2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 12:33:59 +08:00
linux-next/drivers/isdn/hisax/elsa_ser.c
Johannes Berg 59ae1d127a networking: introduce and use skb_put_data()
A common pattern with skb_put() is to just want to memcpy()
some data into the new space, introduce skb_put_data() for
this.

An spatch similar to the one for skb_put_zero() converts many
of the places using it:

    @@
    identifier p, p2;
    expression len, skb, data;
    type t, t2;
    @@
    (
    -p = skb_put(skb, len);
    +p = skb_put_data(skb, data, len);
    |
    -p = (t)skb_put(skb, len);
    +p = skb_put_data(skb, data, len);
    )
    (
    p2 = (t2)p;
    -memcpy(p2, data, len);
    |
    -memcpy(p, data, len);
    )

    @@
    type t, t2;
    identifier p, p2;
    expression skb, data;
    @@
    t *p;
    ...
    (
    -p = skb_put(skb, sizeof(t));
    +p = skb_put_data(skb, data, sizeof(t));
    |
    -p = (t *)skb_put(skb, sizeof(t));
    +p = skb_put_data(skb, data, sizeof(t));
    )
    (
    p2 = (t2)p;
    -memcpy(p2, data, sizeof(*p));
    |
    -memcpy(p, data, sizeof(*p));
    )

    @@
    expression skb, len, data;
    @@
    -memcpy(skb_put(skb, len), data, len);
    +skb_put_data(skb, data, len);

(again, manually post-processed to retain some comments)

Reviewed-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-16 11:48:37 -04:00

660 lines
17 KiB
C

/* $Id: elsa_ser.c,v 2.14.2.3 2004/02/11 13:21:33 keil Exp $
*
* stuff for the serial modem on ELSA cards
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/serial.h>
#include <linux/serial_reg.h>
#include <linux/slab.h>
#define MAX_MODEM_BUF 256
#define WAKEUP_CHARS (MAX_MODEM_BUF / 2)
#define RS_ISR_PASS_LIMIT 256
#define BASE_BAUD (1843200 / 16)
//#define SERIAL_DEBUG_OPEN 1
//#define SERIAL_DEBUG_INTR 1
//#define SERIAL_DEBUG_FLOW 1
#undef SERIAL_DEBUG_OPEN
#undef SERIAL_DEBUG_INTR
#undef SERIAL_DEBUG_FLOW
#undef SERIAL_DEBUG_REG
//#define SERIAL_DEBUG_REG 1
#ifdef SERIAL_DEBUG_REG
static u_char deb[32];
const char *ModemIn[] = {"RBR", "IER", "IIR", "LCR", "MCR", "LSR", "MSR", "SCR"};
const char *ModemOut[] = {"THR", "IER", "FCR", "LCR", "MCR", "LSR", "MSR", "SCR"};
#endif
static char *MInit_1 = "AT&F&C1E0&D2\r\0";
static char *MInit_2 = "ATL2M1S64=13\r\0";
static char *MInit_3 = "AT+FCLASS=0\r\0";
static char *MInit_4 = "ATV1S2=128X1\r\0";
static char *MInit_5 = "AT\\V8\\N3\r\0";
static char *MInit_6 = "ATL0M0&G0%E1\r\0";
static char *MInit_7 = "AT%L1%M0%C3\r\0";
static char *MInit_speed28800 = "AT%G0%B28800\r\0";
static char *MInit_dialout = "ATs7=60 x1 d\r\0";
static char *MInit_dialin = "ATs7=60 x1 a\r\0";
static inline unsigned int serial_in(struct IsdnCardState *cs, int offset)
{
#ifdef SERIAL_DEBUG_REG
u_int val = inb(cs->hw.elsa.base + 8 + offset);
debugl1(cs, "in %s %02x", ModemIn[offset], val);
return (val);
#else
return inb(cs->hw.elsa.base + 8 + offset);
#endif
}
static inline unsigned int serial_inp(struct IsdnCardState *cs, int offset)
{
#ifdef SERIAL_DEBUG_REG
#ifdef ELSA_SERIAL_NOPAUSE_IO
u_int val = inb(cs->hw.elsa.base + 8 + offset);
debugl1(cs, "inp %s %02x", ModemIn[offset], val);
#else
u_int val = inb_p(cs->hw.elsa.base + 8 + offset);
debugl1(cs, "inP %s %02x", ModemIn[offset], val);
#endif
return (val);
#else
#ifdef ELSA_SERIAL_NOPAUSE_IO
return inb(cs->hw.elsa.base + 8 + offset);
#else
return inb_p(cs->hw.elsa.base + 8 + offset);
#endif
#endif
}
static inline void serial_out(struct IsdnCardState *cs, int offset, int value)
{
#ifdef SERIAL_DEBUG_REG
debugl1(cs, "out %s %02x", ModemOut[offset], value);
#endif
outb(value, cs->hw.elsa.base + 8 + offset);
}
static inline void serial_outp(struct IsdnCardState *cs, int offset,
int value)
{
#ifdef SERIAL_DEBUG_REG
#ifdef ELSA_SERIAL_NOPAUSE_IO
debugl1(cs, "outp %s %02x", ModemOut[offset], value);
#else
debugl1(cs, "outP %s %02x", ModemOut[offset], value);
#endif
#endif
#ifdef ELSA_SERIAL_NOPAUSE_IO
outb(value, cs->hw.elsa.base + 8 + offset);
#else
outb_p(value, cs->hw.elsa.base + 8 + offset);
#endif
}
/*
* This routine is called to set the UART divisor registers to match
* the specified baud rate for a serial port.
*/
static void change_speed(struct IsdnCardState *cs, int baud)
{
int quot = 0, baud_base;
unsigned cval, fcr = 0;
/* byte size and parity */
cval = 0x03;
/* Determine divisor based on baud rate */
baud_base = BASE_BAUD;
quot = baud_base / baud;
/* If the quotient is ever zero, default to 9600 bps */
if (!quot)
quot = baud_base / 9600;
/* Set up FIFO's */
if ((baud_base / quot) < 2400)
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_1;
else
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_8;
serial_outp(cs, UART_FCR, fcr);
/* CTS flow control flag and modem status interrupts */
cs->hw.elsa.IER &= ~UART_IER_MSI;
cs->hw.elsa.IER |= UART_IER_MSI;
serial_outp(cs, UART_IER, cs->hw.elsa.IER);
debugl1(cs, "modem quot=0x%x", quot);
serial_outp(cs, UART_LCR, cval | UART_LCR_DLAB);/* set DLAB */
serial_outp(cs, UART_DLL, quot & 0xff); /* LS of divisor */
serial_outp(cs, UART_DLM, quot >> 8); /* MS of divisor */
serial_outp(cs, UART_LCR, cval); /* reset DLAB */
serial_inp(cs, UART_RX);
}
static int mstartup(struct IsdnCardState *cs)
{
int retval = 0;
/*
* Clear the FIFO buffers and disable them
* (they will be reenabled in change_speed())
*/
serial_outp(cs, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT));
/*
* At this point there's no way the LSR could still be 0xFF;
* if it is, then bail out, because there's likely no UART
* here.
*/
if (serial_inp(cs, UART_LSR) == 0xff) {
retval = -ENODEV;
goto errout;
}
/*
* Clear the interrupt registers.
*/
(void) serial_inp(cs, UART_RX);
(void) serial_inp(cs, UART_IIR);
(void) serial_inp(cs, UART_MSR);
/*
* Now, initialize the UART
*/
serial_outp(cs, UART_LCR, UART_LCR_WLEN8); /* reset DLAB */
cs->hw.elsa.MCR = 0;
cs->hw.elsa.MCR = UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2;
serial_outp(cs, UART_MCR, cs->hw.elsa.MCR);
/*
* Finally, enable interrupts
*/
cs->hw.elsa.IER = UART_IER_MSI | UART_IER_RLSI | UART_IER_RDI;
serial_outp(cs, UART_IER, cs->hw.elsa.IER); /* enable interrupts */
/*
* And clear the interrupt registers again for luck.
*/
(void)serial_inp(cs, UART_LSR);
(void)serial_inp(cs, UART_RX);
(void)serial_inp(cs, UART_IIR);
(void)serial_inp(cs, UART_MSR);
cs->hw.elsa.transcnt = cs->hw.elsa.transp = 0;
cs->hw.elsa.rcvcnt = cs->hw.elsa.rcvp = 0;
/*
* and set the speed of the serial port
*/
change_speed(cs, BASE_BAUD);
cs->hw.elsa.MFlag = 1;
errout:
return retval;
}
/*
* This routine will shutdown a serial port; interrupts are disabled, and
* DTR is dropped if the hangup on close termio flag is on.
*/
static void mshutdown(struct IsdnCardState *cs)
{
#ifdef SERIAL_DEBUG_OPEN
printk(KERN_DEBUG"Shutting down serial ....");
#endif
/*
* clear delta_msr_wait queue to avoid mem leaks: we may free the irq
* here so the queue might never be waken up
*/
cs->hw.elsa.IER = 0;
serial_outp(cs, UART_IER, 0x00); /* disable all intrs */
cs->hw.elsa.MCR &= ~UART_MCR_OUT2;
/* disable break condition */
serial_outp(cs, UART_LCR, serial_inp(cs, UART_LCR) & ~UART_LCR_SBC);
cs->hw.elsa.MCR &= ~(UART_MCR_DTR | UART_MCR_RTS);
serial_outp(cs, UART_MCR, cs->hw.elsa.MCR);
/* disable FIFO's */
serial_outp(cs, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT));
serial_inp(cs, UART_RX); /* read data port to reset things */
#ifdef SERIAL_DEBUG_OPEN
printk(" done\n");
#endif
}
static inline int
write_modem(struct BCState *bcs) {
int ret = 0;
struct IsdnCardState *cs = bcs->cs;
int count, len, fp;
if (!bcs->tx_skb)
return 0;
if (bcs->tx_skb->len <= 0)
return 0;
len = bcs->tx_skb->len;
if (len > MAX_MODEM_BUF - cs->hw.elsa.transcnt)
len = MAX_MODEM_BUF - cs->hw.elsa.transcnt;
fp = cs->hw.elsa.transcnt + cs->hw.elsa.transp;
fp &= (MAX_MODEM_BUF - 1);
count = len;
if (count > MAX_MODEM_BUF - fp) {
count = MAX_MODEM_BUF - fp;
skb_copy_from_linear_data(bcs->tx_skb,
cs->hw.elsa.transbuf + fp, count);
skb_pull(bcs->tx_skb, count);
cs->hw.elsa.transcnt += count;
ret = count;
count = len - count;
fp = 0;
}
skb_copy_from_linear_data(bcs->tx_skb,
cs->hw.elsa.transbuf + fp, count);
skb_pull(bcs->tx_skb, count);
cs->hw.elsa.transcnt += count;
ret += count;
if (cs->hw.elsa.transcnt &&
!(cs->hw.elsa.IER & UART_IER_THRI)) {
cs->hw.elsa.IER |= UART_IER_THRI;
serial_outp(cs, UART_IER, cs->hw.elsa.IER);
}
return (ret);
}
static inline void
modem_fill(struct BCState *bcs) {
if (bcs->tx_skb) {
if (bcs->tx_skb->len) {
write_modem(bcs);
return;
} else {
if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->hw.hscx.count;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
}
}
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
bcs->hw.hscx.count = 0;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
write_modem(bcs);
} else {
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
schedule_event(bcs, B_XMTBUFREADY);
}
}
static inline void receive_chars(struct IsdnCardState *cs,
int *status)
{
unsigned char ch;
struct sk_buff *skb;
do {
ch = serial_in(cs, UART_RX);
if (cs->hw.elsa.rcvcnt >= MAX_MODEM_BUF)
break;
cs->hw.elsa.rcvbuf[cs->hw.elsa.rcvcnt++] = ch;
#ifdef SERIAL_DEBUG_INTR
printk("DR%02x:%02x...", ch, *status);
#endif
if (*status & (UART_LSR_BI | UART_LSR_PE |
UART_LSR_FE | UART_LSR_OE)) {
#ifdef SERIAL_DEBUG_INTR
printk("handling exept....");
#endif
}
*status = serial_inp(cs, UART_LSR);
} while (*status & UART_LSR_DR);
if (cs->hw.elsa.MFlag == 2) {
if (!(skb = dev_alloc_skb(cs->hw.elsa.rcvcnt)))
printk(KERN_WARNING "ElsaSER: receive out of memory\n");
else {
skb_put_data(skb, cs->hw.elsa.rcvbuf,
cs->hw.elsa.rcvcnt);
skb_queue_tail(&cs->hw.elsa.bcs->rqueue, skb);
}
schedule_event(cs->hw.elsa.bcs, B_RCVBUFREADY);
} else {
char tmp[128];
char *t = tmp;
t += sprintf(t, "modem read cnt %d", cs->hw.elsa.rcvcnt);
QuickHex(t, cs->hw.elsa.rcvbuf, cs->hw.elsa.rcvcnt);
debugl1(cs, "%s", tmp);
}
cs->hw.elsa.rcvcnt = 0;
}
static inline void transmit_chars(struct IsdnCardState *cs, int *intr_done)
{
int count;
debugl1(cs, "transmit_chars: p(%x) cnt(%x)", cs->hw.elsa.transp,
cs->hw.elsa.transcnt);
if (cs->hw.elsa.transcnt <= 0) {
cs->hw.elsa.IER &= ~UART_IER_THRI;
serial_out(cs, UART_IER, cs->hw.elsa.IER);
return;
}
count = 16;
do {
serial_outp(cs, UART_TX, cs->hw.elsa.transbuf[cs->hw.elsa.transp++]);
if (cs->hw.elsa.transp >= MAX_MODEM_BUF)
cs->hw.elsa.transp = 0;
if (--cs->hw.elsa.transcnt <= 0)
break;
} while (--count > 0);
if ((cs->hw.elsa.transcnt < WAKEUP_CHARS) && (cs->hw.elsa.MFlag == 2))
modem_fill(cs->hw.elsa.bcs);
#ifdef SERIAL_DEBUG_INTR
printk("THRE...");
#endif
if (intr_done)
*intr_done = 0;
if (cs->hw.elsa.transcnt <= 0) {
cs->hw.elsa.IER &= ~UART_IER_THRI;
serial_outp(cs, UART_IER, cs->hw.elsa.IER);
}
}
static void rs_interrupt_elsa(struct IsdnCardState *cs)
{
int status, iir, msr;
int pass_counter = 0;
#ifdef SERIAL_DEBUG_INTR
printk(KERN_DEBUG "rs_interrupt_single(%d)...", cs->irq);
#endif
do {
status = serial_inp(cs, UART_LSR);
debugl1(cs, "rs LSR %02x", status);
#ifdef SERIAL_DEBUG_INTR
printk("status = %x...", status);
#endif
if (status & UART_LSR_DR)
receive_chars(cs, &status);
if (status & UART_LSR_THRE)
transmit_chars(cs, NULL);
if (pass_counter++ > RS_ISR_PASS_LIMIT) {
printk("rs_single loop break.\n");
break;
}
iir = serial_inp(cs, UART_IIR);
debugl1(cs, "rs IIR %02x", iir);
if ((iir & 0xf) == 0) {
msr = serial_inp(cs, UART_MSR);
debugl1(cs, "rs MSR %02x", msr);
}
} while (!(iir & UART_IIR_NO_INT));
#ifdef SERIAL_DEBUG_INTR
printk("end.\n");
#endif
}
extern int open_hscxstate(struct IsdnCardState *cs, struct BCState *bcs);
extern void modehscx(struct BCState *bcs, int mode, int bc);
extern void hscx_l2l1(struct PStack *st, int pr, void *arg);
static void
close_elsastate(struct BCState *bcs)
{
modehscx(bcs, 0, bcs->channel);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
if (bcs->hw.hscx.rcvbuf) {
if (bcs->mode != L1_MODE_MODEM)
kfree(bcs->hw.hscx.rcvbuf);
bcs->hw.hscx.rcvbuf = NULL;
}
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
static void
modem_write_cmd(struct IsdnCardState *cs, u_char *buf, int len) {
int count, fp;
u_char *msg = buf;
if (!len)
return;
if (len > (MAX_MODEM_BUF - cs->hw.elsa.transcnt)) {
return;
}
fp = cs->hw.elsa.transcnt + cs->hw.elsa.transp;
fp &= (MAX_MODEM_BUF - 1);
count = len;
if (count > MAX_MODEM_BUF - fp) {
count = MAX_MODEM_BUF - fp;
memcpy(cs->hw.elsa.transbuf + fp, msg, count);
cs->hw.elsa.transcnt += count;
msg += count;
count = len - count;
fp = 0;
}
memcpy(cs->hw.elsa.transbuf + fp, msg, count);
cs->hw.elsa.transcnt += count;
if (cs->hw.elsa.transcnt &&
!(cs->hw.elsa.IER & UART_IER_THRI)) {
cs->hw.elsa.IER |= UART_IER_THRI;
serial_outp(cs, UART_IER, cs->hw.elsa.IER);
}
}
static void
modem_set_init(struct IsdnCardState *cs) {
int timeout;
#define RCV_DELAY 20
modem_write_cmd(cs, MInit_1, strlen(MInit_1));
timeout = 1000;
while (timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
modem_write_cmd(cs, MInit_2, strlen(MInit_2));
timeout = 1000;
while (timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
modem_write_cmd(cs, MInit_3, strlen(MInit_3));
timeout = 1000;
while (timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
modem_write_cmd(cs, MInit_4, strlen(MInit_4));
timeout = 1000;
while (timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
modem_write_cmd(cs, MInit_5, strlen(MInit_5));
timeout = 1000;
while (timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
modem_write_cmd(cs, MInit_6, strlen(MInit_6));
timeout = 1000;
while (timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
modem_write_cmd(cs, MInit_7, strlen(MInit_7));
timeout = 1000;
while (timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
}
static void
modem_set_dial(struct IsdnCardState *cs, int outgoing) {
int timeout;
#define RCV_DELAY 20
modem_write_cmd(cs, MInit_speed28800, strlen(MInit_speed28800));
timeout = 1000;
while (timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
if (outgoing)
modem_write_cmd(cs, MInit_dialout, strlen(MInit_dialout));
else
modem_write_cmd(cs, MInit_dialin, strlen(MInit_dialin));
timeout = 1000;
while (timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
}
static void
modem_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
struct sk_buff *skb = arg;
u_long flags;
if (pr == (PH_DATA | REQUEST)) {
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->hw.hscx.count = 0;
write_modem(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
} else if (pr == (PH_ACTIVATE | REQUEST)) {
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
set_arcofi(bcs->cs, st->l1.bc);
mstartup(bcs->cs);
modem_set_dial(bcs->cs, test_bit(FLG_ORIG, &st->l2.flag));
bcs->cs->hw.elsa.MFlag = 2;
} else if (pr == (PH_DEACTIVATE | REQUEST)) {
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
bcs->cs->dc.isac.arcofi_bc = st->l1.bc;
arcofi_fsm(bcs->cs, ARCOFI_START, &ARCOFI_XOP_0);
wait_event_interruptible(bcs->cs->dc.isac.arcofi_wait,
bcs->cs->dc.isac.arcofi_state == ARCOFI_NOP);
bcs->cs->hw.elsa.MFlag = 1;
} else {
printk(KERN_WARNING "ElsaSer: unknown pr %x\n", pr);
}
}
static int
setstack_elsa(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
switch (st->l1.mode) {
case L1_MODE_HDLC:
case L1_MODE_TRANS:
if (open_hscxstate(st->l1.hardware, bcs))
return (-1);
st->l2.l2l1 = hscx_l2l1;
break;
case L1_MODE_MODEM:
bcs->mode = L1_MODE_MODEM;
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
bcs->hw.hscx.rcvbuf = bcs->cs->hw.elsa.rcvbuf;
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->hw.hscx.rcvidx = 0;
bcs->tx_cnt = 0;
bcs->cs->hw.elsa.bcs = bcs;
st->l2.l2l1 = modem_l2l1;
break;
}
st->l1.bcs = bcs;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
static void
init_modem(struct IsdnCardState *cs) {
cs->bcs[0].BC_SetStack = setstack_elsa;
cs->bcs[1].BC_SetStack = setstack_elsa;
cs->bcs[0].BC_Close = close_elsastate;
cs->bcs[1].BC_Close = close_elsastate;
if (!(cs->hw.elsa.rcvbuf = kmalloc(MAX_MODEM_BUF,
GFP_ATOMIC))) {
printk(KERN_WARNING
"Elsa: No modem mem hw.elsa.rcvbuf\n");
return;
}
if (!(cs->hw.elsa.transbuf = kmalloc(MAX_MODEM_BUF,
GFP_ATOMIC))) {
printk(KERN_WARNING
"Elsa: No modem mem hw.elsa.transbuf\n");
kfree(cs->hw.elsa.rcvbuf);
cs->hw.elsa.rcvbuf = NULL;
return;
}
if (mstartup(cs)) {
printk(KERN_WARNING "Elsa: problem startup modem\n");
}
modem_set_init(cs);
}
static void
release_modem(struct IsdnCardState *cs) {
cs->hw.elsa.MFlag = 0;
if (cs->hw.elsa.transbuf) {
if (cs->hw.elsa.rcvbuf) {
mshutdown(cs);
kfree(cs->hw.elsa.rcvbuf);
cs->hw.elsa.rcvbuf = NULL;
}
kfree(cs->hw.elsa.transbuf);
cs->hw.elsa.transbuf = NULL;
}
}