2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 07:34:06 +08:00
linux-next/drivers/net/dsa/bcm_sf2_cfp.c
Florian Fainelli 8a75f4f2ac net: dsa: bcm_sf2: Propagate ethtool::rxnfc to CPU port
Allow propagating ethtool::rxnfc programming to the CPU/management port
such that it is possible for such a CPU to perform e.g: Wake-on-LAN
using filters configured by the switch. We need a tiny bit of
cooperation between the switch drivers which is able to do the full flow
matching, whereas the CPU/management port might not. The CPU/management
driver needs to return -EOPNOTSUPP to indicate an non critical error,
any other error code otherwise.

Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-07 12:15:03 -07:00

1305 lines
33 KiB
C

/*
* Broadcom Starfighter 2 DSA switch CFP support
*
* Copyright (C) 2016, Broadcom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/list.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/in.h>
#include <linux/netdevice.h>
#include <net/dsa.h>
#include <linux/bitmap.h>
#include "bcm_sf2.h"
#include "bcm_sf2_regs.h"
struct cfp_udf_slice_layout {
u8 slices[UDFS_PER_SLICE];
u32 mask_value;
u32 base_offset;
};
struct cfp_udf_layout {
struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
};
static const u8 zero_slice[UDFS_PER_SLICE] = { };
/* UDF slices layout for a TCPv4/UDPv4 specification */
static const struct cfp_udf_layout udf_tcpip4_layout = {
.udfs = {
[1] = {
.slices = {
/* End of L2, byte offset 12, src IP[0:15] */
CFG_UDF_EOL2 | 6,
/* End of L2, byte offset 14, src IP[16:31] */
CFG_UDF_EOL2 | 7,
/* End of L2, byte offset 16, dst IP[0:15] */
CFG_UDF_EOL2 | 8,
/* End of L2, byte offset 18, dst IP[16:31] */
CFG_UDF_EOL2 | 9,
/* End of L3, byte offset 0, src port */
CFG_UDF_EOL3 | 0,
/* End of L3, byte offset 2, dst port */
CFG_UDF_EOL3 | 1,
0, 0, 0
},
.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
},
},
};
/* UDF slices layout for a TCPv6/UDPv6 specification */
static const struct cfp_udf_layout udf_tcpip6_layout = {
.udfs = {
[0] = {
.slices = {
/* End of L2, byte offset 8, src IP[0:15] */
CFG_UDF_EOL2 | 4,
/* End of L2, byte offset 10, src IP[16:31] */
CFG_UDF_EOL2 | 5,
/* End of L2, byte offset 12, src IP[32:47] */
CFG_UDF_EOL2 | 6,
/* End of L2, byte offset 14, src IP[48:63] */
CFG_UDF_EOL2 | 7,
/* End of L2, byte offset 16, src IP[64:79] */
CFG_UDF_EOL2 | 8,
/* End of L2, byte offset 18, src IP[80:95] */
CFG_UDF_EOL2 | 9,
/* End of L2, byte offset 20, src IP[96:111] */
CFG_UDF_EOL2 | 10,
/* End of L2, byte offset 22, src IP[112:127] */
CFG_UDF_EOL2 | 11,
/* End of L3, byte offset 0, src port */
CFG_UDF_EOL3 | 0,
},
.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
.base_offset = CORE_UDF_0_B_0_8_PORT_0,
},
[3] = {
.slices = {
/* End of L2, byte offset 24, dst IP[0:15] */
CFG_UDF_EOL2 | 12,
/* End of L2, byte offset 26, dst IP[16:31] */
CFG_UDF_EOL2 | 13,
/* End of L2, byte offset 28, dst IP[32:47] */
CFG_UDF_EOL2 | 14,
/* End of L2, byte offset 30, dst IP[48:63] */
CFG_UDF_EOL2 | 15,
/* End of L2, byte offset 32, dst IP[64:79] */
CFG_UDF_EOL2 | 16,
/* End of L2, byte offset 34, dst IP[80:95] */
CFG_UDF_EOL2 | 17,
/* End of L2, byte offset 36, dst IP[96:111] */
CFG_UDF_EOL2 | 18,
/* End of L2, byte offset 38, dst IP[112:127] */
CFG_UDF_EOL2 | 19,
/* End of L3, byte offset 2, dst port */
CFG_UDF_EOL3 | 1,
},
.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
.base_offset = CORE_UDF_0_D_0_11_PORT_0,
},
},
};
static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
{
unsigned int i, count = 0;
for (i = 0; i < UDFS_PER_SLICE; i++) {
if (layout[i] != 0)
count++;
}
return count;
}
static inline u32 udf_upper_bits(unsigned int num_udf)
{
return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
}
static inline u32 udf_lower_bits(unsigned int num_udf)
{
return (u8)GENMASK(num_udf - 1, 0);
}
static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
unsigned int start)
{
const struct cfp_udf_slice_layout *slice_layout;
unsigned int slice_idx;
for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
slice_layout = &l->udfs[slice_idx];
if (memcmp(slice_layout->slices, zero_slice,
sizeof(zero_slice)))
break;
}
return slice_idx;
}
static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
const struct cfp_udf_layout *layout,
unsigned int slice_num)
{
u32 offset = layout->udfs[slice_num].base_offset;
unsigned int i;
for (i = 0; i < UDFS_PER_SLICE; i++)
core_writel(priv, layout->udfs[slice_num].slices[i],
offset + i * 4);
}
static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
{
unsigned int timeout = 1000;
u32 reg;
reg = core_readl(priv, CORE_CFP_ACC);
reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
reg |= OP_STR_DONE | op;
core_writel(priv, reg, CORE_CFP_ACC);
do {
reg = core_readl(priv, CORE_CFP_ACC);
if (!(reg & OP_STR_DONE))
break;
cpu_relax();
} while (timeout--);
if (!timeout)
return -ETIMEDOUT;
return 0;
}
static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
unsigned int addr)
{
u32 reg;
WARN_ON(addr >= priv->num_cfp_rules);
reg = core_readl(priv, CORE_CFP_ACC);
reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
reg |= addr << XCESS_ADDR_SHIFT;
core_writel(priv, reg, CORE_CFP_ACC);
}
static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
{
/* Entry #0 is reserved */
return priv->num_cfp_rules - 1;
}
static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
unsigned int rule_index,
unsigned int port_num,
unsigned int queue_num,
bool fwd_map_change)
{
int ret;
u32 reg;
/* Replace ARL derived destination with DST_MAP derived, define
* which port and queue this should be forwarded to.
*/
if (fwd_map_change)
reg = CHANGE_FWRD_MAP_IB_REP_ARL |
BIT(port_num + DST_MAP_IB_SHIFT) |
CHANGE_TC | queue_num << NEW_TC_SHIFT;
else
reg = 0;
core_writel(priv, reg, CORE_ACT_POL_DATA0);
/* Set classification ID that needs to be put in Broadcom tag */
core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
core_writel(priv, 0, CORE_ACT_POL_DATA2);
/* Configure policer RAM now */
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
if (ret) {
pr_err("Policer entry at %d failed\n", rule_index);
return ret;
}
/* Disable the policer */
core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
/* Now the rate meter */
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
if (ret) {
pr_err("Meter entry at %d failed\n", rule_index);
return ret;
}
return 0;
}
static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
struct ethtool_tcpip4_spec *v4_spec,
unsigned int slice_num,
bool mask)
{
u32 reg, offset;
/* C-Tag [31:24]
* UDF_n_A8 [23:8]
* UDF_n_A7 [7:0]
*/
reg = 0;
if (mask)
offset = CORE_CFP_MASK_PORT(4);
else
offset = CORE_CFP_DATA_PORT(4);
core_writel(priv, reg, offset);
/* UDF_n_A7 [31:24]
* UDF_n_A6 [23:8]
* UDF_n_A5 [7:0]
*/
reg = be16_to_cpu(v4_spec->pdst) >> 8;
if (mask)
offset = CORE_CFP_MASK_PORT(3);
else
offset = CORE_CFP_DATA_PORT(3);
core_writel(priv, reg, offset);
/* UDF_n_A5 [31:24]
* UDF_n_A4 [23:8]
* UDF_n_A3 [7:0]
*/
reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
(u32)be16_to_cpu(v4_spec->psrc) << 8 |
(be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
if (mask)
offset = CORE_CFP_MASK_PORT(2);
else
offset = CORE_CFP_DATA_PORT(2);
core_writel(priv, reg, offset);
/* UDF_n_A3 [31:24]
* UDF_n_A2 [23:8]
* UDF_n_A1 [7:0]
*/
reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
(u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
(be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
if (mask)
offset = CORE_CFP_MASK_PORT(1);
else
offset = CORE_CFP_DATA_PORT(1);
core_writel(priv, reg, offset);
/* UDF_n_A1 [31:24]
* UDF_n_A0 [23:8]
* Reserved [7:4]
* Slice ID [3:2]
* Slice valid [1:0]
*/
reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
(u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
SLICE_NUM(slice_num) | SLICE_VALID;
if (mask)
offset = CORE_CFP_MASK_PORT(0);
else
offset = CORE_CFP_DATA_PORT(0);
core_writel(priv, reg, offset);
}
static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
unsigned int port_num,
unsigned int queue_num,
struct ethtool_rx_flow_spec *fs)
{
struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
const struct cfp_udf_layout *layout;
unsigned int slice_num, rule_index;
u8 ip_proto, ip_frag;
u8 num_udf;
u32 reg;
int ret;
switch (fs->flow_type & ~FLOW_EXT) {
case TCP_V4_FLOW:
ip_proto = IPPROTO_TCP;
v4_spec = &fs->h_u.tcp_ip4_spec;
v4_m_spec = &fs->m_u.tcp_ip4_spec;
break;
case UDP_V4_FLOW:
ip_proto = IPPROTO_UDP;
v4_spec = &fs->h_u.udp_ip4_spec;
v4_m_spec = &fs->m_u.udp_ip4_spec;
break;
default:
return -EINVAL;
}
ip_frag = be32_to_cpu(fs->m_ext.data[0]);
/* Locate the first rule available */
if (fs->location == RX_CLS_LOC_ANY)
rule_index = find_first_zero_bit(priv->cfp.used,
priv->num_cfp_rules);
else
rule_index = fs->location;
if (rule_index > bcm_sf2_cfp_rule_size(priv))
return -ENOSPC;
layout = &udf_tcpip4_layout;
/* We only use one UDF slice for now */
slice_num = bcm_sf2_get_slice_number(layout, 0);
if (slice_num == UDF_NUM_SLICES)
return -EINVAL;
num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
/* Apply the UDF layout for this filter */
bcm_sf2_cfp_udf_set(priv, layout, slice_num);
/* Apply to all packets received through this port */
core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
/* Source port map match */
core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
/* S-Tag status [31:30]
* C-Tag status [29:28]
* L2 framing [27:26]
* L3 framing [25:24]
* IP ToS [23:16]
* IP proto [15:08]
* IP Fragm [7]
* Non 1st frag [6]
* IP Authen [5]
* TTL range [4:3]
* PPPoE session [2]
* Reserved [1]
* UDF_Valid[8] [0]
*/
core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
udf_upper_bits(num_udf),
CORE_CFP_DATA_PORT(6));
/* Mask with the specific layout for IPv4 packets */
core_writel(priv, layout->udfs[slice_num].mask_value |
udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
/* UDF_Valid[7:0] [31:24]
* S-Tag [23:8]
* C-Tag [7:0]
*/
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
/* Mask all but valid UDFs */
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
/* Program the match and the mask */
bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
/* Insert into TCAM now */
bcm_sf2_cfp_rule_addr_set(priv, rule_index);
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
if (ret) {
pr_err("TCAM entry at addr %d failed\n", rule_index);
return ret;
}
/* Insert into Action and policer RAMs now */
ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
queue_num, true);
if (ret)
return ret;
/* Turn on CFP for this rule now */
reg = core_readl(priv, CORE_CFP_CTL_REG);
reg |= BIT(port);
core_writel(priv, reg, CORE_CFP_CTL_REG);
/* Flag the rule as being used and return it */
set_bit(rule_index, priv->cfp.used);
set_bit(rule_index, priv->cfp.unique);
fs->location = rule_index;
return 0;
}
static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
const __be32 *ip6_addr, const __be16 port,
unsigned int slice_num,
bool mask)
{
u32 reg, tmp, val, offset;
/* C-Tag [31:24]
* UDF_n_B8 [23:8] (port)
* UDF_n_B7 (upper) [7:0] (addr[15:8])
*/
reg = be32_to_cpu(ip6_addr[3]);
val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
if (mask)
offset = CORE_CFP_MASK_PORT(4);
else
offset = CORE_CFP_DATA_PORT(4);
core_writel(priv, val, offset);
/* UDF_n_B7 (lower) [31:24] (addr[7:0])
* UDF_n_B6 [23:8] (addr[31:16])
* UDF_n_B5 (upper) [7:0] (addr[47:40])
*/
tmp = be32_to_cpu(ip6_addr[2]);
val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
((tmp >> 8) & 0xff);
if (mask)
offset = CORE_CFP_MASK_PORT(3);
else
offset = CORE_CFP_DATA_PORT(3);
core_writel(priv, val, offset);
/* UDF_n_B5 (lower) [31:24] (addr[39:32])
* UDF_n_B4 [23:8] (addr[63:48])
* UDF_n_B3 (upper) [7:0] (addr[79:72])
*/
reg = be32_to_cpu(ip6_addr[1]);
val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
((reg >> 8) & 0xff);
if (mask)
offset = CORE_CFP_MASK_PORT(2);
else
offset = CORE_CFP_DATA_PORT(2);
core_writel(priv, val, offset);
/* UDF_n_B3 (lower) [31:24] (addr[71:64])
* UDF_n_B2 [23:8] (addr[95:80])
* UDF_n_B1 (upper) [7:0] (addr[111:104])
*/
tmp = be32_to_cpu(ip6_addr[0]);
val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
((tmp >> 8) & 0xff);
if (mask)
offset = CORE_CFP_MASK_PORT(1);
else
offset = CORE_CFP_DATA_PORT(1);
core_writel(priv, val, offset);
/* UDF_n_B1 (lower) [31:24] (addr[103:96])
* UDF_n_B0 [23:8] (addr[127:112])
* Reserved [7:4]
* Slice ID [3:2]
* Slice valid [1:0]
*/
reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
SLICE_NUM(slice_num) | SLICE_VALID;
if (mask)
offset = CORE_CFP_MASK_PORT(0);
else
offset = CORE_CFP_DATA_PORT(0);
core_writel(priv, reg, offset);
}
static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
unsigned int port_num,
unsigned int queue_num,
struct ethtool_rx_flow_spec *fs)
{
struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
unsigned int slice_num, rule_index[2];
const struct cfp_udf_layout *layout;
u8 ip_proto, ip_frag;
int ret = 0;
u8 num_udf;
u32 reg;
switch (fs->flow_type & ~FLOW_EXT) {
case TCP_V6_FLOW:
ip_proto = IPPROTO_TCP;
v6_spec = &fs->h_u.tcp_ip6_spec;
v6_m_spec = &fs->m_u.tcp_ip6_spec;
break;
case UDP_V6_FLOW:
ip_proto = IPPROTO_UDP;
v6_spec = &fs->h_u.udp_ip6_spec;
v6_m_spec = &fs->m_u.udp_ip6_spec;
break;
default:
return -EINVAL;
}
ip_frag = be32_to_cpu(fs->m_ext.data[0]);
layout = &udf_tcpip6_layout;
slice_num = bcm_sf2_get_slice_number(layout, 0);
if (slice_num == UDF_NUM_SLICES)
return -EINVAL;
num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
/* Negotiate two indexes, one for the second half which we are chained
* from, which is what we will return to user-space, and a second one
* which is used to store its first half. That first half does not
* allow any choice of placement, so it just needs to find the next
* available bit. We return the second half as fs->location because
* that helps with the rule lookup later on since the second half is
* chained from its first half, we can easily identify IPv6 CFP rules
* by looking whether they carry a CHAIN_ID.
*
* We also want the second half to have a lower rule_index than its
* first half because the HW search is by incrementing addresses.
*/
if (fs->location == RX_CLS_LOC_ANY)
rule_index[1] = find_first_zero_bit(priv->cfp.used,
priv->num_cfp_rules);
else
rule_index[1] = fs->location;
if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
return -ENOSPC;
/* Flag it as used (cleared on error path) such that we can immediately
* obtain a second one to chain from.
*/
set_bit(rule_index[1], priv->cfp.used);
rule_index[0] = find_first_zero_bit(priv->cfp.used,
priv->num_cfp_rules);
if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
ret = -ENOSPC;
goto out_err;
}
/* Apply the UDF layout for this filter */
bcm_sf2_cfp_udf_set(priv, layout, slice_num);
/* Apply to all packets received through this port */
core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
/* Source port map match */
core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
/* S-Tag status [31:30]
* C-Tag status [29:28]
* L2 framing [27:26]
* L3 framing [25:24]
* IP ToS [23:16]
* IP proto [15:08]
* IP Fragm [7]
* Non 1st frag [6]
* IP Authen [5]
* TTL range [4:3]
* PPPoE session [2]
* Reserved [1]
* UDF_Valid[8] [0]
*/
reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
/* Mask with the specific layout for IPv6 packets including
* UDF_Valid[8]
*/
reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
/* UDF_Valid[7:0] [31:24]
* S-Tag [23:8]
* C-Tag [7:0]
*/
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
/* Mask all but valid UDFs */
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
/* Slice the IPv6 source address and port */
bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
slice_num, false);
bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
SLICE_NUM_MASK, true);
/* Insert into TCAM now because we need to insert a second rule */
bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
if (ret) {
pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
goto out_err;
}
/* Insert into Action and policer RAMs now */
ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
queue_num, false);
if (ret)
goto out_err;
/* Now deal with the second slice to chain this rule */
slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
if (slice_num == UDF_NUM_SLICES) {
ret = -EINVAL;
goto out_err;
}
num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
/* Apply the UDF layout for this filter */
bcm_sf2_cfp_udf_set(priv, layout, slice_num);
/* Chained rule, source port match is coming from the rule we are
* chained from.
*/
core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
/*
* CHAIN ID [31:24] chain to previous slice
* Reserved [23:20]
* UDF_Valid[11:8] [19:16]
* UDF_Valid[7:0] [15:8]
* UDF_n_D11 [7:0]
*/
reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
udf_lower_bits(num_udf) << 8;
core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
udf_lower_bits(num_udf) << 8;
core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
/* Don't care */
core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
/* Mask all */
core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
false);
bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
SLICE_NUM_MASK, true);
/* Insert into TCAM now */
bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
if (ret) {
pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
goto out_err;
}
/* Insert into Action and policer RAMs now, set chain ID to
* the one we are chained to
*/
ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
queue_num, true);
if (ret)
goto out_err;
/* Turn on CFP for this rule now */
reg = core_readl(priv, CORE_CFP_CTL_REG);
reg |= BIT(port);
core_writel(priv, reg, CORE_CFP_CTL_REG);
/* Flag the second half rule as being used now, return it as the
* location, and flag it as unique while dumping rules
*/
set_bit(rule_index[0], priv->cfp.used);
set_bit(rule_index[1], priv->cfp.unique);
fs->location = rule_index[1];
return ret;
out_err:
clear_bit(rule_index[1], priv->cfp.used);
return ret;
}
static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
struct ethtool_rx_flow_spec *fs)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
s8 cpu_port = ds->ports[port].cpu_dp->index;
__u64 ring_cookie = fs->ring_cookie;
unsigned int queue_num, port_num;
int ret = -EINVAL;
/* Check for unsupported extensions */
if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
fs->m_ext.data[1]))
return -EINVAL;
if (fs->location != RX_CLS_LOC_ANY &&
test_bit(fs->location, priv->cfp.used))
return -EBUSY;
if (fs->location != RX_CLS_LOC_ANY &&
fs->location > bcm_sf2_cfp_rule_size(priv))
return -EINVAL;
/* This rule is a Wake-on-LAN filter and we must specifically
* target the CPU port in order for it to be working.
*/
if (ring_cookie == RX_CLS_FLOW_WAKE)
ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
/* We do not support discarding packets, check that the
* destination port is enabled and that we are within the
* number of ports supported by the switch
*/
port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
if (ring_cookie == RX_CLS_FLOW_DISC ||
!(dsa_is_user_port(ds, port_num) ||
dsa_is_cpu_port(ds, port_num)) ||
port_num >= priv->hw_params.num_ports)
return -EINVAL;
/*
* We have a small oddity where Port 6 just does not have a
* valid bit here (so we substract by one).
*/
queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
if (port_num >= 7)
port_num -= 1;
switch (fs->flow_type & ~FLOW_EXT) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
queue_num, fs);
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
queue_num, fs);
break;
default:
break;
}
return ret;
}
static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
u32 loc, u32 *next_loc)
{
int ret;
u32 reg;
/* Indicate which rule we want to read */
bcm_sf2_cfp_rule_addr_set(priv, loc);
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
if (ret)
return ret;
/* Check if this is possibly an IPv6 rule that would
* indicate we need to delete its companion rule
* as well
*/
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
if (next_loc)
*next_loc = (reg >> 24) & CHAIN_ID_MASK;
/* Clear its valid bits */
reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
reg &= ~SLICE_VALID;
core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
/* Write back this entry into the TCAM now */
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
if (ret)
return ret;
clear_bit(loc, priv->cfp.used);
clear_bit(loc, priv->cfp.unique);
return 0;
}
static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
u32 loc)
{
u32 next_loc = 0;
int ret;
/* Refuse deleting unused rules, and those that are not unique since
* that could leave IPv6 rules with one of the chained rule in the
* table.
*/
if (!test_bit(loc, priv->cfp.unique) || loc == 0)
return -EINVAL;
ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
if (ret)
return ret;
/* If this was an IPv6 rule, delete is companion rule too */
if (next_loc)
ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
return ret;
}
static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
{
unsigned int i;
for (i = 0; i < sizeof(flow->m_u); i++)
flow->m_u.hdata[i] ^= 0xff;
flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
flow->m_ext.data[0] ^= cpu_to_be32(~0);
flow->m_ext.data[1] ^= cpu_to_be32(~0);
}
static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
struct ethtool_tcpip4_spec *v4_spec,
bool mask)
{
u32 reg, offset, ipv4;
u16 src_dst_port;
if (mask)
offset = CORE_CFP_MASK_PORT(3);
else
offset = CORE_CFP_DATA_PORT(3);
reg = core_readl(priv, offset);
/* src port [15:8] */
src_dst_port = reg << 8;
if (mask)
offset = CORE_CFP_MASK_PORT(2);
else
offset = CORE_CFP_DATA_PORT(2);
reg = core_readl(priv, offset);
/* src port [7:0] */
src_dst_port |= (reg >> 24);
v4_spec->pdst = cpu_to_be16(src_dst_port);
v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
/* IPv4 dst [15:8] */
ipv4 = (reg & 0xff) << 8;
if (mask)
offset = CORE_CFP_MASK_PORT(1);
else
offset = CORE_CFP_DATA_PORT(1);
reg = core_readl(priv, offset);
/* IPv4 dst [31:16] */
ipv4 |= ((reg >> 8) & 0xffff) << 16;
/* IPv4 dst [7:0] */
ipv4 |= (reg >> 24) & 0xff;
v4_spec->ip4dst = cpu_to_be32(ipv4);
/* IPv4 src [15:8] */
ipv4 = (reg & 0xff) << 8;
if (mask)
offset = CORE_CFP_MASK_PORT(0);
else
offset = CORE_CFP_DATA_PORT(0);
reg = core_readl(priv, offset);
/* Once the TCAM is programmed, the mask reflects the slice number
* being matched, don't bother checking it when reading back the
* mask spec
*/
if (!mask && !(reg & SLICE_VALID))
return -EINVAL;
/* IPv4 src [7:0] */
ipv4 |= (reg >> 24) & 0xff;
/* IPv4 src [31:16] */
ipv4 |= ((reg >> 8) & 0xffff) << 16;
v4_spec->ip4src = cpu_to_be32(ipv4);
return 0;
}
static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
struct ethtool_rx_flow_spec *fs)
{
struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
u32 reg;
int ret;
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
case IPPROTO_TCP:
fs->flow_type = TCP_V4_FLOW;
v4_spec = &fs->h_u.tcp_ip4_spec;
v4_m_spec = &fs->m_u.tcp_ip4_spec;
break;
case IPPROTO_UDP:
fs->flow_type = UDP_V4_FLOW;
v4_spec = &fs->h_u.udp_ip4_spec;
v4_m_spec = &fs->m_u.udp_ip4_spec;
break;
default:
return -EINVAL;
}
fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
if (ret)
return ret;
return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
}
static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
__be32 *ip6_addr, __be16 *port,
bool mask)
{
u32 reg, tmp, offset;
/* C-Tag [31:24]
* UDF_n_B8 [23:8] (port)
* UDF_n_B7 (upper) [7:0] (addr[15:8])
*/
if (mask)
offset = CORE_CFP_MASK_PORT(4);
else
offset = CORE_CFP_DATA_PORT(4);
reg = core_readl(priv, offset);
*port = cpu_to_be32(reg) >> 8;
tmp = (u32)(reg & 0xff) << 8;
/* UDF_n_B7 (lower) [31:24] (addr[7:0])
* UDF_n_B6 [23:8] (addr[31:16])
* UDF_n_B5 (upper) [7:0] (addr[47:40])
*/
if (mask)
offset = CORE_CFP_MASK_PORT(3);
else
offset = CORE_CFP_DATA_PORT(3);
reg = core_readl(priv, offset);
tmp |= (reg >> 24) & 0xff;
tmp |= (u32)((reg >> 8) << 16);
ip6_addr[3] = cpu_to_be32(tmp);
tmp = (u32)(reg & 0xff) << 8;
/* UDF_n_B5 (lower) [31:24] (addr[39:32])
* UDF_n_B4 [23:8] (addr[63:48])
* UDF_n_B3 (upper) [7:0] (addr[79:72])
*/
if (mask)
offset = CORE_CFP_MASK_PORT(2);
else
offset = CORE_CFP_DATA_PORT(2);
reg = core_readl(priv, offset);
tmp |= (reg >> 24) & 0xff;
tmp |= (u32)((reg >> 8) << 16);
ip6_addr[2] = cpu_to_be32(tmp);
tmp = (u32)(reg & 0xff) << 8;
/* UDF_n_B3 (lower) [31:24] (addr[71:64])
* UDF_n_B2 [23:8] (addr[95:80])
* UDF_n_B1 (upper) [7:0] (addr[111:104])
*/
if (mask)
offset = CORE_CFP_MASK_PORT(1);
else
offset = CORE_CFP_DATA_PORT(1);
reg = core_readl(priv, offset);
tmp |= (reg >> 24) & 0xff;
tmp |= (u32)((reg >> 8) << 16);
ip6_addr[1] = cpu_to_be32(tmp);
tmp = (u32)(reg & 0xff) << 8;
/* UDF_n_B1 (lower) [31:24] (addr[103:96])
* UDF_n_B0 [23:8] (addr[127:112])
* Reserved [7:4]
* Slice ID [3:2]
* Slice valid [1:0]
*/
if (mask)
offset = CORE_CFP_MASK_PORT(0);
else
offset = CORE_CFP_DATA_PORT(0);
reg = core_readl(priv, offset);
tmp |= (reg >> 24) & 0xff;
tmp |= (u32)((reg >> 8) << 16);
ip6_addr[0] = cpu_to_be32(tmp);
if (!mask && !(reg & SLICE_VALID))
return -EINVAL;
return 0;
}
static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
struct ethtool_rx_flow_spec *fs,
u32 next_loc)
{
struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
u32 reg;
int ret;
/* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
* assuming tcp_ip6_spec here being an union.
*/
v6_spec = &fs->h_u.tcp_ip6_spec;
v6_m_spec = &fs->m_u.tcp_ip6_spec;
/* Read the second half first */
ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
false);
if (ret)
return ret;
ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
&v6_m_spec->pdst, true);
if (ret)
return ret;
/* Read last to avoid next entry clobbering the results during search
* operations. We would not have the port enabled for this rule, so
* don't bother checking it.
*/
(void)core_readl(priv, CORE_CFP_DATA_PORT(7));
/* The slice number is valid, so read the rule we are chained from now
* which is our first half.
*/
bcm_sf2_cfp_rule_addr_set(priv, next_loc);
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
if (ret)
return ret;
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
case IPPROTO_TCP:
fs->flow_type = TCP_V6_FLOW;
break;
case IPPROTO_UDP:
fs->flow_type = UDP_V6_FLOW;
break;
default:
return -EINVAL;
}
ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
false);
if (ret)
return ret;
return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
&v6_m_spec->psrc, true);
}
static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
struct ethtool_rxnfc *nfc)
{
u32 reg, ipv4_or_chain_id;
unsigned int queue_num;
int ret;
bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
if (ret)
return ret;
reg = core_readl(priv, CORE_ACT_POL_DATA0);
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
if (ret)
return ret;
/* Extract the destination port */
nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
DST_MAP_IB_MASK) - 1;
/* There is no Port 6, so we compensate for that here */
if (nfc->fs.ring_cookie >= 6)
nfc->fs.ring_cookie++;
nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
/* Extract the destination queue */
queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
nfc->fs.ring_cookie += queue_num;
/* Extract the L3_FRAMING or CHAIN_ID */
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
/* With IPv6 rules this would contain a non-zero chain ID since
* we reserve entry 0 and it cannot be used. So if we read 0 here
* this means an IPv4 rule.
*/
ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
if (ipv4_or_chain_id == 0)
ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
else
ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
ipv4_or_chain_id);
if (ret)
return ret;
/* Read last to avoid next entry clobbering the results during search
* operations
*/
reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
if (!(reg & 1 << port))
return -EINVAL;
bcm_sf2_invert_masks(&nfc->fs);
/* Put the TCAM size here */
nfc->data = bcm_sf2_cfp_rule_size(priv);
return 0;
}
/* We implement the search doing a TCAM search operation */
static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
int port, struct ethtool_rxnfc *nfc,
u32 *rule_locs)
{
unsigned int index = 1, rules_cnt = 0;
for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
rule_locs[rules_cnt] = index;
rules_cnt++;
}
/* Put the TCAM size here */
nfc->data = bcm_sf2_cfp_rule_size(priv);
nfc->rule_cnt = rules_cnt;
return 0;
}
int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
struct ethtool_rxnfc *nfc, u32 *rule_locs)
{
struct net_device *p = ds->ports[port].cpu_dp->master;
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
int ret = 0;
mutex_lock(&priv->cfp.lock);
switch (nfc->cmd) {
case ETHTOOL_GRXCLSRLCNT:
/* Subtract the default, unusable rule */
nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
priv->num_cfp_rules) - 1;
/* We support specifying rule locations */
nfc->data |= RX_CLS_LOC_SPECIAL;
break;
case ETHTOOL_GRXCLSRULE:
ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
break;
case ETHTOOL_GRXCLSRLALL:
ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
break;
default:
ret = -EOPNOTSUPP;
break;
}
mutex_unlock(&priv->cfp.lock);
if (ret)
return ret;
/* Pass up the commands to the attached master network device */
if (p->ethtool_ops->get_rxnfc) {
ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
if (ret == -EOPNOTSUPP)
ret = 0;
}
return ret;
}
int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
struct ethtool_rxnfc *nfc)
{
struct net_device *p = ds->ports[port].cpu_dp->master;
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
int ret = 0;
mutex_lock(&priv->cfp.lock);
switch (nfc->cmd) {
case ETHTOOL_SRXCLSRLINS:
ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
break;
case ETHTOOL_SRXCLSRLDEL:
ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
break;
default:
ret = -EOPNOTSUPP;
break;
}
mutex_unlock(&priv->cfp.lock);
if (ret)
return ret;
/* Pass up the commands to the attached master network device.
* This can fail, so rollback the operation if we need to.
*/
if (p->ethtool_ops->set_rxnfc) {
ret = p->ethtool_ops->set_rxnfc(p, nfc);
if (ret && ret != -EOPNOTSUPP) {
mutex_lock(&priv->cfp.lock);
bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
mutex_unlock(&priv->cfp.lock);
} else {
ret = 0;
}
}
return ret;
}
int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
{
unsigned int timeout = 1000;
u32 reg;
reg = core_readl(priv, CORE_CFP_ACC);
reg |= TCAM_RESET;
core_writel(priv, reg, CORE_CFP_ACC);
do {
reg = core_readl(priv, CORE_CFP_ACC);
if (!(reg & TCAM_RESET))
break;
cpu_relax();
} while (timeout--);
if (!timeout)
return -ETIMEDOUT;
return 0;
}