2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 14:43:54 +08:00
linux-next/arch/powerpc/boot/flatdevtree.c
Scott Wood 5adeef52cc [POWERPC] bootwrapper: Use map_string() instead of lookup_string() in ft_prop().
When adding a property, the property name should be added to the string
table if it doesn't already exist.  map_string() does that;
lookup_string() will fail instead.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-03-13 21:15:58 +11:00

895 lines
21 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright Pantelis Antoniou 2006
* Copyright (C) IBM Corporation 2006
*
* Authors: Pantelis Antoniou <pantelis@embeddedalley.com>
* Hollis Blanchard <hollisb@us.ibm.com>
* Mark A. Greer <mgreer@mvista.com>
* Paul Mackerras <paulus@samba.org>
*/
#include <string.h>
#include <stddef.h>
#include "flatdevtree.h"
#include "flatdevtree_env.h"
#define _ALIGN(x, al) (((x) + (al) - 1) & ~((al) - 1))
static char *ft_root_node(struct ft_cxt *cxt)
{
return cxt->rgn[FT_STRUCT].start;
}
/* Routines for keeping node ptrs returned by ft_find_device current */
/* First entry not used b/c it would return 0 and be taken as NULL/error */
static void *ft_get_phandle(struct ft_cxt *cxt, char *node)
{
unsigned int i;
if (!node)
return NULL;
for (i = 1; i < cxt->nodes_used; i++) /* already there? */
if (cxt->node_tbl[i] == node)
return (void *)i;
if (cxt->nodes_used < cxt->node_max) {
cxt->node_tbl[cxt->nodes_used] = node;
return (void *)cxt->nodes_used++;
}
return NULL;
}
static char *ft_node_ph2node(struct ft_cxt *cxt, const void *phandle)
{
unsigned int i = (unsigned int)phandle;
if (i < cxt->nodes_used)
return cxt->node_tbl[i];
return NULL;
}
static void ft_node_update_before(struct ft_cxt *cxt, char *addr, int shift)
{
unsigned int i;
if (shift == 0)
return;
for (i = 1; i < cxt->nodes_used; i++)
if (cxt->node_tbl[i] < addr)
cxt->node_tbl[i] += shift;
}
static void ft_node_update_after(struct ft_cxt *cxt, char *addr, int shift)
{
unsigned int i;
if (shift == 0)
return;
for (i = 1; i < cxt->nodes_used; i++)
if (cxt->node_tbl[i] >= addr)
cxt->node_tbl[i] += shift;
}
/* Struct used to return info from ft_next() */
struct ft_atom {
u32 tag;
const char *name;
void *data;
u32 size;
};
/* Set ptrs to current one's info; return addr of next one */
static char *ft_next(struct ft_cxt *cxt, char *p, struct ft_atom *ret)
{
u32 sz;
if (p >= cxt->rgn[FT_STRUCT].start + cxt->rgn[FT_STRUCT].size)
return NULL;
ret->tag = be32_to_cpu(*(u32 *) p);
p += 4;
switch (ret->tag) { /* Tag */
case OF_DT_BEGIN_NODE:
ret->name = p;
ret->data = (void *)(p - 4); /* start of node */
p += _ALIGN(strlen(p) + 1, 4);
break;
case OF_DT_PROP:
ret->size = sz = be32_to_cpu(*(u32 *) p);
ret->name = cxt->str_anchor + be32_to_cpu(*(u32 *) (p + 4));
ret->data = (void *)(p + 8);
p += 8 + _ALIGN(sz, 4);
break;
case OF_DT_END_NODE:
case OF_DT_NOP:
break;
case OF_DT_END:
default:
p = NULL;
break;
}
return p;
}
#define HDR_SIZE _ALIGN(sizeof(struct boot_param_header), 8)
#define EXPAND_INCR 1024 /* alloc this much extra when expanding */
/* See if the regions are in the standard order and non-overlapping */
static int ft_ordered(struct ft_cxt *cxt)
{
char *p = (char *)cxt->bph + HDR_SIZE;
enum ft_rgn_id r;
for (r = FT_RSVMAP; r <= FT_STRINGS; ++r) {
if (p > cxt->rgn[r].start)
return 0;
p = cxt->rgn[r].start + cxt->rgn[r].size;
}
return p <= (char *)cxt->bph + cxt->max_size;
}
/* Copy the tree to a newly-allocated region and put things in order */
static int ft_reorder(struct ft_cxt *cxt, int nextra)
{
unsigned long tot;
enum ft_rgn_id r;
char *p, *pend;
int stroff;
tot = HDR_SIZE + EXPAND_INCR;
for (r = FT_RSVMAP; r <= FT_STRINGS; ++r)
tot += cxt->rgn[r].size;
if (nextra > 0)
tot += nextra;
tot = _ALIGN(tot, 8);
if (!cxt->realloc)
return 0;
p = cxt->realloc(NULL, tot);
if (!p)
return 0;
memcpy(p, cxt->bph, sizeof(struct boot_param_header));
/* offsets get fixed up later */
cxt->bph = (struct boot_param_header *)p;
cxt->max_size = tot;
pend = p + tot;
p += HDR_SIZE;
memcpy(p, cxt->rgn[FT_RSVMAP].start, cxt->rgn[FT_RSVMAP].size);
cxt->rgn[FT_RSVMAP].start = p;
p += cxt->rgn[FT_RSVMAP].size;
memcpy(p, cxt->rgn[FT_STRUCT].start, cxt->rgn[FT_STRUCT].size);
ft_node_update_after(cxt, cxt->rgn[FT_STRUCT].start,
p - cxt->rgn[FT_STRUCT].start);
cxt->p += p - cxt->rgn[FT_STRUCT].start;
cxt->rgn[FT_STRUCT].start = p;
p = pend - cxt->rgn[FT_STRINGS].size;
memcpy(p, cxt->rgn[FT_STRINGS].start, cxt->rgn[FT_STRINGS].size);
stroff = cxt->str_anchor - cxt->rgn[FT_STRINGS].start;
cxt->rgn[FT_STRINGS].start = p;
cxt->str_anchor = p + stroff;
cxt->isordered = 1;
return 1;
}
static inline char *prev_end(struct ft_cxt *cxt, enum ft_rgn_id r)
{
if (r > FT_RSVMAP)
return cxt->rgn[r - 1].start + cxt->rgn[r - 1].size;
return (char *)cxt->bph + HDR_SIZE;
}
static inline char *next_start(struct ft_cxt *cxt, enum ft_rgn_id r)
{
if (r < FT_STRINGS)
return cxt->rgn[r + 1].start;
return (char *)cxt->bph + cxt->max_size;
}
/*
* See if we can expand region rgn by nextra bytes by using up
* free space after or before the region.
*/
static int ft_shuffle(struct ft_cxt *cxt, char **pp, enum ft_rgn_id rgn,
int nextra)
{
char *p = *pp;
char *rgn_start, *rgn_end;
rgn_start = cxt->rgn[rgn].start;
rgn_end = rgn_start + cxt->rgn[rgn].size;
if (nextra <= 0 || rgn_end + nextra <= next_start(cxt, rgn)) {
/* move following stuff */
if (p < rgn_end) {
if (nextra < 0)
memmove(p, p - nextra, rgn_end - p + nextra);
else
memmove(p + nextra, p, rgn_end - p);
if (rgn == FT_STRUCT)
ft_node_update_after(cxt, p, nextra);
}
cxt->rgn[rgn].size += nextra;
if (rgn == FT_STRINGS)
/* assumes strings only added at beginning */
cxt->str_anchor += nextra;
return 1;
}
if (prev_end(cxt, rgn) <= rgn_start - nextra) {
/* move preceding stuff */
if (p > rgn_start) {
memmove(rgn_start - nextra, rgn_start, p - rgn_start);
if (rgn == FT_STRUCT)
ft_node_update_before(cxt, p, -nextra);
}
*pp -= nextra;
cxt->rgn[rgn].start -= nextra;
cxt->rgn[rgn].size += nextra;
return 1;
}
return 0;
}
static int ft_make_space(struct ft_cxt *cxt, char **pp, enum ft_rgn_id rgn,
int nextra)
{
unsigned long size, ssize, tot;
char *str, *next;
enum ft_rgn_id r;
if (!cxt->isordered) {
unsigned long rgn_off = *pp - cxt->rgn[rgn].start;
if (!ft_reorder(cxt, nextra))
return 0;
*pp = cxt->rgn[rgn].start + rgn_off;
}
if (ft_shuffle(cxt, pp, rgn, nextra))
return 1;
/* See if there is space after the strings section */
ssize = cxt->rgn[FT_STRINGS].size;
if (cxt->rgn[FT_STRINGS].start + ssize
< (char *)cxt->bph + cxt->max_size) {
/* move strings up as far as possible */
str = (char *)cxt->bph + cxt->max_size - ssize;
cxt->str_anchor += str - cxt->rgn[FT_STRINGS].start;
memmove(str, cxt->rgn[FT_STRINGS].start, ssize);
cxt->rgn[FT_STRINGS].start = str;
/* enough space now? */
if (rgn >= FT_STRUCT && ft_shuffle(cxt, pp, rgn, nextra))
return 1;
}
/* how much total free space is there following this region? */
tot = 0;
for (r = rgn; r < FT_STRINGS; ++r) {
char *r_end = cxt->rgn[r].start + cxt->rgn[r].size;
tot += next_start(cxt, rgn) - r_end;
}
/* cast is to shut gcc up; we know nextra >= 0 */
if (tot < (unsigned int)nextra) {
/* have to reallocate */
char *newp, *new_start;
int shift;
if (!cxt->realloc)
return 0;
size = _ALIGN(cxt->max_size + (nextra - tot) + EXPAND_INCR, 8);
newp = cxt->realloc(cxt->bph, size);
if (!newp)
return 0;
cxt->max_size = size;
shift = newp - (char *)cxt->bph;
if (shift) { /* realloc can return same addr */
cxt->bph = (struct boot_param_header *)newp;
ft_node_update_after(cxt, cxt->rgn[FT_STRUCT].start,
shift);
for (r = FT_RSVMAP; r <= FT_STRINGS; ++r) {
new_start = cxt->rgn[r].start + shift;
cxt->rgn[r].start = new_start;
}
*pp += shift;
cxt->str_anchor += shift;
}
/* move strings up to the end */
str = newp + size - ssize;
cxt->str_anchor += str - cxt->rgn[FT_STRINGS].start;
memmove(str, cxt->rgn[FT_STRINGS].start, ssize);
cxt->rgn[FT_STRINGS].start = str;
if (ft_shuffle(cxt, pp, rgn, nextra))
return 1;
}
/* must be FT_RSVMAP and we need to move FT_STRUCT up */
if (rgn == FT_RSVMAP) {
next = cxt->rgn[FT_RSVMAP].start + cxt->rgn[FT_RSVMAP].size
+ nextra;
ssize = cxt->rgn[FT_STRUCT].size;
if (next + ssize >= cxt->rgn[FT_STRINGS].start)
return 0; /* "can't happen" */
memmove(next, cxt->rgn[FT_STRUCT].start, ssize);
ft_node_update_after(cxt, cxt->rgn[FT_STRUCT].start, nextra);
cxt->rgn[FT_STRUCT].start = next;
if (ft_shuffle(cxt, pp, rgn, nextra))
return 1;
}
return 0; /* "can't happen" */
}
static void ft_put_word(struct ft_cxt *cxt, u32 v)
{
*(u32 *) cxt->p = cpu_to_be32(v);
cxt->p += 4;
}
static void ft_put_bin(struct ft_cxt *cxt, const void *data, unsigned int sz)
{
unsigned long sza = _ALIGN(sz, 4);
/* zero out the alignment gap if necessary */
if (sz < sza)
*(u32 *) (cxt->p + sza - 4) = 0;
/* copy in the data */
memcpy(cxt->p, data, sz);
cxt->p += sza;
}
int ft_begin_node(struct ft_cxt *cxt, const char *name)
{
unsigned long nlen = strlen(name) + 1;
unsigned long len = 8 + _ALIGN(nlen, 4);
if (!ft_make_space(cxt, &cxt->p, FT_STRUCT, len))
return -1;
ft_put_word(cxt, OF_DT_BEGIN_NODE);
ft_put_bin(cxt, name, strlen(name) + 1);
return 0;
}
void ft_end_node(struct ft_cxt *cxt)
{
ft_put_word(cxt, OF_DT_END_NODE);
}
void ft_nop(struct ft_cxt *cxt)
{
if (ft_make_space(cxt, &cxt->p, FT_STRUCT, 4))
ft_put_word(cxt, OF_DT_NOP);
}
#define NO_STRING 0x7fffffff
static int lookup_string(struct ft_cxt *cxt, const char *name)
{
char *p, *end;
p = cxt->rgn[FT_STRINGS].start;
end = p + cxt->rgn[FT_STRINGS].size;
while (p < end) {
if (strcmp(p, (char *)name) == 0)
return p - cxt->str_anchor;
p += strlen(p) + 1;
}
return NO_STRING;
}
/* lookup string and insert if not found */
static int map_string(struct ft_cxt *cxt, const char *name)
{
int off;
char *p;
off = lookup_string(cxt, name);
if (off != NO_STRING)
return off;
p = cxt->rgn[FT_STRINGS].start;
if (!ft_make_space(cxt, &p, FT_STRINGS, strlen(name) + 1))
return NO_STRING;
strcpy(p, name);
return p - cxt->str_anchor;
}
int ft_prop(struct ft_cxt *cxt, const char *name, const void *data,
unsigned int sz)
{
int off, len;
off = map_string(cxt, name);
if (off == NO_STRING)
return -1;
len = 12 + _ALIGN(sz, 4);
if (!ft_make_space(cxt, &cxt->p, FT_STRUCT, len))
return -1;
ft_put_word(cxt, OF_DT_PROP);
ft_put_word(cxt, sz);
ft_put_word(cxt, off);
ft_put_bin(cxt, data, sz);
return 0;
}
int ft_prop_str(struct ft_cxt *cxt, const char *name, const char *str)
{
return ft_prop(cxt, name, str, strlen(str) + 1);
}
int ft_prop_int(struct ft_cxt *cxt, const char *name, unsigned int val)
{
u32 v = cpu_to_be32((u32) val);
return ft_prop(cxt, name, &v, 4);
}
/* Calculate the size of the reserved map */
static unsigned long rsvmap_size(struct ft_cxt *cxt)
{
struct ft_reserve *res;
res = (struct ft_reserve *)cxt->rgn[FT_RSVMAP].start;
while (res->start || res->len)
++res;
return (char *)(res + 1) - cxt->rgn[FT_RSVMAP].start;
}
/* Calculate the size of the struct region by stepping through it */
static unsigned long struct_size(struct ft_cxt *cxt)
{
char *p = cxt->rgn[FT_STRUCT].start;
char *next;
struct ft_atom atom;
/* make check in ft_next happy */
if (cxt->rgn[FT_STRUCT].size == 0)
cxt->rgn[FT_STRUCT].size = 0xfffffffful - (unsigned long)p;
while ((next = ft_next(cxt, p, &atom)) != NULL)
p = next;
return p + 4 - cxt->rgn[FT_STRUCT].start;
}
/* add `adj' on to all string offset values in the struct area */
static void adjust_string_offsets(struct ft_cxt *cxt, int adj)
{
char *p = cxt->rgn[FT_STRUCT].start;
char *next;
struct ft_atom atom;
int off;
while ((next = ft_next(cxt, p, &atom)) != NULL) {
if (atom.tag == OF_DT_PROP) {
off = be32_to_cpu(*(u32 *) (p + 8));
*(u32 *) (p + 8) = cpu_to_be32(off + adj);
}
p = next;
}
}
/* start construction of the flat OF tree from scratch */
void ft_begin(struct ft_cxt *cxt, void *blob, unsigned int max_size,
void *(*realloc_fn) (void *, unsigned long))
{
struct boot_param_header *bph = blob;
char *p;
struct ft_reserve *pres;
/* clear the cxt */
memset(cxt, 0, sizeof(*cxt));
cxt->bph = bph;
cxt->max_size = max_size;
cxt->realloc = realloc_fn;
cxt->isordered = 1;
/* zero everything in the header area */
memset(bph, 0, sizeof(*bph));
bph->magic = cpu_to_be32(OF_DT_HEADER);
bph->version = cpu_to_be32(0x10);
bph->last_comp_version = cpu_to_be32(0x10);
/* start pointers */
cxt->rgn[FT_RSVMAP].start = p = blob + HDR_SIZE;
cxt->rgn[FT_RSVMAP].size = sizeof(struct ft_reserve);
pres = (struct ft_reserve *)p;
cxt->rgn[FT_STRUCT].start = p += sizeof(struct ft_reserve);
cxt->rgn[FT_STRUCT].size = 4;
cxt->rgn[FT_STRINGS].start = blob + max_size;
cxt->rgn[FT_STRINGS].size = 0;
/* init rsvmap and struct */
pres->start = 0;
pres->len = 0;
*(u32 *) p = cpu_to_be32(OF_DT_END);
cxt->str_anchor = blob;
}
/* open up an existing blob to be examined or modified */
int ft_open(struct ft_cxt *cxt, void *blob, unsigned int max_size,
unsigned int max_find_device,
void *(*realloc_fn) (void *, unsigned long))
{
struct boot_param_header *bph = blob;
/* can't cope with version < 16 */
if (be32_to_cpu(bph->version) < 16)
return -1;
/* clear the cxt */
memset(cxt, 0, sizeof(*cxt));
/* alloc node_tbl to track node ptrs returned by ft_find_device */
++max_find_device;
cxt->node_tbl = realloc_fn(NULL, max_find_device * sizeof(char *));
if (!cxt->node_tbl)
return -1;
memset(cxt->node_tbl, 0, max_find_device * sizeof(char *));
cxt->node_max = max_find_device;
cxt->nodes_used = 1; /* don't use idx 0 b/c looks like NULL */
cxt->bph = bph;
cxt->max_size = max_size;
cxt->realloc = realloc_fn;
cxt->rgn[FT_RSVMAP].start = blob + be32_to_cpu(bph->off_mem_rsvmap);
cxt->rgn[FT_RSVMAP].size = rsvmap_size(cxt);
cxt->rgn[FT_STRUCT].start = blob + be32_to_cpu(bph->off_dt_struct);
cxt->rgn[FT_STRUCT].size = struct_size(cxt);
cxt->rgn[FT_STRINGS].start = blob + be32_to_cpu(bph->off_dt_strings);
cxt->rgn[FT_STRINGS].size = be32_to_cpu(bph->dt_strings_size);
/* Leave as '0' to force first ft_make_space call to do a ft_reorder
* and move dt to an area allocated by realloc.
cxt->isordered = ft_ordered(cxt);
*/
cxt->p = cxt->rgn[FT_STRUCT].start;
cxt->str_anchor = cxt->rgn[FT_STRINGS].start;
return 0;
}
/* add a reserver physical area to the rsvmap */
int ft_add_rsvmap(struct ft_cxt *cxt, u64 physaddr, u64 size)
{
char *p;
struct ft_reserve *pres;
p = cxt->rgn[FT_RSVMAP].start + cxt->rgn[FT_RSVMAP].size
- sizeof(struct ft_reserve);
if (!ft_make_space(cxt, &p, FT_RSVMAP, sizeof(struct ft_reserve)))
return -1;
pres = (struct ft_reserve *)p;
pres->start = cpu_to_be64(physaddr);
pres->len = cpu_to_be64(size);
return 0;
}
void ft_begin_tree(struct ft_cxt *cxt)
{
cxt->p = ft_root_node(cxt);
}
void ft_end_tree(struct ft_cxt *cxt)
{
struct boot_param_header *bph = cxt->bph;
char *p, *oldstr, *str, *endp;
unsigned long ssize;
int adj;
if (!cxt->isordered)
return; /* we haven't touched anything */
/* adjust string offsets */
oldstr = cxt->rgn[FT_STRINGS].start;
adj = cxt->str_anchor - oldstr;
if (adj)
adjust_string_offsets(cxt, adj);
/* make strings end on 8-byte boundary */
ssize = cxt->rgn[FT_STRINGS].size;
endp = (char *)_ALIGN((unsigned long)cxt->rgn[FT_STRUCT].start
+ cxt->rgn[FT_STRUCT].size + ssize, 8);
str = endp - ssize;
/* move strings down to end of structs */
memmove(str, oldstr, ssize);
cxt->str_anchor = str;
cxt->rgn[FT_STRINGS].start = str;
/* fill in header fields */
p = (char *)bph;
bph->totalsize = cpu_to_be32(endp - p);
bph->off_mem_rsvmap = cpu_to_be32(cxt->rgn[FT_RSVMAP].start - p);
bph->off_dt_struct = cpu_to_be32(cxt->rgn[FT_STRUCT].start - p);
bph->off_dt_strings = cpu_to_be32(cxt->rgn[FT_STRINGS].start - p);
bph->dt_strings_size = cpu_to_be32(ssize);
}
void *ft_find_device(struct ft_cxt *cxt, const char *srch_path)
{
char *node;
/* require absolute path */
if (srch_path[0] != '/')
return NULL;
node = ft_find_descendent(cxt, ft_root_node(cxt), srch_path);
return ft_get_phandle(cxt, node);
}
void *ft_find_descendent(struct ft_cxt *cxt, void *top, const char *srch_path)
{
struct ft_atom atom;
char *p;
const char *cp, *q;
int cl;
int depth = -1;
int dmatch = 0;
const char *path_comp[FT_MAX_DEPTH];
cp = srch_path;
cl = 0;
p = top;
while ((p = ft_next(cxt, p, &atom)) != NULL) {
switch (atom.tag) {
case OF_DT_BEGIN_NODE:
++depth;
if (depth != dmatch)
break;
cxt->genealogy[depth] = atom.data;
cxt->genealogy[depth + 1] = NULL;
if (depth && !(strncmp(atom.name, cp, cl) == 0
&& (atom.name[cl] == '/'
|| atom.name[cl] == '\0'
|| atom.name[cl] == '@')))
break;
path_comp[dmatch] = cp;
/* it matches so far, advance to next path component */
cp += cl;
/* skip slashes */
while (*cp == '/')
++cp;
/* we're done if this is the end of the string */
if (*cp == 0)
return atom.data;
/* look for end of this component */
q = strchr(cp, '/');
if (q)
cl = q - cp;
else
cl = strlen(cp);
++dmatch;
break;
case OF_DT_END_NODE:
if (depth == 0)
return NULL;
if (dmatch > depth) {
--dmatch;
cl = cp - path_comp[dmatch] - 1;
cp = path_comp[dmatch];
while (cl > 0 && cp[cl - 1] == '/')
--cl;
}
--depth;
break;
}
}
return NULL;
}
void *ft_get_parent(struct ft_cxt *cxt, const void *phandle)
{
void *node;
int d;
struct ft_atom atom;
char *p;
node = ft_node_ph2node(cxt, phandle);
if (node == NULL)
return NULL;
for (d = 0; cxt->genealogy[d] != NULL; ++d)
if (cxt->genealogy[d] == node)
return cxt->genealogy[d > 0 ? d - 1 : 0];
/* have to do it the hard way... */
p = ft_root_node(cxt);
d = 0;
while ((p = ft_next(cxt, p, &atom)) != NULL) {
switch (atom.tag) {
case OF_DT_BEGIN_NODE:
cxt->genealogy[d] = atom.data;
if (node == atom.data) {
/* found it */
cxt->genealogy[d + 1] = NULL;
return d > 0 ? cxt->genealogy[d - 1] : node;
}
++d;
break;
case OF_DT_END_NODE:
--d;
break;
}
}
return NULL;
}
int ft_get_prop(struct ft_cxt *cxt, const void *phandle, const char *propname,
void *buf, const unsigned int buflen)
{
struct ft_atom atom;
void *node;
char *p;
int depth;
unsigned int size;
node = ft_node_ph2node(cxt, phandle);
if (node == NULL)
return -1;
depth = 0;
p = (char *)node;
while ((p = ft_next(cxt, p, &atom)) != NULL) {
switch (atom.tag) {
case OF_DT_BEGIN_NODE:
++depth;
break;
case OF_DT_PROP:
if ((depth != 1) || strcmp(atom.name, propname))
break;
size = min(atom.size, buflen);
memcpy(buf, atom.data, size);
return atom.size;
case OF_DT_END_NODE:
if (--depth <= 0)
return -1;
}
}
return -1;
}
int ft_set_prop(struct ft_cxt *cxt, const void *phandle, const char *propname,
const void *buf, const unsigned int buflen)
{
struct ft_atom atom;
void *node;
char *p, *next;
int nextra, depth;
node = ft_node_ph2node(cxt, phandle);
if (node == NULL)
return -1;
depth = 0;
p = node;
while ((next = ft_next(cxt, p, &atom)) != NULL) {
switch (atom.tag) {
case OF_DT_BEGIN_NODE:
++depth;
break;
case OF_DT_END_NODE:
if (--depth > 0)
break;
/* haven't found the property, insert here */
cxt->p = p;
return ft_prop(cxt, propname, buf, buflen);
case OF_DT_PROP:
if ((depth != 1) || strcmp(atom.name, propname))
break;
/* found an existing property, overwrite it */
nextra = _ALIGN(buflen, 4) - _ALIGN(atom.size, 4);
cxt->p = atom.data;
if (nextra && !ft_make_space(cxt, &cxt->p, FT_STRUCT,
nextra))
return -1;
*(u32 *) (cxt->p - 8) = cpu_to_be32(buflen);
ft_put_bin(cxt, buf, buflen);
return 0;
}
p = next;
}
return -1;
}
int ft_del_prop(struct ft_cxt *cxt, const void *phandle, const char *propname)
{
struct ft_atom atom;
void *node;
char *p, *next;
int size;
node = ft_node_ph2node(cxt, phandle);
if (node == NULL)
return -1;
p = node;
while ((next = ft_next(cxt, p, &atom)) != NULL) {
switch (atom.tag) {
case OF_DT_BEGIN_NODE:
case OF_DT_END_NODE:
return -1;
case OF_DT_PROP:
if (strcmp(atom.name, propname))
break;
/* found the property, remove it */
size = 12 + -_ALIGN(atom.size, 4);
cxt->p = p;
if (!ft_make_space(cxt, &cxt->p, FT_STRUCT, -size))
return -1;
return 0;
}
p = next;
}
return -1;
}
void *ft_create_node(struct ft_cxt *cxt, const void *parent, const char *path)
{
struct ft_atom atom;
char *p, *next;
int depth = 0;
p = ft_root_node(cxt);
while ((next = ft_next(cxt, p, &atom)) != NULL) {
switch (atom.tag) {
case OF_DT_BEGIN_NODE:
++depth;
if (depth == 1 && strcmp(atom.name, path) == 0)
/* duplicate node path, return error */
return NULL;
break;
case OF_DT_END_NODE:
--depth;
if (depth > 0)
break;
/* end of node, insert here */
cxt->p = p;
ft_begin_node(cxt, path);
ft_end_node(cxt);
return p;
}
p = next;
}
return NULL;
}