else
|
|
verbose_printk("0x%04x", opcode);
|
|
}
|
|
|
|
}
|
|
#endif
|
|
|
|
void dump_bfin_trace_buffer(void)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
|
|
int tflags, i = 0;
|
|
char buf[150];
|
|
unsigned short *addr;
|
|
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
|
|
int j, index;
|
|
#endif
|
|
|
|
trace_buffer_save(tflags);
|
|
|
|
printk(KERN_NOTICE "Hardware Trace:\n");
|
|
|
|
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
|
|
printk(KERN_NOTICE "WARNING: Expanded trace turned on - can not trace exceptions\n");
|
|
#endif
|
|
|
|
if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
|
|
for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
|
|
decode_address(buf, (unsigned long)bfin_read_TBUF());
|
|
printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
|
|
addr = (unsigned short *)bfin_read_TBUF();
|
|
decode_address(buf, (unsigned long)addr);
|
|
printk(KERN_NOTICE " Source : %s ", buf);
|
|
decode_instruction(addr);
|
|
printk("\n");
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
|
|
if (trace_buff_offset)
|
|
index = trace_buff_offset / 4;
|
|
else
|
|
index = EXPAND_LEN;
|
|
|
|
j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
|
|
while (j) {
|
|
decode_address(buf, software_trace_buff[index]);
|
|
printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
|
|
index -= 1;
|
|
if (index < 0 )
|
|
index = EXPAND_LEN;
|
|
decode_address(buf, software_trace_buff[index]);
|
|
printk(KERN_NOTICE " Source : %s ", buf);
|
|
decode_instruction((unsigned short *)software_trace_buff[index]);
|
|
printk("\n");
|
|
index -= 1;
|
|
if (index < 0)
|
|
index = EXPAND_LEN;
|
|
j--;
|
|
i++;
|
|
}
|
|
#endif
|
|
|
|
trace_buffer_restore(tflags);
|
|
#endif
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(dump_bfin_trace_buffer);
|
|
|
|
/*
|
|
* Checks to see if the address pointed to is either a
|
|
* 16-bit CALL instruction, or a 32-bit CALL instruction
|
|
*/
|
|
static bool is_bfin_call(unsigned short *addr)
|
|
{
|
|
unsigned short opcode = 0, *ins_addr;
|
|
ins_addr = (unsigned short *)addr;
|
|
|
|
if (!get_instruction(&opcode, ins_addr))
|
|
return false;
|
|
|
|
if ((opcode >= 0x0060 && opcode <= 0x0067) ||
|
|
(opcode >= 0x0070 && opcode <= 0x0077))
|
|
return true;
|
|
|
|
ins_addr--;
|
|
if (!get_instruction(&opcode, ins_addr))
|
|
return false;
|
|
|
|
if (opcode >= 0xE300 && opcode <= 0xE3FF)
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
void show_stack(struct task_struct *task, unsigned long *stack)
|
|
{
|
|
#ifdef CONFIG_PRINTK
|
|
unsigned int *addr, *endstack, *fp = 0, *frame;
|
|
unsigned short *ins_addr;
|
|
char buf[150];
|
|
unsigned int i, j, ret_addr, frame_no = 0;
|
|
|
|
/*
|
|
* If we have been passed a specific stack, use that one otherwise
|
|
* if we have been passed a task structure, use that, otherwise
|
|
* use the stack of where the variable "stack" exists
|
|
*/
|
|
|
|
if (stack == NULL) {
|
|
if (task) {
|
|
/* We know this is a kernel stack, so this is the start/end */
|
|
stack = (unsigned long *)task->thread.ksp;
|
|
endstack = (unsigned int *)(((unsigned int)(stack) & ~(THREAD_SIZE - 1)) + THREAD_SIZE);
|
|
} else {
|
|
/* print out the existing stack info */
|
|
stack = (unsigned long *)&stack;
|
|
endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
|
|
}
|
|
} else
|
|
endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
|
|
|
|
printk(KERN_NOTICE "Stack info:\n");
|
|
decode_address(buf, (unsigned int)stack);
|
|
printk(KERN_NOTICE " SP: [0x%p] %s\n", stack, buf);
|
|
|
|
addr = (unsigned int *)((unsigned int)stack & ~0x3F);
|
|
|
|
/* First thing is to look for a frame pointer */
|
|
for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0;
|
|
addr < endstack; addr++, i++) {
|
|
if (*addr & 0x1)
|
|
continue;
|
|
ins_addr = (unsigned short *)*addr;
|
|
ins_addr--;
|
|
if (is_bfin_call(ins_addr))
|
|
fp = addr - 1;
|
|
|
|
if (fp) {
|
|
/* Let's check to see if it is a frame pointer */
|
|
while (fp >= (addr - 1) && fp < endstack && fp)
|
|
fp = (unsigned int *)*fp;
|
|
if (fp == 0 || fp == endstack) {
|
|
fp = addr - 1;
|
|
break;
|
|
}
|
|
fp = 0;
|
|
}
|
|
}
|
|
if (fp) {
|
|
frame = fp;
|
|
printk(KERN_NOTICE " FP: (0x%p)\n", fp);
|
|
} else
|
|
frame = 0;
|
|
|
|
/*
|
|
* Now that we think we know where things are, we
|
|
* walk the stack again, this time printing things out
|
|
* incase there is no frame pointer, we still look for
|
|
* valid return addresses
|
|
*/
|
|
|
|
/* First time print out data, next time, print out symbols */
|
|
for (j = 0; j <= 1; j++) {
|
|
if (j)
|
|
printk(KERN_NOTICE "Return addresses in stack:\n");
|
|
else
|
|
printk(KERN_NOTICE " Memory from 0x%08lx to %p", ((long unsigned int)stack & ~0xF), endstack);
|
|
|
|
fp = frame;
|
|
frame_no = 0;
|
|
|
|
for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0;
|
|
addr <= endstack; addr++, i++) {
|
|
|
|
ret_addr = 0;
|
|
if (!j && i % 8 == 0)
|
|
printk("\n" KERN_NOTICE "%p:",addr);
|
|
|
|
/* if it is an odd address, or zero, just skip it */
|
|
if (*addr & 0x1 || !*addr)
|
|
goto print;
|
|
|
|
ins_addr = (unsigned short *)*addr;
|
|
|
|
/* Go back one instruction, and see if it is a CALL */
|
|
ins_addr--;
|
|
ret_addr = is_bfin_call(ins_addr);
|
|
print:
|
|
if (!j && stack == (unsigned long *)addr)
|
|
printk("[%08x]", *addr);
|
|
else if (ret_addr)
|
|
if (j) {
|
|
decode_address(buf, (unsigned int)*addr);
|
|
if (frame == addr) {
|
|
printk(KERN_NOTICE " frame %2i : %s\n", frame_no, buf);
|
|
continue;
|
|
}
|
|
printk(KERN_NOTICE " address : %s\n", buf);
|
|
} else
|
|
printk("<%08x>", *addr);
|
|
else if (fp == addr) {
|
|
if (j)
|
|
frame = addr+1;
|
|
else
|
|
printk("(%08x)", *addr);
|
|
|
|
fp = (unsigned int *)*addr;
|
|
frame_no++;
|
|
|
|
} else if (!j)
|
|
printk(" %08x ", *addr);
|
|
}
|
|
if (!j)
|
|
printk("\n");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void dump_stack(void)
|
|
{
|
|
unsigned long stack;
|
|
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
|
|
int tflags;
|
|
#endif
|
|
trace_buffer_save(tflags);
|
|
dump_bfin_trace_buffer();
|
|
show_stack(current, &stack);
|
|
trace_buffer_restore(tflags);
|
|
}
|
|
EXPORT_SYMBOL(dump_stack);
|
|
|
|
void dump_bfin_process(struct pt_regs *fp)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
/* We should be able to look at fp->ipend, but we don't push it on the
|
|
* stack all the time, so do this until we fix that */
|
|
unsigned int context = bfin_read_IPEND();
|
|
|
|
if (oops_in_progress)
|
|
verbose_printk(KERN_EMERG "Kernel OOPS in progress\n");
|
|
|
|
if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
|
|
verbose_printk(KERN_NOTICE "HW Error context\n");
|
|
else if (context & 0x0020)
|
|
verbose_printk(KERN_NOTICE "Deferred Exception context\n");
|
|
else if (context & 0x3FC0)
|
|
verbose_printk(KERN_NOTICE "Interrupt context\n");
|
|
else if (context & 0x4000)
|
|
verbose_printk(KERN_NOTICE "Deferred Interrupt context\n");
|
|
else if (context & 0x8000)
|
|
verbose_printk(KERN_NOTICE "Kernel process context\n");
|
|
|
|
/* Because we are crashing, and pointers could be bad, we check things
|
|
* pretty closely before we use them
|
|
*/
|
|
if ((unsigned long)current >= FIXED_CODE_START &&
|
|
!((unsigned long)current & 0x3) && current->pid) {
|
|
verbose_printk(KERN_NOTICE "CURRENT PROCESS:\n");
|
|
if (current->comm >= (char *)FIXED_CODE_START)
|
|
verbose_printk(KERN_NOTICE "COMM=%s PID=%d\n",
|
|
current->comm, current->pid);
|
|
else
|
|
verbose_printk(KERN_NOTICE "COMM= invalid\n");
|
|
|
|
printk(KERN_NOTICE "CPU = %d\n", current_thread_info()->cpu);
|
|
if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START)
|
|
verbose_printk(KERN_NOTICE "TEXT = 0x%p-0x%p DATA = 0x%p-0x%p\n"
|
|
KERN_NOTICE " BSS = 0x%p-0x%p USER-STACK = 0x%p\n"
|
|
KERN_NOTICE "\n",
|
|
(void *)current->mm->start_code,
|
|
(void *)current->mm->end_code,
|
|
(void *)current->mm->start_data,
|
|
(void *)current->mm->end_data,
|
|
(void *)current->mm->end_data,
|
|
(void *)current->mm->brk,
|
|
(void *)current->mm->start_stack);
|
|
else
|
|
verbose_printk(KERN_NOTICE "invalid mm\n");
|
|
} else
|
|
verbose_printk(KERN_NOTICE "\n" KERN_NOTICE
|
|
"No Valid process in current context\n");
|
|
#endif
|
|
}
|
|
|
|
void dump_bfin_mem(struct pt_regs *fp)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
unsigned short *addr, *erraddr, val = 0, err = 0;
|
|
char sti = 0, buf[6];
|
|
|
|
erraddr = (void *)fp->pc;
|
|
|
|
verbose_printk(KERN_NOTICE "return address: [0x%p]; contents of:", erraddr);
|
|
|
|
for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
|
|
addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
|
|
addr++) {
|
|
if (!((unsigned long)addr & 0xF))
|
|
verbose_printk("\n" KERN_NOTICE "0x%p: ", addr);
|
|
|
|
if (!get_instruction(&val, addr)) {
|
|
val = 0;
|
|
sprintf(buf, "????");
|
|
} else
|
|
sprintf(buf, "%04x", val);
|
|
|
|
if (addr == erraddr) {
|
|
verbose_printk("[%s]", buf);
|
|
err = val;
|
|
} else
|
|
verbose_printk(" %s ", buf);
|
|
|
|
/* Do any previous instructions turn on interrupts? */
|
|
if (addr <= erraddr && /* in the past */
|
|
((val >= 0x0040 && val <= 0x0047) || /* STI instruction */
|
|
val == 0x017b)) /* [SP++] = RETI */
|
|
sti = 1;
|
|
}
|
|
|
|
verbose_printk("\n");
|
|
|
|
/* Hardware error interrupts can be deferred */
|
|
if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
|
|
oops_in_progress)){
|
|
verbose_printk(KERN_NOTICE "Looks like this was a deferred error - sorry\n");
|
|
#ifndef CONFIG_DEBUG_HWERR
|
|
verbose_printk(KERN_NOTICE "The remaining message may be meaningless\n"
|
|
KERN_NOTICE "You should enable CONFIG_DEBUG_HWERR to get a"
|
|
" better idea where it came from\n");
|
|
#else
|
|
/* If we are handling only one peripheral interrupt
|
|
* and current mm and pid are valid, and the last error
|
|
* was in that user space process's text area
|
|
* print it out - because that is where the problem exists
|
|
*/
|
|
if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
|
|
(current->pid && current->mm)) {
|
|
/* And the last RETI points to the current userspace context */
|
|
if ((fp + 1)->pc >= current->mm->start_code &&
|
|
(fp + 1)->pc <= current->mm->end_code) {
|
|
verbose_printk(KERN_NOTICE "It might be better to look around here : \n");
|
|
verbose_printk(KERN_NOTICE "-------------------------------------------\n");
|
|
show_regs(fp + 1);
|
|
verbose_printk(KERN_NOTICE "-------------------------------------------\n");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void show_regs(struct pt_regs *fp)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
char buf [150];
|
|
struct irqaction *action;
|
|
unsigned int i;
|
|
unsigned long flags;
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "SEQUENCER STATUS:\t\t%s\n", print_tainted());
|
|
verbose_printk(KERN_NOTICE " SEQSTAT: %08lx IPEND: %04lx SYSCFG: %04lx\n",
|
|
(long)fp->seqstat, fp->ipend, fp->syscfg);
|
|
if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) {
|
|
verbose_printk(KERN_NOTICE " HWERRCAUSE: 0x%lx\n",
|
|
(fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
|
|
#ifdef EBIU_ERRMST
|
|
/* If the error was from the EBIU, print it out */
|
|
if (bfin_read_EBIU_ERRMST() & CORE_ERROR) {
|
|
verbose_printk(KERN_NOTICE " EBIU Error Reason : 0x%04x\n",
|
|
bfin_read_EBIU_ERRMST());
|
|
verbose_printk(KERN_NOTICE " EBIU Error Address : 0x%08x\n",
|
|
bfin_read_EBIU_ERRADD());
|
|
}
|
|
#endif
|
|
}
|
|
verbose_printk(KERN_NOTICE " EXCAUSE : 0x%lx\n",
|
|
fp->seqstat & SEQSTAT_EXCAUSE);
|
|
for (i = 6; i <= 15 ; i++) {
|
|
if (fp->ipend & (1 << i)) {
|
|
decode_address(buf, bfin_read32(EVT0 + 4*i));
|
|
verbose_printk(KERN_NOTICE " physical IVG%i asserted : %s\n", i, buf);
|
|
}
|
|
}
|
|
|
|
/* if no interrupts are going off, don't print this out */
|
|
if (fp->ipend & ~0x3F) {
|
|
for (i = 0; i < (NR_IRQS - 1); i++) {
|
|
spin_lock_irqsave(&irq_desc[i].lock, flags);
|
|
action = irq_desc[i].action;
|
|
if (!action)
|
|
goto unlock;
|
|
|
|
decode_address(buf, (unsigned int)action->handler);
|
|
verbose_printk(KERN_NOTICE " logical irq %3d mapped : %s", i, buf);
|
|
for (action = action->next; action; action = action->next) {
|
|
decode_address(buf, (unsigned int)action->handler);
|
|
verbose_printk(", %s", buf);
|
|
}
|
|
verbose_printk("\n");
|
|
unlock:
|
|
spin_unlock_irqrestore(&irq_desc[i].lock, flags);
|
|
}
|
|
}
|
|
|
|
decode_address(buf, fp->rete);
|
|
verbose_printk(KERN_NOTICE " RETE: %s\n", buf);
|
|
decode_address(buf, fp->retn);
|
|
verbose_printk(KERN_NOTICE " RETN: %s\n", buf);
|
|
decode_address(buf, fp->retx);
|
|
verbose_printk(KERN_NOTICE " RETX: %s\n", buf);
|
|
decode_address(buf, fp->rets);
|
|
verbose_printk(KERN_NOTICE " RETS: %s\n", buf);
|
|
decode_address(buf, fp->pc);
|
|
verbose_printk(KERN_NOTICE " PC : %s\n", buf);
|
|
|
|
if (((long)fp->seqstat & SEQSTAT_EXCAUSE) &&
|
|
(((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
|
|
decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
|
|
verbose_printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf);
|
|
decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
|
|
verbose_printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf);
|
|
}
|
|
|
|
verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "PROCESSOR STATE:\n");
|
|
verbose_printk(KERN_NOTICE " R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
|
|
fp->r0, fp->r1, fp->r2, fp->r3);
|
|
verbose_printk(KERN_NOTICE " R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
|
|
fp->r4, fp->r5, fp->r6, fp->r7);
|
|
verbose_printk(KERN_NOTICE " P0 : %08lx P1 : %08lx P2 : %08lx P3 : %08lx\n",
|
|
fp->p0, fp->p1, fp->p2, fp->p3);
|
|
verbose_printk(KERN_NOTICE " P4 : %08lx P5 : %08lx FP : %08lx SP : %08lx\n",
|
|
fp->p4, fp->p5, fp->fp, (long)fp);
|
|
verbose_printk(KERN_NOTICE " LB0: %08lx LT0: %08lx LC0: %08lx\n",
|
|
fp->lb0, fp->lt0, fp->lc0);
|
|
verbose_printk(KERN_NOTICE " LB1: %08lx LT1: %08lx LC1: %08lx\n",
|
|
fp->lb1, fp->lt1, fp->lc1);
|
|
verbose_printk(KERN_NOTICE " B0 : %08lx L0 : %08lx M0 : %08lx I0 : %08lx\n",
|
|
fp->b0, fp->l0, fp->m0, fp->i0);
|
|
verbose_printk(KERN_NOTICE " B1 : %08lx L1 : %08lx M1 : %08lx I1 : %08lx\n",
|
|
fp->b1, fp->l1, fp->m1, fp->i1);
|
|
verbose_printk(KERN_NOTICE " B2 : %08lx L2 : %08lx M2 : %08lx I2 : %08lx\n",
|
|
fp->b2, fp->l2, fp->m2, fp->i2);
|
|
verbose_printk(KERN_NOTICE " B3 : %08lx L3 : %08lx M3 : %08lx I3 : %08lx\n",
|
|
fp->b3, fp->l3, fp->m3, fp->i3);
|
|
verbose_printk(KERN_NOTICE "A0.w: %08lx A0.x: %08lx A1.w: %08lx A1.x: %08lx\n",
|
|
fp->a0w, fp->a0x, fp->a1w, fp->a1x);
|
|
|
|
verbose_printk(KERN_NOTICE "USP : %08lx ASTAT: %08lx\n",
|
|
rdusp(), fp->astat);
|
|
|
|
verbose_printk(KERN_NOTICE "\n");
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_BFIN_SPINLOCK_L1
|
|
asmlinkage int sys_bfin_spinlock(int *spinlock)__attribute__((l1_text));
|
|
#endif
|
|
|
|
static DEFINE_SPINLOCK(bfin_spinlock_lock);
|
|
|
|
asmlinkage int sys_bfin_spinlock(int *p)
|
|
{
|
|
int ret, tmp = 0;
|
|
|
|
spin_lock(&bfin_spinlock_lock); /* This would also hold kernel preemption. */
|
|
ret = get_user(tmp, p);
|
|
if (likely(ret == 0)) {
|
|
if (unlikely(tmp))
|
|
ret = 1;
|
|
else
|
|
put_user(1, p);
|
|
}
|
|
spin_unlock(&bfin_spinlock_lock);
|
|
return ret;
|
|
}
|
|
|
|
int bfin_request_exception(unsigned int exception, void (*handler)(void))
|
|
{
|
|
void (*curr_handler)(void);
|
|
|
|
if (exception > 0x3F)
|
|
return -EINVAL;
|
|
|
|
curr_handler = ex_table[exception];
|
|
|
|
if (curr_handler != ex_replaceable)
|
|
return -EBUSY;
|
|
|
|
ex_table[exception] = handler;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(bfin_request_exception);
|
|
|
|
int bfin_free_exception(unsigned int exception, void (*handler)(void))
|
|
{
|
|
void (*curr_handler)(void);
|
|
|
|
if (exception > 0x3F)
|
|
return -EINVAL;
|
|
|
|
curr_handler = ex_table[exception];
|
|
|
|
if (curr_handler != handler)
|
|
return -EBUSY;
|
|
|
|
ex_table[exception] = ex_replaceable;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(bfin_free_exception);
|
|
|
|
void panic_cplb_error(int cplb_panic, struct pt_regs *fp)
|
|
{
|
|
switch (cplb_panic) {
|
|
case CPLB_NO_UNLOCKED:
|
|
printk(KERN_EMERG "All CPLBs are locked\n");
|
|
break;
|
|
case CPLB_PROT_VIOL:
|
|
return;
|
|
case CPLB_NO_ADDR_MATCH:
|
|
return;
|
|
case CPLB_UNKNOWN_ERR:
|
|
printk(KERN_EMERG "Unknown CPLB Exception\n");
|
|
break;
|
|
}
|
|
|
|
oops_in_progress = 1;
|
|
|
|
dump_bfin_process(fp);
|
|
dump_bfin_mem(fp);
|
|
show_regs(fp);
|
|
dump_stack();
|
|
panic("Unrecoverable event\n");
|
|
}
|