2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 18:24:23 +08:00
linux-next/drivers/net/smsc911x.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

2178 lines
58 KiB
C

/***************************************************************************
*
* Copyright (C) 2004-2008 SMSC
* Copyright (C) 2005-2008 ARM
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
***************************************************************************
* Rewritten, heavily based on smsc911x simple driver by SMSC.
* Partly uses io macros from smc91x.c by Nicolas Pitre
*
* Supported devices:
* LAN9115, LAN9116, LAN9117, LAN9118
* LAN9215, LAN9216, LAN9217, LAN9218
* LAN9210, LAN9211
* LAN9220, LAN9221
*
*/
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/bug.h>
#include <linux/bitops.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/swab.h>
#include <linux/phy.h>
#include <linux/smsc911x.h>
#include <linux/device.h>
#include "smsc911x.h"
#define SMSC_CHIPNAME "smsc911x"
#define SMSC_MDIONAME "smsc911x-mdio"
#define SMSC_DRV_VERSION "2008-10-21"
MODULE_LICENSE("GPL");
MODULE_VERSION(SMSC_DRV_VERSION);
#if USE_DEBUG > 0
static int debug = 16;
#else
static int debug = 3;
#endif
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
struct smsc911x_data {
void __iomem *ioaddr;
unsigned int idrev;
/* used to decide which workarounds apply */
unsigned int generation;
/* device configuration (copied from platform_data during probe) */
struct smsc911x_platform_config config;
/* This needs to be acquired before calling any of below:
* smsc911x_mac_read(), smsc911x_mac_write()
*/
spinlock_t mac_lock;
/* spinlock to ensure 16-bit accesses are serialised.
* unused with a 32-bit bus */
spinlock_t dev_lock;
struct phy_device *phy_dev;
struct mii_bus *mii_bus;
int phy_irq[PHY_MAX_ADDR];
unsigned int using_extphy;
int last_duplex;
int last_carrier;
u32 msg_enable;
unsigned int gpio_setting;
unsigned int gpio_orig_setting;
struct net_device *dev;
struct napi_struct napi;
unsigned int software_irq_signal;
#ifdef USE_PHY_WORK_AROUND
#define MIN_PACKET_SIZE (64)
char loopback_tx_pkt[MIN_PACKET_SIZE];
char loopback_rx_pkt[MIN_PACKET_SIZE];
unsigned int resetcount;
#endif
/* Members for Multicast filter workaround */
unsigned int multicast_update_pending;
unsigned int set_bits_mask;
unsigned int clear_bits_mask;
unsigned int hashhi;
unsigned int hashlo;
};
/* The 16-bit access functions are significantly slower, due to the locking
* necessary. If your bus hardware can be configured to do this for you
* (in response to a single 32-bit operation from software), you should use
* the 32-bit access functions instead. */
static inline u32 smsc911x_reg_read(struct smsc911x_data *pdata, u32 reg)
{
if (pdata->config.flags & SMSC911X_USE_32BIT)
return readl(pdata->ioaddr + reg);
if (pdata->config.flags & SMSC911X_USE_16BIT) {
u32 data;
unsigned long flags;
/* these two 16-bit reads must be performed consecutively, so
* must not be interrupted by our own ISR (which would start
* another read operation) */
spin_lock_irqsave(&pdata->dev_lock, flags);
data = ((readw(pdata->ioaddr + reg) & 0xFFFF) |
((readw(pdata->ioaddr + reg + 2) & 0xFFFF) << 16));
spin_unlock_irqrestore(&pdata->dev_lock, flags);
return data;
}
BUG();
return 0;
}
static inline void smsc911x_reg_write(struct smsc911x_data *pdata, u32 reg,
u32 val)
{
if (pdata->config.flags & SMSC911X_USE_32BIT) {
writel(val, pdata->ioaddr + reg);
return;
}
if (pdata->config.flags & SMSC911X_USE_16BIT) {
unsigned long flags;
/* these two 16-bit writes must be performed consecutively, so
* must not be interrupted by our own ISR (which would start
* another read operation) */
spin_lock_irqsave(&pdata->dev_lock, flags);
writew(val & 0xFFFF, pdata->ioaddr + reg);
writew((val >> 16) & 0xFFFF, pdata->ioaddr + reg + 2);
spin_unlock_irqrestore(&pdata->dev_lock, flags);
return;
}
BUG();
}
/* Writes a packet to the TX_DATA_FIFO */
static inline void
smsc911x_tx_writefifo(struct smsc911x_data *pdata, unsigned int *buf,
unsigned int wordcount)
{
if (pdata->config.flags & SMSC911X_SWAP_FIFO) {
while (wordcount--)
smsc911x_reg_write(pdata, TX_DATA_FIFO, swab32(*buf++));
return;
}
if (pdata->config.flags & SMSC911X_USE_32BIT) {
writesl(pdata->ioaddr + TX_DATA_FIFO, buf, wordcount);
return;
}
if (pdata->config.flags & SMSC911X_USE_16BIT) {
while (wordcount--)
smsc911x_reg_write(pdata, TX_DATA_FIFO, *buf++);
return;
}
BUG();
}
/* Reads a packet out of the RX_DATA_FIFO */
static inline void
smsc911x_rx_readfifo(struct smsc911x_data *pdata, unsigned int *buf,
unsigned int wordcount)
{
if (pdata->config.flags & SMSC911X_SWAP_FIFO) {
while (wordcount--)
*buf++ = swab32(smsc911x_reg_read(pdata, RX_DATA_FIFO));
return;
}
if (pdata->config.flags & SMSC911X_USE_32BIT) {
readsl(pdata->ioaddr + RX_DATA_FIFO, buf, wordcount);
return;
}
if (pdata->config.flags & SMSC911X_USE_16BIT) {
while (wordcount--)
*buf++ = smsc911x_reg_read(pdata, RX_DATA_FIFO);
return;
}
BUG();
}
/* waits for MAC not busy, with timeout. Only called by smsc911x_mac_read
* and smsc911x_mac_write, so assumes mac_lock is held */
static int smsc911x_mac_complete(struct smsc911x_data *pdata)
{
int i;
u32 val;
SMSC_ASSERT_MAC_LOCK(pdata);
for (i = 0; i < 40; i++) {
val = smsc911x_reg_read(pdata, MAC_CSR_CMD);
if (!(val & MAC_CSR_CMD_CSR_BUSY_))
return 0;
}
SMSC_WARNING(HW, "Timed out waiting for MAC not BUSY. "
"MAC_CSR_CMD: 0x%08X", val);
return -EIO;
}
/* Fetches a MAC register value. Assumes mac_lock is acquired */
static u32 smsc911x_mac_read(struct smsc911x_data *pdata, unsigned int offset)
{
unsigned int temp;
SMSC_ASSERT_MAC_LOCK(pdata);
temp = smsc911x_reg_read(pdata, MAC_CSR_CMD);
if (unlikely(temp & MAC_CSR_CMD_CSR_BUSY_)) {
SMSC_WARNING(HW, "MAC busy at entry");
return 0xFFFFFFFF;
}
/* Send the MAC cmd */
smsc911x_reg_write(pdata, MAC_CSR_CMD, ((offset & 0xFF) |
MAC_CSR_CMD_CSR_BUSY_ | MAC_CSR_CMD_R_NOT_W_));
/* Workaround for hardware read-after-write restriction */
temp = smsc911x_reg_read(pdata, BYTE_TEST);
/* Wait for the read to complete */
if (likely(smsc911x_mac_complete(pdata) == 0))
return smsc911x_reg_read(pdata, MAC_CSR_DATA);
SMSC_WARNING(HW, "MAC busy after read");
return 0xFFFFFFFF;
}
/* Set a mac register, mac_lock must be acquired before calling */
static void smsc911x_mac_write(struct smsc911x_data *pdata,
unsigned int offset, u32 val)
{
unsigned int temp;
SMSC_ASSERT_MAC_LOCK(pdata);
temp = smsc911x_reg_read(pdata, MAC_CSR_CMD);
if (unlikely(temp & MAC_CSR_CMD_CSR_BUSY_)) {
SMSC_WARNING(HW,
"smsc911x_mac_write failed, MAC busy at entry");
return;
}
/* Send data to write */
smsc911x_reg_write(pdata, MAC_CSR_DATA, val);
/* Write the actual data */
smsc911x_reg_write(pdata, MAC_CSR_CMD, ((offset & 0xFF) |
MAC_CSR_CMD_CSR_BUSY_));
/* Workaround for hardware read-after-write restriction */
temp = smsc911x_reg_read(pdata, BYTE_TEST);
/* Wait for the write to complete */
if (likely(smsc911x_mac_complete(pdata) == 0))
return;
SMSC_WARNING(HW,
"smsc911x_mac_write failed, MAC busy after write");
}
/* Get a phy register */
static int smsc911x_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
{
struct smsc911x_data *pdata = (struct smsc911x_data *)bus->priv;
unsigned long flags;
unsigned int addr;
int i, reg;
spin_lock_irqsave(&pdata->mac_lock, flags);
/* Confirm MII not busy */
if (unlikely(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) {
SMSC_WARNING(HW,
"MII is busy in smsc911x_mii_read???");
reg = -EIO;
goto out;
}
/* Set the address, index & direction (read from PHY) */
addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6);
smsc911x_mac_write(pdata, MII_ACC, addr);
/* Wait for read to complete w/ timeout */
for (i = 0; i < 100; i++)
if (!(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) {
reg = smsc911x_mac_read(pdata, MII_DATA);
goto out;
}
SMSC_WARNING(HW, "Timed out waiting for MII read to finish");
reg = -EIO;
out:
spin_unlock_irqrestore(&pdata->mac_lock, flags);
return reg;
}
/* Set a phy register */
static int smsc911x_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
u16 val)
{
struct smsc911x_data *pdata = (struct smsc911x_data *)bus->priv;
unsigned long flags;
unsigned int addr;
int i, reg;
spin_lock_irqsave(&pdata->mac_lock, flags);
/* Confirm MII not busy */
if (unlikely(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) {
SMSC_WARNING(HW,
"MII is busy in smsc911x_mii_write???");
reg = -EIO;
goto out;
}
/* Put the data to write in the MAC */
smsc911x_mac_write(pdata, MII_DATA, val);
/* Set the address, index & direction (write to PHY) */
addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
MII_ACC_MII_WRITE_;
smsc911x_mac_write(pdata, MII_ACC, addr);
/* Wait for write to complete w/ timeout */
for (i = 0; i < 100; i++)
if (!(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) {
reg = 0;
goto out;
}
SMSC_WARNING(HW, "Timed out waiting for MII write to finish");
reg = -EIO;
out:
spin_unlock_irqrestore(&pdata->mac_lock, flags);
return reg;
}
/* Switch to external phy. Assumes tx and rx are stopped. */
static void smsc911x_phy_enable_external(struct smsc911x_data *pdata)
{
unsigned int hwcfg = smsc911x_reg_read(pdata, HW_CFG);
/* Disable phy clocks to the MAC */
hwcfg &= (~HW_CFG_PHY_CLK_SEL_);
hwcfg |= HW_CFG_PHY_CLK_SEL_CLK_DIS_;
smsc911x_reg_write(pdata, HW_CFG, hwcfg);
udelay(10); /* Enough time for clocks to stop */
/* Switch to external phy */
hwcfg |= HW_CFG_EXT_PHY_EN_;
smsc911x_reg_write(pdata, HW_CFG, hwcfg);
/* Enable phy clocks to the MAC */
hwcfg &= (~HW_CFG_PHY_CLK_SEL_);
hwcfg |= HW_CFG_PHY_CLK_SEL_EXT_PHY_;
smsc911x_reg_write(pdata, HW_CFG, hwcfg);
udelay(10); /* Enough time for clocks to restart */
hwcfg |= HW_CFG_SMI_SEL_;
smsc911x_reg_write(pdata, HW_CFG, hwcfg);
}
/* Autodetects and enables external phy if present on supported chips.
* autodetection can be overridden by specifying SMSC911X_FORCE_INTERNAL_PHY
* or SMSC911X_FORCE_EXTERNAL_PHY in the platform_data flags. */
static void smsc911x_phy_initialise_external(struct smsc911x_data *pdata)
{
unsigned int hwcfg = smsc911x_reg_read(pdata, HW_CFG);
if (pdata->config.flags & SMSC911X_FORCE_INTERNAL_PHY) {
SMSC_TRACE(HW, "Forcing internal PHY");
pdata->using_extphy = 0;
} else if (pdata->config.flags & SMSC911X_FORCE_EXTERNAL_PHY) {
SMSC_TRACE(HW, "Forcing external PHY");
smsc911x_phy_enable_external(pdata);
pdata->using_extphy = 1;
} else if (hwcfg & HW_CFG_EXT_PHY_DET_) {
SMSC_TRACE(HW, "HW_CFG EXT_PHY_DET set, using external PHY");
smsc911x_phy_enable_external(pdata);
pdata->using_extphy = 1;
} else {
SMSC_TRACE(HW, "HW_CFG EXT_PHY_DET clear, using internal PHY");
pdata->using_extphy = 0;
}
}
/* Fetches a tx status out of the status fifo */
static unsigned int smsc911x_tx_get_txstatus(struct smsc911x_data *pdata)
{
unsigned int result =
smsc911x_reg_read(pdata, TX_FIFO_INF) & TX_FIFO_INF_TSUSED_;
if (result != 0)
result = smsc911x_reg_read(pdata, TX_STATUS_FIFO);
return result;
}
/* Fetches the next rx status */
static unsigned int smsc911x_rx_get_rxstatus(struct smsc911x_data *pdata)
{
unsigned int result =
smsc911x_reg_read(pdata, RX_FIFO_INF) & RX_FIFO_INF_RXSUSED_;
if (result != 0)
result = smsc911x_reg_read(pdata, RX_STATUS_FIFO);
return result;
}
#ifdef USE_PHY_WORK_AROUND
static int smsc911x_phy_check_loopbackpkt(struct smsc911x_data *pdata)
{
unsigned int tries;
u32 wrsz;
u32 rdsz;
ulong bufp;
for (tries = 0; tries < 10; tries++) {
unsigned int txcmd_a;
unsigned int txcmd_b;
unsigned int status;
unsigned int pktlength;
unsigned int i;
/* Zero-out rx packet memory */
memset(pdata->loopback_rx_pkt, 0, MIN_PACKET_SIZE);
/* Write tx packet to 118 */
txcmd_a = (u32)((ulong)pdata->loopback_tx_pkt & 0x03) << 16;
txcmd_a |= TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_;
txcmd_a |= MIN_PACKET_SIZE;
txcmd_b = MIN_PACKET_SIZE << 16 | MIN_PACKET_SIZE;
smsc911x_reg_write(pdata, TX_DATA_FIFO, txcmd_a);
smsc911x_reg_write(pdata, TX_DATA_FIFO, txcmd_b);
bufp = (ulong)pdata->loopback_tx_pkt & (~0x3);
wrsz = MIN_PACKET_SIZE + 3;
wrsz += (u32)((ulong)pdata->loopback_tx_pkt & 0x3);
wrsz >>= 2;
smsc911x_tx_writefifo(pdata, (unsigned int *)bufp, wrsz);
/* Wait till transmit is done */
i = 60;
do {
udelay(5);
status = smsc911x_tx_get_txstatus(pdata);
} while ((i--) && (!status));
if (!status) {
SMSC_WARNING(HW, "Failed to transmit "
"during loopback test");
continue;
}
if (status & TX_STS_ES_) {
SMSC_WARNING(HW, "Transmit encountered "
"errors during loopback test");
continue;
}
/* Wait till receive is done */
i = 60;
do {
udelay(5);
status = smsc911x_rx_get_rxstatus(pdata);
} while ((i--) && (!status));
if (!status) {
SMSC_WARNING(HW,
"Failed to receive during loopback test");
continue;
}
if (status & RX_STS_ES_) {
SMSC_WARNING(HW, "Receive encountered "
"errors during loopback test");
continue;
}
pktlength = ((status & 0x3FFF0000UL) >> 16);
bufp = (ulong)pdata->loopback_rx_pkt;
rdsz = pktlength + 3;
rdsz += (u32)((ulong)pdata->loopback_rx_pkt & 0x3);
rdsz >>= 2;
smsc911x_rx_readfifo(pdata, (unsigned int *)bufp, rdsz);
if (pktlength != (MIN_PACKET_SIZE + 4)) {
SMSC_WARNING(HW, "Unexpected packet size "
"during loop back test, size=%d, will retry",
pktlength);
} else {
unsigned int j;
int mismatch = 0;
for (j = 0; j < MIN_PACKET_SIZE; j++) {
if (pdata->loopback_tx_pkt[j]
!= pdata->loopback_rx_pkt[j]) {
mismatch = 1;
break;
}
}
if (!mismatch) {
SMSC_TRACE(HW, "Successfully verified "
"loopback packet");
return 0;
} else {
SMSC_WARNING(HW, "Data mismatch "
"during loop back test, will retry");
}
}
}
return -EIO;
}
static int smsc911x_phy_reset(struct smsc911x_data *pdata)
{
struct phy_device *phy_dev = pdata->phy_dev;
unsigned int temp;
unsigned int i = 100000;
BUG_ON(!phy_dev);
BUG_ON(!phy_dev->bus);
SMSC_TRACE(HW, "Performing PHY BCR Reset");
smsc911x_mii_write(phy_dev->bus, phy_dev->addr, MII_BMCR, BMCR_RESET);
do {
msleep(1);
temp = smsc911x_mii_read(phy_dev->bus, phy_dev->addr,
MII_BMCR);
} while ((i--) && (temp & BMCR_RESET));
if (temp & BMCR_RESET) {
SMSC_WARNING(HW, "PHY reset failed to complete.");
return -EIO;
}
/* Extra delay required because the phy may not be completed with
* its reset when BMCR_RESET is cleared. Specs say 256 uS is
* enough delay but using 1ms here to be safe */
msleep(1);
return 0;
}
static int smsc911x_phy_loopbacktest(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct phy_device *phy_dev = pdata->phy_dev;
int result = -EIO;
unsigned int i, val;
unsigned long flags;
/* Initialise tx packet using broadcast destination address */
memset(pdata->loopback_tx_pkt, 0xff, ETH_ALEN);
/* Use incrementing source address */
for (i = 6; i < 12; i++)
pdata->loopback_tx_pkt[i] = (char)i;
/* Set length type field */
pdata->loopback_tx_pkt[12] = 0x00;
pdata->loopback_tx_pkt[13] = 0x00;
for (i = 14; i < MIN_PACKET_SIZE; i++)
pdata->loopback_tx_pkt[i] = (char)i;
val = smsc911x_reg_read(pdata, HW_CFG);
val &= HW_CFG_TX_FIF_SZ_;
val |= HW_CFG_SF_;
smsc911x_reg_write(pdata, HW_CFG, val);
smsc911x_reg_write(pdata, TX_CFG, TX_CFG_TX_ON_);
smsc911x_reg_write(pdata, RX_CFG,
(u32)((ulong)pdata->loopback_rx_pkt & 0x03) << 8);
for (i = 0; i < 10; i++) {
/* Set PHY to 10/FD, no ANEG, and loopback mode */
smsc911x_mii_write(phy_dev->bus, phy_dev->addr, MII_BMCR,
BMCR_LOOPBACK | BMCR_FULLDPLX);
/* Enable MAC tx/rx, FD */
spin_lock_irqsave(&pdata->mac_lock, flags);
smsc911x_mac_write(pdata, MAC_CR, MAC_CR_FDPX_
| MAC_CR_TXEN_ | MAC_CR_RXEN_);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
if (smsc911x_phy_check_loopbackpkt(pdata) == 0) {
result = 0;
break;
}
pdata->resetcount++;
/* Disable MAC rx */
spin_lock_irqsave(&pdata->mac_lock, flags);
smsc911x_mac_write(pdata, MAC_CR, 0);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
smsc911x_phy_reset(pdata);
}
/* Disable MAC */
spin_lock_irqsave(&pdata->mac_lock, flags);
smsc911x_mac_write(pdata, MAC_CR, 0);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
/* Cancel PHY loopback mode */
smsc911x_mii_write(phy_dev->bus, phy_dev->addr, MII_BMCR, 0);
smsc911x_reg_write(pdata, TX_CFG, 0);
smsc911x_reg_write(pdata, RX_CFG, 0);
return result;
}
#endif /* USE_PHY_WORK_AROUND */
static void smsc911x_phy_update_flowcontrol(struct smsc911x_data *pdata)
{
struct phy_device *phy_dev = pdata->phy_dev;
u32 afc = smsc911x_reg_read(pdata, AFC_CFG);
u32 flow;
unsigned long flags;
if (phy_dev->duplex == DUPLEX_FULL) {
u16 lcladv = phy_read(phy_dev, MII_ADVERTISE);
u16 rmtadv = phy_read(phy_dev, MII_LPA);
u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
if (cap & FLOW_CTRL_RX)
flow = 0xFFFF0002;
else
flow = 0;
if (cap & FLOW_CTRL_TX)
afc |= 0xF;
else
afc &= ~0xF;
SMSC_TRACE(HW, "rx pause %s, tx pause %s",
(cap & FLOW_CTRL_RX ? "enabled" : "disabled"),
(cap & FLOW_CTRL_TX ? "enabled" : "disabled"));
} else {
SMSC_TRACE(HW, "half duplex");
flow = 0;
afc |= 0xF;
}
spin_lock_irqsave(&pdata->mac_lock, flags);
smsc911x_mac_write(pdata, FLOW, flow);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
smsc911x_reg_write(pdata, AFC_CFG, afc);
}
/* Update link mode if anything has changed. Called periodically when the
* PHY is in polling mode, even if nothing has changed. */
static void smsc911x_phy_adjust_link(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct phy_device *phy_dev = pdata->phy_dev;
unsigned long flags;
int carrier;
if (phy_dev->duplex != pdata->last_duplex) {
unsigned int mac_cr;
SMSC_TRACE(HW, "duplex state has changed");
spin_lock_irqsave(&pdata->mac_lock, flags);
mac_cr = smsc911x_mac_read(pdata, MAC_CR);
if (phy_dev->duplex) {
SMSC_TRACE(HW,
"configuring for full duplex mode");
mac_cr |= MAC_CR_FDPX_;
} else {
SMSC_TRACE(HW,
"configuring for half duplex mode");
mac_cr &= ~MAC_CR_FDPX_;
}
smsc911x_mac_write(pdata, MAC_CR, mac_cr);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
smsc911x_phy_update_flowcontrol(pdata);
pdata->last_duplex = phy_dev->duplex;
}
carrier = netif_carrier_ok(dev);
if (carrier != pdata->last_carrier) {
SMSC_TRACE(HW, "carrier state has changed");
if (carrier) {
SMSC_TRACE(HW, "configuring for carrier OK");
if ((pdata->gpio_orig_setting & GPIO_CFG_LED1_EN_) &&
(!pdata->using_extphy)) {
/* Restore orginal GPIO configuration */
pdata->gpio_setting = pdata->gpio_orig_setting;
smsc911x_reg_write(pdata, GPIO_CFG,
pdata->gpio_setting);
}
} else {
SMSC_TRACE(HW, "configuring for no carrier");
/* Check global setting that LED1
* usage is 10/100 indicator */
pdata->gpio_setting = smsc911x_reg_read(pdata,
GPIO_CFG);
if ((pdata->gpio_setting & GPIO_CFG_LED1_EN_) &&
(!pdata->using_extphy)) {
/* Force 10/100 LED off, after saving
* orginal GPIO configuration */
pdata->gpio_orig_setting = pdata->gpio_setting;
pdata->gpio_setting &= ~GPIO_CFG_LED1_EN_;
pdata->gpio_setting |= (GPIO_CFG_GPIOBUF0_
| GPIO_CFG_GPIODIR0_
| GPIO_CFG_GPIOD0_);
smsc911x_reg_write(pdata, GPIO_CFG,
pdata->gpio_setting);
}
}
pdata->last_carrier = carrier;
}
}
static int smsc911x_mii_probe(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct phy_device *phydev = NULL;
int ret;
/* find the first phy */
phydev = phy_find_first(pdata->mii_bus);
if (!phydev) {
pr_err("%s: no PHY found\n", dev->name);
return -ENODEV;
}
SMSC_TRACE(PROBE, "PHY %d: addr %d, phy_id 0x%08X",
phy_addr, phydev->addr, phydev->phy_id);
ret = phy_connect_direct(dev, phydev,
&smsc911x_phy_adjust_link, 0,
pdata->config.phy_interface);
if (ret) {
pr_err("%s: Could not attach to PHY\n", dev->name);
return ret;
}
pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
dev->name, phydev->drv->name,
dev_name(&phydev->dev), phydev->irq);
/* mask with MAC supported features */
phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
phydev->advertising = phydev->supported;
pdata->phy_dev = phydev;
pdata->last_duplex = -1;
pdata->last_carrier = -1;
#ifdef USE_PHY_WORK_AROUND
if (smsc911x_phy_loopbacktest(dev) < 0) {
SMSC_WARNING(HW, "Failed Loop Back Test");
return -ENODEV;
}
SMSC_TRACE(HW, "Passed Loop Back Test");
#endif /* USE_PHY_WORK_AROUND */
SMSC_TRACE(HW, "phy initialised successfully");
return 0;
}
static int __devinit smsc911x_mii_init(struct platform_device *pdev,
struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
int err = -ENXIO, i;
pdata->mii_bus = mdiobus_alloc();
if (!pdata->mii_bus) {
err = -ENOMEM;
goto err_out_1;
}
pdata->mii_bus->name = SMSC_MDIONAME;
snprintf(pdata->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id);
pdata->mii_bus->priv = pdata;
pdata->mii_bus->read = smsc911x_mii_read;
pdata->mii_bus->write = smsc911x_mii_write;
pdata->mii_bus->irq = pdata->phy_irq;
for (i = 0; i < PHY_MAX_ADDR; ++i)
pdata->mii_bus->irq[i] = PHY_POLL;
pdata->mii_bus->parent = &pdev->dev;
switch (pdata->idrev & 0xFFFF0000) {
case 0x01170000:
case 0x01150000:
case 0x117A0000:
case 0x115A0000:
/* External PHY supported, try to autodetect */
smsc911x_phy_initialise_external(pdata);
break;
default:
SMSC_TRACE(HW, "External PHY is not supported, "
"using internal PHY");
pdata->using_extphy = 0;
break;
}
if (!pdata->using_extphy) {
/* Mask all PHYs except ID 1 (internal) */
pdata->mii_bus->phy_mask = ~(1 << 1);
}
if (mdiobus_register(pdata->mii_bus)) {
SMSC_WARNING(PROBE, "Error registering mii bus");
goto err_out_free_bus_2;
}
if (smsc911x_mii_probe(dev) < 0) {
SMSC_WARNING(PROBE, "Error registering mii bus");
goto err_out_unregister_bus_3;
}
return 0;
err_out_unregister_bus_3:
mdiobus_unregister(pdata->mii_bus);
err_out_free_bus_2:
mdiobus_free(pdata->mii_bus);
err_out_1:
return err;
}
/* Gets the number of tx statuses in the fifo */
static unsigned int smsc911x_tx_get_txstatcount(struct smsc911x_data *pdata)
{
return (smsc911x_reg_read(pdata, TX_FIFO_INF)
& TX_FIFO_INF_TSUSED_) >> 16;
}
/* Reads tx statuses and increments counters where necessary */
static void smsc911x_tx_update_txcounters(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int tx_stat;
while ((tx_stat = smsc911x_tx_get_txstatus(pdata)) != 0) {
if (unlikely(tx_stat & 0x80000000)) {
/* In this driver the packet tag is used as the packet
* length. Since a packet length can never reach the
* size of 0x8000, this bit is reserved. It is worth
* noting that the "reserved bit" in the warning above
* does not reference a hardware defined reserved bit
* but rather a driver defined one.
*/
SMSC_WARNING(HW,
"Packet tag reserved bit is high");
} else {
if (unlikely(tx_stat & TX_STS_ES_)) {
dev->stats.tx_errors++;
} else {
dev->stats.tx_packets++;
dev->stats.tx_bytes += (tx_stat >> 16);
}
if (unlikely(tx_stat & TX_STS_EXCESS_COL_)) {
dev->stats.collisions += 16;
dev->stats.tx_aborted_errors += 1;
} else {
dev->stats.collisions +=
((tx_stat >> 3) & 0xF);
}
if (unlikely(tx_stat & TX_STS_LOST_CARRIER_))
dev->stats.tx_carrier_errors += 1;
if (unlikely(tx_stat & TX_STS_LATE_COL_)) {
dev->stats.collisions++;
dev->stats.tx_aborted_errors++;
}
}
}
}
/* Increments the Rx error counters */
static void
smsc911x_rx_counterrors(struct net_device *dev, unsigned int rxstat)
{
int crc_err = 0;
if (unlikely(rxstat & RX_STS_ES_)) {
dev->stats.rx_errors++;
if (unlikely(rxstat & RX_STS_CRC_ERR_)) {
dev->stats.rx_crc_errors++;
crc_err = 1;
}
}
if (likely(!crc_err)) {
if (unlikely((rxstat & RX_STS_FRAME_TYPE_) &&
(rxstat & RX_STS_LENGTH_ERR_)))
dev->stats.rx_length_errors++;
if (rxstat & RX_STS_MCAST_)
dev->stats.multicast++;
}
}
/* Quickly dumps bad packets */
static void
smsc911x_rx_fastforward(struct smsc911x_data *pdata, unsigned int pktbytes)
{
unsigned int pktwords = (pktbytes + NET_IP_ALIGN + 3) >> 2;
if (likely(pktwords >= 4)) {
unsigned int timeout = 500;
unsigned int val;
smsc911x_reg_write(pdata, RX_DP_CTRL, RX_DP_CTRL_RX_FFWD_);
do {
udelay(1);
val = smsc911x_reg_read(pdata, RX_DP_CTRL);
} while ((val & RX_DP_CTRL_RX_FFWD_) && --timeout);
if (unlikely(timeout == 0))
SMSC_WARNING(HW, "Timed out waiting for "
"RX FFWD to finish, RX_DP_CTRL: 0x%08X", val);
} else {
unsigned int temp;
while (pktwords--)
temp = smsc911x_reg_read(pdata, RX_DATA_FIFO);
}
}
/* NAPI poll function */
static int smsc911x_poll(struct napi_struct *napi, int budget)
{
struct smsc911x_data *pdata =
container_of(napi, struct smsc911x_data, napi);
struct net_device *dev = pdata->dev;
int npackets = 0;
while (npackets < budget) {
unsigned int pktlength;
unsigned int pktwords;
struct sk_buff *skb;
unsigned int rxstat = smsc911x_rx_get_rxstatus(pdata);
if (!rxstat) {
unsigned int temp;
/* We processed all packets available. Tell NAPI it can
* stop polling then re-enable rx interrupts */
smsc911x_reg_write(pdata, INT_STS, INT_STS_RSFL_);
napi_complete(napi);
temp = smsc911x_reg_read(pdata, INT_EN);
temp |= INT_EN_RSFL_EN_;
smsc911x_reg_write(pdata, INT_EN, temp);
break;
}
/* Count packet for NAPI scheduling, even if it has an error.
* Error packets still require cycles to discard */
npackets++;
pktlength = ((rxstat & 0x3FFF0000) >> 16);
pktwords = (pktlength + NET_IP_ALIGN + 3) >> 2;
smsc911x_rx_counterrors(dev, rxstat);
if (unlikely(rxstat & RX_STS_ES_)) {
SMSC_WARNING(RX_ERR,
"Discarding packet with error bit set");
/* Packet has an error, discard it and continue with
* the next */
smsc911x_rx_fastforward(pdata, pktwords);
dev->stats.rx_dropped++;
continue;
}
skb = netdev_alloc_skb(dev, pktlength + NET_IP_ALIGN);
if (unlikely(!skb)) {
SMSC_WARNING(RX_ERR,
"Unable to allocate skb for rx packet");
/* Drop the packet and stop this polling iteration */
smsc911x_rx_fastforward(pdata, pktwords);
dev->stats.rx_dropped++;
break;
}
skb->data = skb->head;
skb_reset_tail_pointer(skb);
/* Align IP on 16B boundary */
skb_reserve(skb, NET_IP_ALIGN);
skb_put(skb, pktlength - 4);
smsc911x_rx_readfifo(pdata, (unsigned int *)skb->head,
pktwords);
skb->protocol = eth_type_trans(skb, dev);
skb->ip_summed = CHECKSUM_NONE;
netif_receive_skb(skb);
/* Update counters */
dev->stats.rx_packets++;
dev->stats.rx_bytes += (pktlength - 4);
}
/* Return total received packets */
return npackets;
}
/* Returns hash bit number for given MAC address
* Example:
* 01 00 5E 00 00 01 -> returns bit number 31 */
static unsigned int smsc911x_hash(char addr[ETH_ALEN])
{
return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f;
}
static void smsc911x_rx_multicast_update(struct smsc911x_data *pdata)
{
/* Performs the multicast & mac_cr update. This is called when
* safe on the current hardware, and with the mac_lock held */
unsigned int mac_cr;
SMSC_ASSERT_MAC_LOCK(pdata);
mac_cr = smsc911x_mac_read(pdata, MAC_CR);
mac_cr |= pdata->set_bits_mask;
mac_cr &= ~(pdata->clear_bits_mask);
smsc911x_mac_write(pdata, MAC_CR, mac_cr);
smsc911x_mac_write(pdata, HASHH, pdata->hashhi);
smsc911x_mac_write(pdata, HASHL, pdata->hashlo);
SMSC_TRACE(HW, "maccr 0x%08X, HASHH 0x%08X, HASHL 0x%08X",
mac_cr, pdata->hashhi, pdata->hashlo);
}
static void smsc911x_rx_multicast_update_workaround(struct smsc911x_data *pdata)
{
unsigned int mac_cr;
/* This function is only called for older LAN911x devices
* (revA or revB), where MAC_CR, HASHH and HASHL should not
* be modified during Rx - newer devices immediately update the
* registers.
*
* This is called from interrupt context */
spin_lock(&pdata->mac_lock);
/* Check Rx has stopped */
if (smsc911x_mac_read(pdata, MAC_CR) & MAC_CR_RXEN_)
SMSC_WARNING(DRV, "Rx not stopped");
/* Perform the update - safe to do now Rx has stopped */
smsc911x_rx_multicast_update(pdata);
/* Re-enable Rx */
mac_cr = smsc911x_mac_read(pdata, MAC_CR);
mac_cr |= MAC_CR_RXEN_;
smsc911x_mac_write(pdata, MAC_CR, mac_cr);
pdata->multicast_update_pending = 0;
spin_unlock(&pdata->mac_lock);
}
static int smsc911x_soft_reset(struct smsc911x_data *pdata)
{
unsigned int timeout;
unsigned int temp;
/* Reset the LAN911x */
smsc911x_reg_write(pdata, HW_CFG, HW_CFG_SRST_);
timeout = 10;
do {
udelay(10);
temp = smsc911x_reg_read(pdata, HW_CFG);
} while ((--timeout) && (temp & HW_CFG_SRST_));
if (unlikely(temp & HW_CFG_SRST_)) {
SMSC_WARNING(DRV, "Failed to complete reset");
return -EIO;
}
return 0;
}
/* Sets the device MAC address to dev_addr, called with mac_lock held */
static void
smsc911x_set_hw_mac_address(struct smsc911x_data *pdata, u8 dev_addr[6])
{
u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4];
u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) |
(dev_addr[1] << 8) | dev_addr[0];
SMSC_ASSERT_MAC_LOCK(pdata);
smsc911x_mac_write(pdata, ADDRH, mac_high16);
smsc911x_mac_write(pdata, ADDRL, mac_low32);
}
static int smsc911x_open(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int timeout;
unsigned int temp;
unsigned int intcfg;
/* if the phy is not yet registered, retry later*/
if (!pdata->phy_dev) {
SMSC_WARNING(HW, "phy_dev is NULL");
return -EAGAIN;
}
if (!is_valid_ether_addr(dev->dev_addr)) {
SMSC_WARNING(HW, "dev_addr is not a valid MAC address");
return -EADDRNOTAVAIL;
}
/* Reset the LAN911x */
if (smsc911x_soft_reset(pdata)) {
SMSC_WARNING(HW, "soft reset failed");
return -EIO;
}
smsc911x_reg_write(pdata, HW_CFG, 0x00050000);
smsc911x_reg_write(pdata, AFC_CFG, 0x006E3740);
/* Make sure EEPROM has finished loading before setting GPIO_CFG */
timeout = 50;
while ((smsc911x_reg_read(pdata, E2P_CMD) & E2P_CMD_EPC_BUSY_) &&
--timeout) {
udelay(10);
}
if (unlikely(timeout == 0))
SMSC_WARNING(IFUP,
"Timed out waiting for EEPROM busy bit to clear");
smsc911x_reg_write(pdata, GPIO_CFG, 0x70070000);
/* The soft reset above cleared the device's MAC address,
* restore it from local copy (set in probe) */
spin_lock_irq(&pdata->mac_lock);
smsc911x_set_hw_mac_address(pdata, dev->dev_addr);
spin_unlock_irq(&pdata->mac_lock);
/* Initialise irqs, but leave all sources disabled */
smsc911x_reg_write(pdata, INT_EN, 0);
smsc911x_reg_write(pdata, INT_STS, 0xFFFFFFFF);
/* Set interrupt deassertion to 100uS */
intcfg = ((10 << 24) | INT_CFG_IRQ_EN_);
if (pdata->config.irq_polarity) {
SMSC_TRACE(IFUP, "irq polarity: active high");
intcfg |= INT_CFG_IRQ_POL_;
} else {
SMSC_TRACE(IFUP, "irq polarity: active low");
}
if (pdata->config.irq_type) {
SMSC_TRACE(IFUP, "irq type: push-pull");
intcfg |= INT_CFG_IRQ_TYPE_;
} else {
SMSC_TRACE(IFUP, "irq type: open drain");
}
smsc911x_reg_write(pdata, INT_CFG, intcfg);
SMSC_TRACE(IFUP, "Testing irq handler using IRQ %d", dev->irq);
pdata->software_irq_signal = 0;
smp_wmb();
temp = smsc911x_reg_read(pdata, INT_EN);
temp |= INT_EN_SW_INT_EN_;
smsc911x_reg_write(pdata, INT_EN, temp);
timeout = 1000;
while (timeout--) {
if (pdata->software_irq_signal)
break;
msleep(1);
}
if (!pdata->software_irq_signal) {
dev_warn(&dev->dev, "ISR failed signaling test (IRQ %d)\n",
dev->irq);
return -ENODEV;
}
SMSC_TRACE(IFUP, "IRQ handler passed test using IRQ %d", dev->irq);
dev_info(&dev->dev, "SMSC911x/921x identified at %#08lx, IRQ: %d\n",
(unsigned long)pdata->ioaddr, dev->irq);
/* Reset the last known duplex and carrier */
pdata->last_duplex = -1;
pdata->last_carrier = -1;
/* Bring the PHY up */
phy_start(pdata->phy_dev);
temp = smsc911x_reg_read(pdata, HW_CFG);
/* Preserve TX FIFO size and external PHY configuration */
temp &= (HW_CFG_TX_FIF_SZ_|0x00000FFF);
temp |= HW_CFG_SF_;
smsc911x_reg_write(pdata, HW_CFG, temp);
temp = smsc911x_reg_read(pdata, FIFO_INT);
temp |= FIFO_INT_TX_AVAIL_LEVEL_;
temp &= ~(FIFO_INT_RX_STS_LEVEL_);
smsc911x_reg_write(pdata, FIFO_INT, temp);
/* set RX Data offset to 2 bytes for alignment */
smsc911x_reg_write(pdata, RX_CFG, (2 << 8));
/* enable NAPI polling before enabling RX interrupts */
napi_enable(&pdata->napi);
temp = smsc911x_reg_read(pdata, INT_EN);
temp |= (INT_EN_TDFA_EN_ | INT_EN_RSFL_EN_ | INT_EN_RXSTOP_INT_EN_);
smsc911x_reg_write(pdata, INT_EN, temp);
spin_lock_irq(&pdata->mac_lock);
temp = smsc911x_mac_read(pdata, MAC_CR);
temp |= (MAC_CR_TXEN_ | MAC_CR_RXEN_ | MAC_CR_HBDIS_);
smsc911x_mac_write(pdata, MAC_CR, temp);
spin_unlock_irq(&pdata->mac_lock);
smsc911x_reg_write(pdata, TX_CFG, TX_CFG_TX_ON_);
netif_start_queue(dev);
return 0;
}
/* Entry point for stopping the interface */
static int smsc911x_stop(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int temp;
/* Disable all device interrupts */
temp = smsc911x_reg_read(pdata, INT_CFG);
temp &= ~INT_CFG_IRQ_EN_;
smsc911x_reg_write(pdata, INT_CFG, temp);
/* Stop Tx and Rx polling */
netif_stop_queue(dev);
napi_disable(&pdata->napi);
/* At this point all Rx and Tx activity is stopped */
dev->stats.rx_dropped += smsc911x_reg_read(pdata, RX_DROP);
smsc911x_tx_update_txcounters(dev);
/* Bring the PHY down */
if (pdata->phy_dev)
phy_stop(pdata->phy_dev);
SMSC_TRACE(IFDOWN, "Interface stopped");
return 0;
}
/* Entry point for transmitting a packet */
static int smsc911x_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int freespace;
unsigned int tx_cmd_a;
unsigned int tx_cmd_b;
unsigned int temp;
u32 wrsz;
ulong bufp;
freespace = smsc911x_reg_read(pdata, TX_FIFO_INF) & TX_FIFO_INF_TDFREE_;
if (unlikely(freespace < TX_FIFO_LOW_THRESHOLD))
SMSC_WARNING(TX_ERR,
"Tx data fifo low, space available: %d", freespace);
/* Word alignment adjustment */
tx_cmd_a = (u32)((ulong)skb->data & 0x03) << 16;
tx_cmd_a |= TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_;
tx_cmd_a |= (unsigned int)skb->len;
tx_cmd_b = ((unsigned int)skb->len) << 16;
tx_cmd_b |= (unsigned int)skb->len;
smsc911x_reg_write(pdata, TX_DATA_FIFO, tx_cmd_a);
smsc911x_reg_write(pdata, TX_DATA_FIFO, tx_cmd_b);
bufp = (ulong)skb->data & (~0x3);
wrsz = (u32)skb->len + 3;
wrsz += (u32)((ulong)skb->data & 0x3);
wrsz >>= 2;
smsc911x_tx_writefifo(pdata, (unsigned int *)bufp, wrsz);
freespace -= (skb->len + 32);
dev_kfree_skb(skb);
dev->trans_start = jiffies;
if (unlikely(smsc911x_tx_get_txstatcount(pdata) >= 30))
smsc911x_tx_update_txcounters(dev);
if (freespace < TX_FIFO_LOW_THRESHOLD) {
netif_stop_queue(dev);
temp = smsc911x_reg_read(pdata, FIFO_INT);
temp &= 0x00FFFFFF;
temp |= 0x32000000;
smsc911x_reg_write(pdata, FIFO_INT, temp);
}
return NETDEV_TX_OK;
}
/* Entry point for getting status counters */
static struct net_device_stats *smsc911x_get_stats(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
smsc911x_tx_update_txcounters(dev);
dev->stats.rx_dropped += smsc911x_reg_read(pdata, RX_DROP);
return &dev->stats;
}
/* Entry point for setting addressing modes */
static void smsc911x_set_multicast_list(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned long flags;
if (dev->flags & IFF_PROMISC) {
/* Enabling promiscuous mode */
pdata->set_bits_mask = MAC_CR_PRMS_;
pdata->clear_bits_mask = (MAC_CR_MCPAS_ | MAC_CR_HPFILT_);
pdata->hashhi = 0;
pdata->hashlo = 0;
} else if (dev->flags & IFF_ALLMULTI) {
/* Enabling all multicast mode */
pdata->set_bits_mask = MAC_CR_MCPAS_;
pdata->clear_bits_mask = (MAC_CR_PRMS_ | MAC_CR_HPFILT_);
pdata->hashhi = 0;
pdata->hashlo = 0;
} else if (!netdev_mc_empty(dev)) {
/* Enabling specific multicast addresses */
unsigned int hash_high = 0;
unsigned int hash_low = 0;
struct dev_mc_list *mc_list;
pdata->set_bits_mask = MAC_CR_HPFILT_;
pdata->clear_bits_mask = (MAC_CR_PRMS_ | MAC_CR_MCPAS_);
netdev_for_each_mc_addr(mc_list, dev) {
unsigned int bitnum = smsc911x_hash(mc_list->dmi_addr);
unsigned int mask = 0x01 << (bitnum & 0x1F);
if (bitnum & 0x20)
hash_high |= mask;
else
hash_low |= mask;
}
pdata->hashhi = hash_high;
pdata->hashlo = hash_low;
} else {
/* Enabling local MAC address only */
pdata->set_bits_mask = 0;
pdata->clear_bits_mask =
(MAC_CR_PRMS_ | MAC_CR_MCPAS_ | MAC_CR_HPFILT_);
pdata->hashhi = 0;
pdata->hashlo = 0;
}
spin_lock_irqsave(&pdata->mac_lock, flags);
if (pdata->generation <= 1) {
/* Older hardware revision - cannot change these flags while
* receiving data */
if (!pdata->multicast_update_pending) {
unsigned int temp;
SMSC_TRACE(HW, "scheduling mcast update");
pdata->multicast_update_pending = 1;
/* Request the hardware to stop, then perform the
* update when we get an RX_STOP interrupt */
temp = smsc911x_mac_read(pdata, MAC_CR);
temp &= ~(MAC_CR_RXEN_);
smsc911x_mac_write(pdata, MAC_CR, temp);
} else {
/* There is another update pending, this should now
* use the newer values */
}
} else {
/* Newer hardware revision - can write immediately */
smsc911x_rx_multicast_update(pdata);
}
spin_unlock_irqrestore(&pdata->mac_lock, flags);
}
static irqreturn_t smsc911x_irqhandler(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct smsc911x_data *pdata = netdev_priv(dev);
u32 intsts = smsc911x_reg_read(pdata, INT_STS);
u32 inten = smsc911x_reg_read(pdata, INT_EN);
int serviced = IRQ_NONE;
u32 temp;
if (unlikely(intsts & inten & INT_STS_SW_INT_)) {
temp = smsc911x_reg_read(pdata, INT_EN);
temp &= (~INT_EN_SW_INT_EN_);
smsc911x_reg_write(pdata, INT_EN, temp);
smsc911x_reg_write(pdata, INT_STS, INT_STS_SW_INT_);
pdata->software_irq_signal = 1;
smp_wmb();
serviced = IRQ_HANDLED;
}
if (unlikely(intsts & inten & INT_STS_RXSTOP_INT_)) {
/* Called when there is a multicast update scheduled and
* it is now safe to complete the update */
SMSC_TRACE(INTR, "RX Stop interrupt");
smsc911x_reg_write(pdata, INT_STS, INT_STS_RXSTOP_INT_);
if (pdata->multicast_update_pending)
smsc911x_rx_multicast_update_workaround(pdata);
serviced = IRQ_HANDLED;
}
if (intsts & inten & INT_STS_TDFA_) {
temp = smsc911x_reg_read(pdata, FIFO_INT);
temp |= FIFO_INT_TX_AVAIL_LEVEL_;
smsc911x_reg_write(pdata, FIFO_INT, temp);
smsc911x_reg_write(pdata, INT_STS, INT_STS_TDFA_);
netif_wake_queue(dev);
serviced = IRQ_HANDLED;
}
if (unlikely(intsts & inten & INT_STS_RXE_)) {
SMSC_TRACE(INTR, "RX Error interrupt");
smsc911x_reg_write(pdata, INT_STS, INT_STS_RXE_);
serviced = IRQ_HANDLED;
}
if (likely(intsts & inten & INT_STS_RSFL_)) {
if (likely(napi_schedule_prep(&pdata->napi))) {
/* Disable Rx interrupts */
temp = smsc911x_reg_read(pdata, INT_EN);
temp &= (~INT_EN_RSFL_EN_);
smsc911x_reg_write(pdata, INT_EN, temp);
/* Schedule a NAPI poll */
__napi_schedule(&pdata->napi);
} else {
SMSC_WARNING(RX_ERR,
"napi_schedule_prep failed");
}
serviced = IRQ_HANDLED;
}
return serviced;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void smsc911x_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
smsc911x_irqhandler(0, dev);
enable_irq(dev->irq);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static int smsc911x_set_mac_address(struct net_device *dev, void *p)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct sockaddr *addr = p;
/* On older hardware revisions we cannot change the mac address
* registers while receiving data. Newer devices can safely change
* this at any time. */
if (pdata->generation <= 1 && netif_running(dev))
return -EBUSY;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
spin_lock_irq(&pdata->mac_lock);
smsc911x_set_hw_mac_address(pdata, dev->dev_addr);
spin_unlock_irq(&pdata->mac_lock);
dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr);
return 0;
}
/* Standard ioctls for mii-tool */
static int smsc911x_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct smsc911x_data *pdata = netdev_priv(dev);
if (!netif_running(dev) || !pdata->phy_dev)
return -EINVAL;
return phy_mii_ioctl(pdata->phy_dev, if_mii(ifr), cmd);
}
static int
smsc911x_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct smsc911x_data *pdata = netdev_priv(dev);
cmd->maxtxpkt = 1;
cmd->maxrxpkt = 1;
return phy_ethtool_gset(pdata->phy_dev, cmd);
}
static int
smsc911x_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct smsc911x_data *pdata = netdev_priv(dev);
return phy_ethtool_sset(pdata->phy_dev, cmd);
}
static void smsc911x_ethtool_getdrvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strlcpy(info->driver, SMSC_CHIPNAME, sizeof(info->driver));
strlcpy(info->version, SMSC_DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, dev_name(dev->dev.parent),
sizeof(info->bus_info));
}
static int smsc911x_ethtool_nwayreset(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
return phy_start_aneg(pdata->phy_dev);
}
static u32 smsc911x_ethtool_getmsglevel(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
return pdata->msg_enable;
}
static void smsc911x_ethtool_setmsglevel(struct net_device *dev, u32 level)
{
struct smsc911x_data *pdata = netdev_priv(dev);
pdata->msg_enable = level;
}
static int smsc911x_ethtool_getregslen(struct net_device *dev)
{
return (((E2P_DATA - ID_REV) / 4 + 1) + (WUCSR - MAC_CR) + 1 + 32) *
sizeof(u32);
}
static void
smsc911x_ethtool_getregs(struct net_device *dev, struct ethtool_regs *regs,
void *buf)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct phy_device *phy_dev = pdata->phy_dev;
unsigned long flags;
unsigned int i;
unsigned int j = 0;
u32 *data = buf;
regs->version = pdata->idrev;
for (i = ID_REV; i <= E2P_DATA; i += (sizeof(u32)))
data[j++] = smsc911x_reg_read(pdata, i);
for (i = MAC_CR; i <= WUCSR; i++) {
spin_lock_irqsave(&pdata->mac_lock, flags);
data[j++] = smsc911x_mac_read(pdata, i);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
}
for (i = 0; i <= 31; i++)
data[j++] = smsc911x_mii_read(phy_dev->bus, phy_dev->addr, i);
}
static void smsc911x_eeprom_enable_access(struct smsc911x_data *pdata)
{
unsigned int temp = smsc911x_reg_read(pdata, GPIO_CFG);
temp &= ~GPIO_CFG_EEPR_EN_;
smsc911x_reg_write(pdata, GPIO_CFG, temp);
msleep(1);
}
static int smsc911x_eeprom_send_cmd(struct smsc911x_data *pdata, u32 op)
{
int timeout = 100;
u32 e2cmd;
SMSC_TRACE(DRV, "op 0x%08x", op);
if (smsc911x_reg_read(pdata, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
SMSC_WARNING(DRV, "Busy at start");
return -EBUSY;
}
e2cmd = op | E2P_CMD_EPC_BUSY_;
smsc911x_reg_write(pdata, E2P_CMD, e2cmd);
do {
msleep(1);
e2cmd = smsc911x_reg_read(pdata, E2P_CMD);
} while ((e2cmd & E2P_CMD_EPC_BUSY_) && (--timeout));
if (!timeout) {
SMSC_TRACE(DRV, "TIMED OUT");
return -EAGAIN;
}
if (e2cmd & E2P_CMD_EPC_TIMEOUT_) {
SMSC_TRACE(DRV, "Error occured during eeprom operation");
return -EINVAL;
}
return 0;
}
static int smsc911x_eeprom_read_location(struct smsc911x_data *pdata,
u8 address, u8 *data)
{
u32 op = E2P_CMD_EPC_CMD_READ_ | address;
int ret;
SMSC_TRACE(DRV, "address 0x%x", address);
ret = smsc911x_eeprom_send_cmd(pdata, op);
if (!ret)
data[address] = smsc911x_reg_read(pdata, E2P_DATA);
return ret;
}
static int smsc911x_eeprom_write_location(struct smsc911x_data *pdata,
u8 address, u8 data)
{
u32 op = E2P_CMD_EPC_CMD_ERASE_ | address;
u32 temp;
int ret;
SMSC_TRACE(DRV, "address 0x%x, data 0x%x", address, data);
ret = smsc911x_eeprom_send_cmd(pdata, op);
if (!ret) {
op = E2P_CMD_EPC_CMD_WRITE_ | address;
smsc911x_reg_write(pdata, E2P_DATA, (u32)data);
/* Workaround for hardware read-after-write restriction */
temp = smsc911x_reg_read(pdata, BYTE_TEST);
ret = smsc911x_eeprom_send_cmd(pdata, op);
}
return ret;
}
static int smsc911x_ethtool_get_eeprom_len(struct net_device *dev)
{
return SMSC911X_EEPROM_SIZE;
}
static int smsc911x_ethtool_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct smsc911x_data *pdata = netdev_priv(dev);
u8 eeprom_data[SMSC911X_EEPROM_SIZE];
int len;
int i;
smsc911x_eeprom_enable_access(pdata);
len = min(eeprom->len, SMSC911X_EEPROM_SIZE);
for (i = 0; i < len; i++) {
int ret = smsc911x_eeprom_read_location(pdata, i, eeprom_data);
if (ret < 0) {
eeprom->len = 0;
return ret;
}
}
memcpy(data, &eeprom_data[eeprom->offset], len);
eeprom->len = len;
return 0;
}
static int smsc911x_ethtool_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
int ret;
struct smsc911x_data *pdata = netdev_priv(dev);
smsc911x_eeprom_enable_access(pdata);
smsc911x_eeprom_send_cmd(pdata, E2P_CMD_EPC_CMD_EWEN_);
ret = smsc911x_eeprom_write_location(pdata, eeprom->offset, *data);
smsc911x_eeprom_send_cmd(pdata, E2P_CMD_EPC_CMD_EWDS_);
/* Single byte write, according to man page */
eeprom->len = 1;
return ret;
}
static const struct ethtool_ops smsc911x_ethtool_ops = {
.get_settings = smsc911x_ethtool_getsettings,
.set_settings = smsc911x_ethtool_setsettings,
.get_link = ethtool_op_get_link,
.get_drvinfo = smsc911x_ethtool_getdrvinfo,
.nway_reset = smsc911x_ethtool_nwayreset,
.get_msglevel = smsc911x_ethtool_getmsglevel,
.set_msglevel = smsc911x_ethtool_setmsglevel,
.get_regs_len = smsc911x_ethtool_getregslen,
.get_regs = smsc911x_ethtool_getregs,
.get_eeprom_len = smsc911x_ethtool_get_eeprom_len,
.get_eeprom = smsc911x_ethtool_get_eeprom,
.set_eeprom = smsc911x_ethtool_set_eeprom,
};
static const struct net_device_ops smsc911x_netdev_ops = {
.ndo_open = smsc911x_open,
.ndo_stop = smsc911x_stop,
.ndo_start_xmit = smsc911x_hard_start_xmit,
.ndo_get_stats = smsc911x_get_stats,
.ndo_set_multicast_list = smsc911x_set_multicast_list,
.ndo_do_ioctl = smsc911x_do_ioctl,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = smsc911x_set_mac_address,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = smsc911x_poll_controller,
#endif
};
/* copies the current mac address from hardware to dev->dev_addr */
static void __devinit smsc911x_read_mac_address(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
u32 mac_high16 = smsc911x_mac_read(pdata, ADDRH);
u32 mac_low32 = smsc911x_mac_read(pdata, ADDRL);
dev->dev_addr[0] = (u8)(mac_low32);
dev->dev_addr[1] = (u8)(mac_low32 >> 8);
dev->dev_addr[2] = (u8)(mac_low32 >> 16);
dev->dev_addr[3] = (u8)(mac_low32 >> 24);
dev->dev_addr[4] = (u8)(mac_high16);
dev->dev_addr[5] = (u8)(mac_high16 >> 8);
}
/* Initializing private device structures, only called from probe */
static int __devinit smsc911x_init(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int byte_test;
SMSC_TRACE(PROBE, "Driver Parameters:");
SMSC_TRACE(PROBE, "LAN base: 0x%08lX",
(unsigned long)pdata->ioaddr);
SMSC_TRACE(PROBE, "IRQ: %d", dev->irq);
SMSC_TRACE(PROBE, "PHY will be autodetected.");
spin_lock_init(&pdata->dev_lock);
if (pdata->ioaddr == 0) {
SMSC_WARNING(PROBE, "pdata->ioaddr: 0x00000000");
return -ENODEV;
}
/* Check byte ordering */
byte_test = smsc911x_reg_read(pdata, BYTE_TEST);
SMSC_TRACE(PROBE, "BYTE_TEST: 0x%08X", byte_test);
if (byte_test == 0x43218765) {
SMSC_TRACE(PROBE, "BYTE_TEST looks swapped, "
"applying WORD_SWAP");
smsc911x_reg_write(pdata, WORD_SWAP, 0xffffffff);
/* 1 dummy read of BYTE_TEST is needed after a write to
* WORD_SWAP before its contents are valid */
byte_test = smsc911x_reg_read(pdata, BYTE_TEST);
byte_test = smsc911x_reg_read(pdata, BYTE_TEST);
}
if (byte_test != 0x87654321) {
SMSC_WARNING(DRV, "BYTE_TEST: 0x%08X", byte_test);
if (((byte_test >> 16) & 0xFFFF) == (byte_test & 0xFFFF)) {
SMSC_WARNING(PROBE,
"top 16 bits equal to bottom 16 bits");
SMSC_TRACE(PROBE, "This may mean the chip is set "
"for 32 bit while the bus is reading 16 bit");
}
return -ENODEV;
}
/* Default generation to zero (all workarounds apply) */
pdata->generation = 0;
pdata->idrev = smsc911x_reg_read(pdata, ID_REV);
switch (pdata->idrev & 0xFFFF0000) {
case 0x01180000:
case 0x01170000:
case 0x01160000:
case 0x01150000:
/* LAN911[5678] family */
pdata->generation = pdata->idrev & 0x0000FFFF;
break;
case 0x118A0000:
case 0x117A0000:
case 0x116A0000:
case 0x115A0000:
/* LAN921[5678] family */
pdata->generation = 3;
break;
case 0x92100000:
case 0x92110000:
case 0x92200000:
case 0x92210000:
/* LAN9210/LAN9211/LAN9220/LAN9221 */
pdata->generation = 4;
break;
default:
SMSC_WARNING(PROBE, "LAN911x not identified, idrev: 0x%08X",
pdata->idrev);
return -ENODEV;
}
SMSC_TRACE(PROBE, "LAN911x identified, idrev: 0x%08X, generation: %d",
pdata->idrev, pdata->generation);
if (pdata->generation == 0)
SMSC_WARNING(PROBE,
"This driver is not intended for this chip revision");
/* workaround for platforms without an eeprom, where the mac address
* is stored elsewhere and set by the bootloader. This saves the
* mac address before resetting the device */
if (pdata->config.flags & SMSC911X_SAVE_MAC_ADDRESS)
smsc911x_read_mac_address(dev);
/* Reset the LAN911x */
if (smsc911x_soft_reset(pdata))
return -ENODEV;
/* Disable all interrupt sources until we bring the device up */
smsc911x_reg_write(pdata, INT_EN, 0);
ether_setup(dev);
dev->flags |= IFF_MULTICAST;
netif_napi_add(dev, &pdata->napi, smsc911x_poll, SMSC_NAPI_WEIGHT);
dev->netdev_ops = &smsc911x_netdev_ops;
dev->ethtool_ops = &smsc911x_ethtool_ops;
return 0;
}
static int __devexit smsc911x_drv_remove(struct platform_device *pdev)
{
struct net_device *dev;
struct smsc911x_data *pdata;
struct resource *res;
dev = platform_get_drvdata(pdev);
BUG_ON(!dev);
pdata = netdev_priv(dev);
BUG_ON(!pdata);
BUG_ON(!pdata->ioaddr);
BUG_ON(!pdata->phy_dev);
SMSC_TRACE(IFDOWN, "Stopping driver.");
phy_disconnect(pdata->phy_dev);
pdata->phy_dev = NULL;
mdiobus_unregister(pdata->mii_bus);
mdiobus_free(pdata->mii_bus);
platform_set_drvdata(pdev, NULL);
unregister_netdev(dev);
free_irq(dev->irq, dev);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"smsc911x-memory");
if (!res)
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(res->start, resource_size(res));
iounmap(pdata->ioaddr);
free_netdev(dev);
return 0;
}
static int __devinit smsc911x_drv_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct smsc911x_data *pdata;
struct smsc911x_platform_config *config = pdev->dev.platform_data;
struct resource *res, *irq_res;
unsigned int intcfg = 0;
int res_size, irq_flags;
int retval;
pr_info("%s: Driver version %s.\n", SMSC_CHIPNAME, SMSC_DRV_VERSION);
/* platform data specifies irq & dynamic bus configuration */
if (!pdev->dev.platform_data) {
pr_warning("%s: platform_data not provided\n", SMSC_CHIPNAME);
retval = -ENODEV;
goto out_0;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"smsc911x-memory");
if (!res)
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
pr_warning("%s: Could not allocate resource.\n",
SMSC_CHIPNAME);
retval = -ENODEV;
goto out_0;
}
res_size = resource_size(res);
irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!irq_res) {
pr_warning("%s: Could not allocate irq resource.\n",
SMSC_CHIPNAME);
retval = -ENODEV;
goto out_0;
}
if (!request_mem_region(res->start, res_size, SMSC_CHIPNAME)) {
retval = -EBUSY;
goto out_0;
}
dev = alloc_etherdev(sizeof(struct smsc911x_data));
if (!dev) {
pr_warning("%s: Could not allocate device.\n", SMSC_CHIPNAME);
retval = -ENOMEM;
goto out_release_io_1;
}
SET_NETDEV_DEV(dev, &pdev->dev);
pdata = netdev_priv(dev);
dev->irq = irq_res->start;
irq_flags = irq_res->flags & IRQF_TRIGGER_MASK;
pdata->ioaddr = ioremap_nocache(res->start, res_size);
/* copy config parameters across to pdata */
memcpy(&pdata->config, config, sizeof(pdata->config));
pdata->dev = dev;
pdata->msg_enable = ((1 << debug) - 1);
if (pdata->ioaddr == NULL) {
SMSC_WARNING(PROBE,
"Error smsc911x base address invalid");
retval = -ENOMEM;
goto out_free_netdev_2;
}
retval = smsc911x_init(dev);
if (retval < 0)
goto out_unmap_io_3;
/* configure irq polarity and type before connecting isr */
if (pdata->config.irq_polarity == SMSC911X_IRQ_POLARITY_ACTIVE_HIGH)
intcfg |= INT_CFG_IRQ_POL_;
if (pdata->config.irq_type == SMSC911X_IRQ_TYPE_PUSH_PULL)
intcfg |= INT_CFG_IRQ_TYPE_;
smsc911x_reg_write(pdata, INT_CFG, intcfg);
/* Ensure interrupts are globally disabled before connecting ISR */
smsc911x_reg_write(pdata, INT_EN, 0);
smsc911x_reg_write(pdata, INT_STS, 0xFFFFFFFF);
retval = request_irq(dev->irq, smsc911x_irqhandler,
irq_flags | IRQF_SHARED, dev->name, dev);
if (retval) {
SMSC_WARNING(PROBE,
"Unable to claim requested irq: %d", dev->irq);
goto out_unmap_io_3;
}
platform_set_drvdata(pdev, dev);
retval = register_netdev(dev);
if (retval) {
SMSC_WARNING(PROBE,
"Error %i registering device", retval);
goto out_unset_drvdata_4;
} else {
SMSC_TRACE(PROBE, "Network interface: \"%s\"", dev->name);
}
spin_lock_init(&pdata->mac_lock);
retval = smsc911x_mii_init(pdev, dev);
if (retval) {
SMSC_WARNING(PROBE,
"Error %i initialising mii", retval);
goto out_unregister_netdev_5;
}
spin_lock_irq(&pdata->mac_lock);
/* Check if mac address has been specified when bringing interface up */
if (is_valid_ether_addr(dev->dev_addr)) {
smsc911x_set_hw_mac_address(pdata, dev->dev_addr);
SMSC_TRACE(PROBE, "MAC Address is specified by configuration");
} else if (is_valid_ether_addr(pdata->config.mac)) {
memcpy(dev->dev_addr, pdata->config.mac, 6);
SMSC_TRACE(PROBE, "MAC Address specified by platform data");
} else {
/* Try reading mac address from device. if EEPROM is present
* it will already have been set */
smsc911x_read_mac_address(dev);
if (is_valid_ether_addr(dev->dev_addr)) {
/* eeprom values are valid so use them */
SMSC_TRACE(PROBE,
"Mac Address is read from LAN911x EEPROM");
} else {
/* eeprom values are invalid, generate random MAC */
random_ether_addr(dev->dev_addr);
smsc911x_set_hw_mac_address(pdata, dev->dev_addr);
SMSC_TRACE(PROBE,
"MAC Address is set to random_ether_addr");
}
}
spin_unlock_irq(&pdata->mac_lock);
dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr);
return 0;
out_unregister_netdev_5:
unregister_netdev(dev);
out_unset_drvdata_4:
platform_set_drvdata(pdev, NULL);
free_irq(dev->irq, dev);
out_unmap_io_3:
iounmap(pdata->ioaddr);
out_free_netdev_2:
free_netdev(dev);
out_release_io_1:
release_mem_region(res->start, resource_size(res));
out_0:
return retval;
}
#ifdef CONFIG_PM
/* This implementation assumes the devices remains powered on its VDDVARIO
* pins during suspend. */
/* TODO: implement freeze/thaw callbacks for hibernation.*/
static int smsc911x_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct smsc911x_data *pdata = netdev_priv(ndev);
/* enable wake on LAN, energy detection and the external PME
* signal. */
smsc911x_reg_write(pdata, PMT_CTRL,
PMT_CTRL_PM_MODE_D1_ | PMT_CTRL_WOL_EN_ |
PMT_CTRL_ED_EN_ | PMT_CTRL_PME_EN_);
return 0;
}
static int smsc911x_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct smsc911x_data *pdata = netdev_priv(ndev);
unsigned int to = 100;
/* Note 3.11 from the datasheet:
* "When the LAN9220 is in a power saving state, a write of any
* data to the BYTE_TEST register will wake-up the device."
*/
smsc911x_reg_write(pdata, BYTE_TEST, 0);
/* poll the READY bit in PMT_CTRL. Any other access to the device is
* forbidden while this bit isn't set. Try for 100ms and return -EIO
* if it failed. */
while (!(smsc911x_reg_read(pdata, PMT_CTRL) & PMT_CTRL_READY_) && --to)
udelay(1000);
return (to == 0) ? -EIO : 0;
}
static const struct dev_pm_ops smsc911x_pm_ops = {
.suspend = smsc911x_suspend,
.resume = smsc911x_resume,
};
#define SMSC911X_PM_OPS (&smsc911x_pm_ops)
#else
#define SMSC911X_PM_OPS NULL
#endif
static struct platform_driver smsc911x_driver = {
.probe = smsc911x_drv_probe,
.remove = __devexit_p(smsc911x_drv_remove),
.driver = {
.name = SMSC_CHIPNAME,
.owner = THIS_MODULE,
.pm = SMSC911X_PM_OPS,
},
};
/* Entry point for loading the module */
static int __init smsc911x_init_module(void)
{
return platform_driver_register(&smsc911x_driver);
}
/* entry point for unloading the module */
static void __exit smsc911x_cleanup_module(void)
{
platform_driver_unregister(&smsc911x_driver);
}
module_init(smsc911x_init_module);
module_exit(smsc911x_cleanup_module);