2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-14 00:24:15 +08:00
linux-next/include/linux/pagemap.h
Darrick J. Wong 1d1d1a7672 mm: only enforce stable page writes if the backing device requires it
Create a helper function to check if a backing device requires stable
page writes and, if so, performs the necessary wait.  Then, make it so
that all points in the memory manager that handle making pages writable
use the helper function.  This should provide stable page write support
to most filesystems, while eliminating unnecessary waiting for devices
that don't require the feature.

Before this patchset, all filesystems would block, regardless of whether
or not it was necessary.  ext3 would wait, but still generate occasional
checksum errors.  The network filesystems were left to do their own
thing, so they'd wait too.

After this patchset, all the disk filesystems except ext3 and btrfs will
wait only if the hardware requires it.  ext3 (if necessary) snapshots
pages instead of blocking, and btrfs provides its own bdi so the mm will
never wait.  Network filesystems haven't been touched, so either they
provide their own stable page guarantees or they don't block at all.
The blocking behavior is back to what it was before 3.0 if you don't
have a disk requiring stable page writes.

Here's the result of using dbench to test latency on ext2:

3.8.0-rc3:
 Operation      Count    AvgLat    MaxLat
 ----------------------------------------
 WriteX        109347     0.028    59.817
 ReadX         347180     0.004     3.391
 Flush          15514    29.828   287.283

Throughput 57.429 MB/sec  4 clients  4 procs  max_latency=287.290 ms

3.8.0-rc3 + patches:
 WriteX        105556     0.029     4.273
 ReadX         335004     0.005     4.112
 Flush          14982    30.540   298.634

Throughput 55.4496 MB/sec  4 clients  4 procs  max_latency=298.650 ms

As you can see, the maximum write latency drops considerably with this
patch enabled.  The other filesystems (ext3/ext4/xfs/btrfs) behave
similarly, but see the cover letter for those results.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Artem Bityutskiy <dedekind1@gmail.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Ron Minnich <rminnich@sandia.gov>
Cc: Latchesar Ionkov <lucho@ionkov.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-21 17:22:19 -08:00

562 lines
16 KiB
C

#ifndef _LINUX_PAGEMAP_H
#define _LINUX_PAGEMAP_H
/*
* Copyright 1995 Linus Torvalds
*/
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/compiler.h>
#include <asm/uaccess.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/hardirq.h> /* for in_interrupt() */
#include <linux/hugetlb_inline.h>
/*
* Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
* allocation mode flags.
*/
enum mapping_flags {
AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
AS_BALLOON_MAP = __GFP_BITS_SHIFT + 4, /* balloon page special map */
};
static inline void mapping_set_error(struct address_space *mapping, int error)
{
if (unlikely(error)) {
if (error == -ENOSPC)
set_bit(AS_ENOSPC, &mapping->flags);
else
set_bit(AS_EIO, &mapping->flags);
}
}
static inline void mapping_set_unevictable(struct address_space *mapping)
{
set_bit(AS_UNEVICTABLE, &mapping->flags);
}
static inline void mapping_clear_unevictable(struct address_space *mapping)
{
clear_bit(AS_UNEVICTABLE, &mapping->flags);
}
static inline int mapping_unevictable(struct address_space *mapping)
{
if (mapping)
return test_bit(AS_UNEVICTABLE, &mapping->flags);
return !!mapping;
}
static inline void mapping_set_balloon(struct address_space *mapping)
{
set_bit(AS_BALLOON_MAP, &mapping->flags);
}
static inline void mapping_clear_balloon(struct address_space *mapping)
{
clear_bit(AS_BALLOON_MAP, &mapping->flags);
}
static inline int mapping_balloon(struct address_space *mapping)
{
return mapping && test_bit(AS_BALLOON_MAP, &mapping->flags);
}
static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
{
return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
}
/*
* This is non-atomic. Only to be used before the mapping is activated.
* Probably needs a barrier...
*/
static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
{
m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
(__force unsigned long)mask;
}
/*
* The page cache can done in larger chunks than
* one page, because it allows for more efficient
* throughput (it can then be mapped into user
* space in smaller chunks for same flexibility).
*
* Or rather, it _will_ be done in larger chunks.
*/
#define PAGE_CACHE_SHIFT PAGE_SHIFT
#define PAGE_CACHE_SIZE PAGE_SIZE
#define PAGE_CACHE_MASK PAGE_MASK
#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
#define page_cache_get(page) get_page(page)
#define page_cache_release(page) put_page(page)
void release_pages(struct page **pages, int nr, int cold);
/*
* speculatively take a reference to a page.
* If the page is free (_count == 0), then _count is untouched, and 0
* is returned. Otherwise, _count is incremented by 1 and 1 is returned.
*
* This function must be called inside the same rcu_read_lock() section as has
* been used to lookup the page in the pagecache radix-tree (or page table):
* this allows allocators to use a synchronize_rcu() to stabilize _count.
*
* Unless an RCU grace period has passed, the count of all pages coming out
* of the allocator must be considered unstable. page_count may return higher
* than expected, and put_page must be able to do the right thing when the
* page has been finished with, no matter what it is subsequently allocated
* for (because put_page is what is used here to drop an invalid speculative
* reference).
*
* This is the interesting part of the lockless pagecache (and lockless
* get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
* has the following pattern:
* 1. find page in radix tree
* 2. conditionally increment refcount
* 3. check the page is still in pagecache (if no, goto 1)
*
* Remove-side that cares about stability of _count (eg. reclaim) has the
* following (with tree_lock held for write):
* A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
* B. remove page from pagecache
* C. free the page
*
* There are 2 critical interleavings that matter:
* - 2 runs before A: in this case, A sees elevated refcount and bails out
* - A runs before 2: in this case, 2 sees zero refcount and retries;
* subsequently, B will complete and 1 will find no page, causing the
* lookup to return NULL.
*
* It is possible that between 1 and 2, the page is removed then the exact same
* page is inserted into the same position in pagecache. That's OK: the
* old find_get_page using tree_lock could equally have run before or after
* such a re-insertion, depending on order that locks are granted.
*
* Lookups racing against pagecache insertion isn't a big problem: either 1
* will find the page or it will not. Likewise, the old find_get_page could run
* either before the insertion or afterwards, depending on timing.
*/
static inline int page_cache_get_speculative(struct page *page)
{
VM_BUG_ON(in_interrupt());
#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
# ifdef CONFIG_PREEMPT_COUNT
VM_BUG_ON(!in_atomic());
# endif
/*
* Preempt must be disabled here - we rely on rcu_read_lock doing
* this for us.
*
* Pagecache won't be truncated from interrupt context, so if we have
* found a page in the radix tree here, we have pinned its refcount by
* disabling preempt, and hence no need for the "speculative get" that
* SMP requires.
*/
VM_BUG_ON(page_count(page) == 0);
atomic_inc(&page->_count);
#else
if (unlikely(!get_page_unless_zero(page))) {
/*
* Either the page has been freed, or will be freed.
* In either case, retry here and the caller should
* do the right thing (see comments above).
*/
return 0;
}
#endif
VM_BUG_ON(PageTail(page));
return 1;
}
/*
* Same as above, but add instead of inc (could just be merged)
*/
static inline int page_cache_add_speculative(struct page *page, int count)
{
VM_BUG_ON(in_interrupt());
#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
# ifdef CONFIG_PREEMPT_COUNT
VM_BUG_ON(!in_atomic());
# endif
VM_BUG_ON(page_count(page) == 0);
atomic_add(count, &page->_count);
#else
if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
return 0;
#endif
VM_BUG_ON(PageCompound(page) && page != compound_head(page));
return 1;
}
static inline int page_freeze_refs(struct page *page, int count)
{
return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
}
static inline void page_unfreeze_refs(struct page *page, int count)
{
VM_BUG_ON(page_count(page) != 0);
VM_BUG_ON(count == 0);
atomic_set(&page->_count, count);
}
#ifdef CONFIG_NUMA
extern struct page *__page_cache_alloc(gfp_t gfp);
#else
static inline struct page *__page_cache_alloc(gfp_t gfp)
{
return alloc_pages(gfp, 0);
}
#endif
static inline struct page *page_cache_alloc(struct address_space *x)
{
return __page_cache_alloc(mapping_gfp_mask(x));
}
static inline struct page *page_cache_alloc_cold(struct address_space *x)
{
return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
}
static inline struct page *page_cache_alloc_readahead(struct address_space *x)
{
return __page_cache_alloc(mapping_gfp_mask(x) |
__GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
}
typedef int filler_t(void *, struct page *);
extern struct page * find_get_page(struct address_space *mapping,
pgoff_t index);
extern struct page * find_lock_page(struct address_space *mapping,
pgoff_t index);
extern struct page * find_or_create_page(struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
int tag, unsigned int nr_pages, struct page **pages);
struct page *grab_cache_page_write_begin(struct address_space *mapping,
pgoff_t index, unsigned flags);
/*
* Returns locked page at given index in given cache, creating it if needed.
*/
static inline struct page *grab_cache_page(struct address_space *mapping,
pgoff_t index)
{
return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
}
extern struct page * grab_cache_page_nowait(struct address_space *mapping,
pgoff_t index);
extern struct page * read_cache_page_async(struct address_space *mapping,
pgoff_t index, filler_t *filler, void *data);
extern struct page * read_cache_page(struct address_space *mapping,
pgoff_t index, filler_t *filler, void *data);
extern struct page * read_cache_page_gfp(struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
extern int read_cache_pages(struct address_space *mapping,
struct list_head *pages, filler_t *filler, void *data);
static inline struct page *read_mapping_page_async(
struct address_space *mapping,
pgoff_t index, void *data)
{
filler_t *filler = (filler_t *)mapping->a_ops->readpage;
return read_cache_page_async(mapping, index, filler, data);
}
static inline struct page *read_mapping_page(struct address_space *mapping,
pgoff_t index, void *data)
{
filler_t *filler = (filler_t *)mapping->a_ops->readpage;
return read_cache_page(mapping, index, filler, data);
}
/*
* Return byte-offset into filesystem object for page.
*/
static inline loff_t page_offset(struct page *page)
{
return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
}
static inline loff_t page_file_offset(struct page *page)
{
return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
}
extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
unsigned long address);
static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
unsigned long address)
{
pgoff_t pgoff;
if (unlikely(is_vm_hugetlb_page(vma)))
return linear_hugepage_index(vma, address);
pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
pgoff += vma->vm_pgoff;
return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
}
extern void __lock_page(struct page *page);
extern int __lock_page_killable(struct page *page);
extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
unsigned int flags);
extern void unlock_page(struct page *page);
static inline void __set_page_locked(struct page *page)
{
__set_bit(PG_locked, &page->flags);
}
static inline void __clear_page_locked(struct page *page)
{
__clear_bit(PG_locked, &page->flags);
}
static inline int trylock_page(struct page *page)
{
return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
}
/*
* lock_page may only be called if we have the page's inode pinned.
*/
static inline void lock_page(struct page *page)
{
might_sleep();
if (!trylock_page(page))
__lock_page(page);
}
/*
* lock_page_killable is like lock_page but can be interrupted by fatal
* signals. It returns 0 if it locked the page and -EINTR if it was
* killed while waiting.
*/
static inline int lock_page_killable(struct page *page)
{
might_sleep();
if (!trylock_page(page))
return __lock_page_killable(page);
return 0;
}
/*
* lock_page_or_retry - Lock the page, unless this would block and the
* caller indicated that it can handle a retry.
*/
static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
unsigned int flags)
{
might_sleep();
return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
}
/*
* This is exported only for wait_on_page_locked/wait_on_page_writeback.
* Never use this directly!
*/
extern void wait_on_page_bit(struct page *page, int bit_nr);
extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
static inline int wait_on_page_locked_killable(struct page *page)
{
if (PageLocked(page))
return wait_on_page_bit_killable(page, PG_locked);
return 0;
}
/*
* Wait for a page to be unlocked.
*
* This must be called with the caller "holding" the page,
* ie with increased "page->count" so that the page won't
* go away during the wait..
*/
static inline void wait_on_page_locked(struct page *page)
{
if (PageLocked(page))
wait_on_page_bit(page, PG_locked);
}
/*
* Wait for a page to complete writeback
*/
static inline void wait_on_page_writeback(struct page *page)
{
if (PageWriteback(page))
wait_on_page_bit(page, PG_writeback);
}
extern void end_page_writeback(struct page *page);
void wait_for_stable_page(struct page *page);
/*
* Add an arbitrary waiter to a page's wait queue
*/
extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
/*
* Fault a userspace page into pagetables. Return non-zero on a fault.
*
* This assumes that two userspace pages are always sufficient. That's
* not true if PAGE_CACHE_SIZE > PAGE_SIZE.
*/
static inline int fault_in_pages_writeable(char __user *uaddr, int size)
{
int ret;
if (unlikely(size == 0))
return 0;
/*
* Writing zeroes into userspace here is OK, because we know that if
* the zero gets there, we'll be overwriting it.
*/
ret = __put_user(0, uaddr);
if (ret == 0) {
char __user *end = uaddr + size - 1;
/*
* If the page was already mapped, this will get a cache miss
* for sure, so try to avoid doing it.
*/
if (((unsigned long)uaddr & PAGE_MASK) !=
((unsigned long)end & PAGE_MASK))
ret = __put_user(0, end);
}
return ret;
}
static inline int fault_in_pages_readable(const char __user *uaddr, int size)
{
volatile char c;
int ret;
if (unlikely(size == 0))
return 0;
ret = __get_user(c, uaddr);
if (ret == 0) {
const char __user *end = uaddr + size - 1;
if (((unsigned long)uaddr & PAGE_MASK) !=
((unsigned long)end & PAGE_MASK)) {
ret = __get_user(c, end);
(void)c;
}
}
return ret;
}
/*
* Multipage variants of the above prefault helpers, useful if more than
* PAGE_SIZE of data needs to be prefaulted. These are separate from the above
* functions (which only handle up to PAGE_SIZE) to avoid clobbering the
* filemap.c hotpaths.
*/
static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
{
int ret = 0;
char __user *end = uaddr + size - 1;
if (unlikely(size == 0))
return ret;
/*
* Writing zeroes into userspace here is OK, because we know that if
* the zero gets there, we'll be overwriting it.
*/
while (uaddr <= end) {
ret = __put_user(0, uaddr);
if (ret != 0)
return ret;
uaddr += PAGE_SIZE;
}
/* Check whether the range spilled into the next page. */
if (((unsigned long)uaddr & PAGE_MASK) ==
((unsigned long)end & PAGE_MASK))
ret = __put_user(0, end);
return ret;
}
static inline int fault_in_multipages_readable(const char __user *uaddr,
int size)
{
volatile char c;
int ret = 0;
const char __user *end = uaddr + size - 1;
if (unlikely(size == 0))
return ret;
while (uaddr <= end) {
ret = __get_user(c, uaddr);
if (ret != 0)
return ret;
uaddr += PAGE_SIZE;
}
/* Check whether the range spilled into the next page. */
if (((unsigned long)uaddr & PAGE_MASK) ==
((unsigned long)end & PAGE_MASK)) {
ret = __get_user(c, end);
(void)c;
}
return ret;
}
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
extern void delete_from_page_cache(struct page *page);
extern void __delete_from_page_cache(struct page *page);
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
/*
* Like add_to_page_cache_locked, but used to add newly allocated pages:
* the page is new, so we can just run __set_page_locked() against it.
*/
static inline int add_to_page_cache(struct page *page,
struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
{
int error;
__set_page_locked(page);
error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
if (unlikely(error))
__clear_page_locked(page);
return error;
}
#endif /* _LINUX_PAGEMAP_H */