2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 18:43:59 +08:00
linux-next/drivers/net/ieee802154/mrf24j40.c
Alexander Aring c8fc84ed60 mac802154: add hardware address filter flag
Overdue introduction for address filtering hardware flag. Furthermore we
will check and set address filtering on interface up. This patch
prepares that we can check if an transceiver supports address filtering
option. Currently all mainline driver supports hardware address filtering.

Signed-off-by: Alexander Aring <alex.aring@gmail.com>
Cc: Alan Ott <alan@signal11.us>
Cc: Varka Bhadram <varkabhadram@gmail.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2014-10-29 23:07:44 +01:00

828 lines
20 KiB
C

/*
* Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
*
* Copyright (C) 2012 Alan Ott <alan@signal11.us>
* Signal 11 Software
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/spi/spi.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/ieee802154.h>
#include <net/cfg802154.h>
#include <net/mac802154.h>
/* MRF24J40 Short Address Registers */
#define REG_RXMCR 0x00 /* Receive MAC control */
#define REG_PANIDL 0x01 /* PAN ID (low) */
#define REG_PANIDH 0x02 /* PAN ID (high) */
#define REG_SADRL 0x03 /* Short address (low) */
#define REG_SADRH 0x04 /* Short address (high) */
#define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
#define REG_TXMCR 0x11 /* Transmit MAC control */
#define REG_PACON0 0x16 /* Power Amplifier Control */
#define REG_PACON1 0x17 /* Power Amplifier Control */
#define REG_PACON2 0x18 /* Power Amplifier Control */
#define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
#define REG_TXSTAT 0x24 /* TX MAC Status Register */
#define REG_SOFTRST 0x2A /* Soft Reset */
#define REG_TXSTBL 0x2E /* TX Stabilization */
#define REG_INTSTAT 0x31 /* Interrupt Status */
#define REG_INTCON 0x32 /* Interrupt Control */
#define REG_GPIO 0x33 /* GPIO */
#define REG_TRISGPIO 0x34 /* GPIO direction */
#define REG_RFCTL 0x36 /* RF Control Mode Register */
#define REG_BBREG1 0x39 /* Baseband Registers */
#define REG_BBREG2 0x3A /* */
#define REG_BBREG6 0x3E /* */
#define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
/* MRF24J40 Long Address Registers */
#define REG_RFCON0 0x200 /* RF Control Registers */
#define REG_RFCON1 0x201
#define REG_RFCON2 0x202
#define REG_RFCON3 0x203
#define REG_RFCON5 0x205
#define REG_RFCON6 0x206
#define REG_RFCON7 0x207
#define REG_RFCON8 0x208
#define REG_RSSI 0x210
#define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
#define REG_SLPCON1 0x220
#define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
#define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
#define REG_TESTMODE 0x22F /* Test mode */
#define REG_RX_FIFO 0x300 /* Receive FIFO */
/* Device configuration: Only channels 11-26 on page 0 are supported. */
#define MRF24J40_CHAN_MIN 11
#define MRF24J40_CHAN_MAX 26
#define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
- ((u32)1 << MRF24J40_CHAN_MIN))
#define TX_FIFO_SIZE 128 /* From datasheet */
#define RX_FIFO_SIZE 144 /* From datasheet */
#define SET_CHANNEL_DELAY_US 192 /* From datasheet */
enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
/* Device Private Data */
struct mrf24j40 {
struct spi_device *spi;
struct ieee802154_hw *hw;
struct mutex buffer_mutex; /* only used to protect buf */
struct completion tx_complete;
u8 *buf; /* 3 bytes. Used for SPI single-register transfers. */
};
/* Read/Write SPI Commands for Short and Long Address registers. */
#define MRF24J40_READSHORT(reg) ((reg) << 1)
#define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
#define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
#define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
/* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
#define MAX_SPI_SPEED_HZ 10000000
#define printdev(X) (&X->spi->dev)
static int write_short_reg(struct mrf24j40 *devrec, u8 reg, u8 value)
{
int ret;
struct spi_message msg;
struct spi_transfer xfer = {
.len = 2,
.tx_buf = devrec->buf,
.rx_buf = devrec->buf,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
mutex_lock(&devrec->buffer_mutex);
devrec->buf[0] = MRF24J40_WRITESHORT(reg);
devrec->buf[1] = value;
ret = spi_sync(devrec->spi, &msg);
if (ret)
dev_err(printdev(devrec),
"SPI write Failed for short register 0x%hhx\n", reg);
mutex_unlock(&devrec->buffer_mutex);
return ret;
}
static int read_short_reg(struct mrf24j40 *devrec, u8 reg, u8 *val)
{
int ret = -1;
struct spi_message msg;
struct spi_transfer xfer = {
.len = 2,
.tx_buf = devrec->buf,
.rx_buf = devrec->buf,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
mutex_lock(&devrec->buffer_mutex);
devrec->buf[0] = MRF24J40_READSHORT(reg);
devrec->buf[1] = 0;
ret = spi_sync(devrec->spi, &msg);
if (ret)
dev_err(printdev(devrec),
"SPI read Failed for short register 0x%hhx\n", reg);
else
*val = devrec->buf[1];
mutex_unlock(&devrec->buffer_mutex);
return ret;
}
static int read_long_reg(struct mrf24j40 *devrec, u16 reg, u8 *value)
{
int ret;
u16 cmd;
struct spi_message msg;
struct spi_transfer xfer = {
.len = 3,
.tx_buf = devrec->buf,
.rx_buf = devrec->buf,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
cmd = MRF24J40_READLONG(reg);
mutex_lock(&devrec->buffer_mutex);
devrec->buf[0] = cmd >> 8 & 0xff;
devrec->buf[1] = cmd & 0xff;
devrec->buf[2] = 0;
ret = spi_sync(devrec->spi, &msg);
if (ret)
dev_err(printdev(devrec),
"SPI read Failed for long register 0x%hx\n", reg);
else
*value = devrec->buf[2];
mutex_unlock(&devrec->buffer_mutex);
return ret;
}
static int write_long_reg(struct mrf24j40 *devrec, u16 reg, u8 val)
{
int ret;
u16 cmd;
struct spi_message msg;
struct spi_transfer xfer = {
.len = 3,
.tx_buf = devrec->buf,
.rx_buf = devrec->buf,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
cmd = MRF24J40_WRITELONG(reg);
mutex_lock(&devrec->buffer_mutex);
devrec->buf[0] = cmd >> 8 & 0xff;
devrec->buf[1] = cmd & 0xff;
devrec->buf[2] = val;
ret = spi_sync(devrec->spi, &msg);
if (ret)
dev_err(printdev(devrec),
"SPI write Failed for long register 0x%hx\n", reg);
mutex_unlock(&devrec->buffer_mutex);
return ret;
}
/* This function relies on an undocumented write method. Once a write command
and address is set, as many bytes of data as desired can be clocked into
the device. The datasheet only shows setting one byte at a time. */
static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
const u8 *data, size_t length)
{
int ret;
u16 cmd;
u8 lengths[2];
struct spi_message msg;
struct spi_transfer addr_xfer = {
.len = 2,
.tx_buf = devrec->buf,
};
struct spi_transfer lengths_xfer = {
.len = 2,
.tx_buf = &lengths, /* TODO: Is DMA really required for SPI? */
};
struct spi_transfer data_xfer = {
.len = length,
.tx_buf = data,
};
/* Range check the length. 2 bytes are used for the length fields.*/
if (length > TX_FIFO_SIZE-2) {
dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
length = TX_FIFO_SIZE-2;
}
spi_message_init(&msg);
spi_message_add_tail(&addr_xfer, &msg);
spi_message_add_tail(&lengths_xfer, &msg);
spi_message_add_tail(&data_xfer, &msg);
cmd = MRF24J40_WRITELONG(reg);
mutex_lock(&devrec->buffer_mutex);
devrec->buf[0] = cmd >> 8 & 0xff;
devrec->buf[1] = cmd & 0xff;
lengths[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
lengths[1] = length; /* Total length */
ret = spi_sync(devrec->spi, &msg);
if (ret)
dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
mutex_unlock(&devrec->buffer_mutex);
return ret;
}
static int mrf24j40_read_rx_buf(struct mrf24j40 *devrec,
u8 *data, u8 *len, u8 *lqi)
{
u8 rx_len;
u8 addr[2];
u8 lqi_rssi[2];
u16 cmd;
int ret;
struct spi_message msg;
struct spi_transfer addr_xfer = {
.len = 2,
.tx_buf = &addr,
};
struct spi_transfer data_xfer = {
.len = 0x0, /* set below */
.rx_buf = data,
};
struct spi_transfer status_xfer = {
.len = 2,
.rx_buf = &lqi_rssi,
};
/* Get the length of the data in the RX FIFO. The length in this
* register exclues the 1-byte length field at the beginning. */
ret = read_long_reg(devrec, REG_RX_FIFO, &rx_len);
if (ret)
goto out;
/* Range check the RX FIFO length, accounting for the one-byte
* length field at the begining. */
if (rx_len > RX_FIFO_SIZE-1) {
dev_err(printdev(devrec), "Invalid length read from device. Performing short read.\n");
rx_len = RX_FIFO_SIZE-1;
}
if (rx_len > *len) {
/* Passed in buffer wasn't big enough. Should never happen. */
dev_err(printdev(devrec), "Buffer not big enough. Performing short read\n");
rx_len = *len;
}
/* Set up the commands to read the data. */
cmd = MRF24J40_READLONG(REG_RX_FIFO+1);
addr[0] = cmd >> 8 & 0xff;
addr[1] = cmd & 0xff;
data_xfer.len = rx_len;
spi_message_init(&msg);
spi_message_add_tail(&addr_xfer, &msg);
spi_message_add_tail(&data_xfer, &msg);
spi_message_add_tail(&status_xfer, &msg);
ret = spi_sync(devrec->spi, &msg);
if (ret) {
dev_err(printdev(devrec), "SPI RX Buffer Read Failed.\n");
goto out;
}
*lqi = lqi_rssi[0];
*len = rx_len;
#ifdef DEBUG
print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ",
DUMP_PREFIX_OFFSET, 16, 1, data, *len, 0);
pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
lqi_rssi[0], lqi_rssi[1]);
#endif
out:
return ret;
}
static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
{
struct mrf24j40 *devrec = hw->priv;
u8 val;
int ret = 0;
dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
ret = write_tx_buf(devrec, 0x000, skb->data, skb->len);
if (ret)
goto err;
reinit_completion(&devrec->tx_complete);
/* Set TXNTRIG bit of TXNCON to send packet */
ret = read_short_reg(devrec, REG_TXNCON, &val);
if (ret)
goto err;
val |= 0x1;
/* Set TXNACKREQ if the ACK bit is set in the packet. */
if (skb->data[0] & IEEE802154_FC_ACK_REQ)
val |= 0x4;
write_short_reg(devrec, REG_TXNCON, val);
/* Wait for the device to send the TX complete interrupt. */
ret = wait_for_completion_interruptible_timeout(
&devrec->tx_complete,
5 * HZ);
if (ret == -ERESTARTSYS)
goto err;
if (ret == 0) {
dev_warn(printdev(devrec), "Timeout waiting for TX interrupt\n");
ret = -ETIMEDOUT;
goto err;
}
/* Check for send error from the device. */
ret = read_short_reg(devrec, REG_TXSTAT, &val);
if (ret)
goto err;
if (val & 0x1) {
dev_dbg(printdev(devrec), "Error Sending. Retry count exceeded\n");
ret = -ECOMM; /* TODO: Better error code ? */
} else
dev_dbg(printdev(devrec), "Packet Sent\n");
err:
return ret;
}
static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
{
/* TODO: */
pr_warn("mrf24j40: ed not implemented\n");
*level = 0;
return 0;
}
static int mrf24j40_start(struct ieee802154_hw *hw)
{
struct mrf24j40 *devrec = hw->priv;
u8 val;
int ret;
dev_dbg(printdev(devrec), "start\n");
ret = read_short_reg(devrec, REG_INTCON, &val);
if (ret)
return ret;
val &= ~(0x1|0x8); /* Clear TXNIE and RXIE. Enable interrupts */
write_short_reg(devrec, REG_INTCON, val);
return 0;
}
static void mrf24j40_stop(struct ieee802154_hw *hw)
{
struct mrf24j40 *devrec = hw->priv;
u8 val;
int ret;
dev_dbg(printdev(devrec), "stop\n");
ret = read_short_reg(devrec, REG_INTCON, &val);
if (ret)
return;
val |= 0x1|0x8; /* Set TXNIE and RXIE. Disable Interrupts */
write_short_reg(devrec, REG_INTCON, val);
}
static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
{
struct mrf24j40 *devrec = hw->priv;
u8 val;
int ret;
dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
WARN_ON(page != 0);
WARN_ON(channel < MRF24J40_CHAN_MIN);
WARN_ON(channel > MRF24J40_CHAN_MAX);
/* Set Channel TODO */
val = (channel-11) << 4 | 0x03;
write_long_reg(devrec, REG_RFCON0, val);
/* RF Reset */
ret = read_short_reg(devrec, REG_RFCTL, &val);
if (ret)
return ret;
val |= 0x04;
write_short_reg(devrec, REG_RFCTL, val);
val &= ~0x04;
write_short_reg(devrec, REG_RFCTL, val);
udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
return 0;
}
static int mrf24j40_filter(struct ieee802154_hw *hw,
struct ieee802154_hw_addr_filt *filt,
unsigned long changed)
{
struct mrf24j40 *devrec = hw->priv;
dev_dbg(printdev(devrec), "filter\n");
if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
/* Short Addr */
u8 addrh, addrl;
addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
addrl = le16_to_cpu(filt->short_addr) & 0xff;
write_short_reg(devrec, REG_SADRH, addrh);
write_short_reg(devrec, REG_SADRL, addrl);
dev_dbg(printdev(devrec),
"Set short addr to %04hx\n", filt->short_addr);
}
if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
/* Device Address */
u8 i, addr[8];
memcpy(addr, &filt->ieee_addr, 8);
for (i = 0; i < 8; i++)
write_short_reg(devrec, REG_EADR0 + i, addr[i]);
#ifdef DEBUG
pr_debug("Set long addr to: ");
for (i = 0; i < 8; i++)
pr_debug("%02hhx ", addr[7 - i]);
pr_debug("\n");
#endif
}
if (changed & IEEE802154_AFILT_PANID_CHANGED) {
/* PAN ID */
u8 panidl, panidh;
panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
panidl = le16_to_cpu(filt->pan_id) & 0xff;
write_short_reg(devrec, REG_PANIDH, panidh);
write_short_reg(devrec, REG_PANIDL, panidl);
dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
}
if (changed & IEEE802154_AFILT_PANC_CHANGED) {
/* Pan Coordinator */
u8 val;
int ret;
ret = read_short_reg(devrec, REG_RXMCR, &val);
if (ret)
return ret;
if (filt->pan_coord)
val |= 0x8;
else
val &= ~0x8;
write_short_reg(devrec, REG_RXMCR, val);
/* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
* REG_ORDER is maintained as default (no beacon/superframe).
*/
dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
filt->pan_coord ? "on" : "off");
}
return 0;
}
static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
{
u8 len = RX_FIFO_SIZE;
u8 lqi = 0;
u8 val;
int ret = 0;
struct sk_buff *skb;
/* Turn off reception of packets off the air. This prevents the
* device from overwriting the buffer while we're reading it. */
ret = read_short_reg(devrec, REG_BBREG1, &val);
if (ret)
goto out;
val |= 4; /* SET RXDECINV */
write_short_reg(devrec, REG_BBREG1, val);
skb = dev_alloc_skb(len);
if (!skb) {
ret = -ENOMEM;
goto out;
}
ret = mrf24j40_read_rx_buf(devrec, skb_put(skb, len), &len, &lqi);
if (ret < 0) {
dev_err(printdev(devrec), "Failure reading RX FIFO\n");
kfree_skb(skb);
ret = -EINVAL;
goto out;
}
/* Cut off the checksum */
skb_trim(skb, len-2);
/* TODO: Other drivers call ieee20154_rx_irqsafe() here (eg: cc2040,
* also from a workqueue). I think irqsafe is not necessary here.
* Can someone confirm? */
ieee802154_rx_irqsafe(devrec->hw, skb, lqi);
dev_dbg(printdev(devrec), "RX Handled\n");
out:
/* Turn back on reception of packets off the air. */
ret = read_short_reg(devrec, REG_BBREG1, &val);
if (ret)
return ret;
val &= ~0x4; /* Clear RXDECINV */
write_short_reg(devrec, REG_BBREG1, val);
return ret;
}
static const struct ieee802154_ops mrf24j40_ops = {
.owner = THIS_MODULE,
.xmit_sync = mrf24j40_tx,
.ed = mrf24j40_ed,
.start = mrf24j40_start,
.stop = mrf24j40_stop,
.set_channel = mrf24j40_set_channel,
.set_hw_addr_filt = mrf24j40_filter,
};
static irqreturn_t mrf24j40_isr(int irq, void *data)
{
struct mrf24j40 *devrec = data;
u8 intstat;
int ret;
/* Read the interrupt status */
ret = read_short_reg(devrec, REG_INTSTAT, &intstat);
if (ret)
goto out;
/* Check for TX complete */
if (intstat & 0x1)
complete(&devrec->tx_complete);
/* Check for Rx */
if (intstat & 0x8)
mrf24j40_handle_rx(devrec);
out:
return IRQ_HANDLED;
}
static int mrf24j40_hw_init(struct mrf24j40 *devrec)
{
int ret;
u8 val;
/* Initialize the device.
From datasheet section 3.2: Initialization. */
ret = write_short_reg(devrec, REG_SOFTRST, 0x07);
if (ret)
goto err_ret;
ret = write_short_reg(devrec, REG_PACON2, 0x98);
if (ret)
goto err_ret;
ret = write_short_reg(devrec, REG_TXSTBL, 0x95);
if (ret)
goto err_ret;
ret = write_long_reg(devrec, REG_RFCON0, 0x03);
if (ret)
goto err_ret;
ret = write_long_reg(devrec, REG_RFCON1, 0x01);
if (ret)
goto err_ret;
ret = write_long_reg(devrec, REG_RFCON2, 0x80);
if (ret)
goto err_ret;
ret = write_long_reg(devrec, REG_RFCON6, 0x90);
if (ret)
goto err_ret;
ret = write_long_reg(devrec, REG_RFCON7, 0x80);
if (ret)
goto err_ret;
ret = write_long_reg(devrec, REG_RFCON8, 0x10);
if (ret)
goto err_ret;
ret = write_long_reg(devrec, REG_SLPCON1, 0x21);
if (ret)
goto err_ret;
ret = write_short_reg(devrec, REG_BBREG2, 0x80);
if (ret)
goto err_ret;
ret = write_short_reg(devrec, REG_CCAEDTH, 0x60);
if (ret)
goto err_ret;
ret = write_short_reg(devrec, REG_BBREG6, 0x40);
if (ret)
goto err_ret;
ret = write_short_reg(devrec, REG_RFCTL, 0x04);
if (ret)
goto err_ret;
ret = write_short_reg(devrec, REG_RFCTL, 0x0);
if (ret)
goto err_ret;
udelay(192);
/* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
ret = read_short_reg(devrec, REG_RXMCR, &val);
if (ret)
goto err_ret;
val &= ~0x3; /* Clear RX mode (normal) */
ret = write_short_reg(devrec, REG_RXMCR, val);
if (ret)
goto err_ret;
if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
/* Enable external amplifier.
* From MRF24J40MC datasheet section 1.3: Operation.
*/
read_long_reg(devrec, REG_TESTMODE, &val);
val |= 0x7; /* Configure GPIO 0-2 to control amplifier */
write_long_reg(devrec, REG_TESTMODE, val);
read_short_reg(devrec, REG_TRISGPIO, &val);
val |= 0x8; /* Set GPIO3 as output. */
write_short_reg(devrec, REG_TRISGPIO, val);
read_short_reg(devrec, REG_GPIO, &val);
val |= 0x8; /* Set GPIO3 HIGH to enable U5 voltage regulator */
write_short_reg(devrec, REG_GPIO, val);
/* Reduce TX pwr to meet FCC requirements.
* From MRF24J40MC datasheet section 3.1.1
*/
write_long_reg(devrec, REG_RFCON3, 0x28);
}
return 0;
err_ret:
return ret;
}
static int mrf24j40_probe(struct spi_device *spi)
{
int ret = -ENOMEM;
struct mrf24j40 *devrec;
dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
devrec = devm_kzalloc(&spi->dev, sizeof(struct mrf24j40), GFP_KERNEL);
if (!devrec)
goto err_ret;
devrec->buf = devm_kzalloc(&spi->dev, 3, GFP_KERNEL);
if (!devrec->buf)
goto err_ret;
spi->mode = SPI_MODE_0; /* TODO: Is this appropriate for right here? */
if (spi->max_speed_hz > MAX_SPI_SPEED_HZ)
spi->max_speed_hz = MAX_SPI_SPEED_HZ;
mutex_init(&devrec->buffer_mutex);
init_completion(&devrec->tx_complete);
devrec->spi = spi;
spi_set_drvdata(spi, devrec);
/* Register with the 802154 subsystem */
devrec->hw = ieee802154_alloc_hw(0, &mrf24j40_ops);
if (!devrec->hw)
goto err_ret;
devrec->hw->priv = devrec;
devrec->hw->parent = &devrec->spi->dev;
devrec->hw->phy->channels_supported[0] = CHANNEL_MASK;
devrec->hw->flags = IEEE802154_HW_OMIT_CKSUM | IEEE802154_HW_AACK |
IEEE802154_HW_AFILT;
dev_dbg(printdev(devrec), "registered mrf24j40\n");
ret = ieee802154_register_hw(devrec->hw);
if (ret)
goto err_register_device;
ret = mrf24j40_hw_init(devrec);
if (ret)
goto err_hw_init;
ret = devm_request_threaded_irq(&spi->dev,
spi->irq,
NULL,
mrf24j40_isr,
IRQF_TRIGGER_LOW|IRQF_ONESHOT,
dev_name(&spi->dev),
devrec);
if (ret) {
dev_err(printdev(devrec), "Unable to get IRQ");
goto err_irq;
}
return 0;
err_irq:
err_hw_init:
ieee802154_unregister_hw(devrec->hw);
err_register_device:
ieee802154_free_hw(devrec->hw);
err_ret:
return ret;
}
static int mrf24j40_remove(struct spi_device *spi)
{
struct mrf24j40 *devrec = spi_get_drvdata(spi);
dev_dbg(printdev(devrec), "remove\n");
ieee802154_unregister_hw(devrec->hw);
ieee802154_free_hw(devrec->hw);
/* TODO: Will ieee802154_free_device() wait until ->xmit() is
* complete? */
return 0;
}
static const struct spi_device_id mrf24j40_ids[] = {
{ "mrf24j40", MRF24J40 },
{ "mrf24j40ma", MRF24J40MA },
{ "mrf24j40mc", MRF24J40MC },
{ },
};
MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
static struct spi_driver mrf24j40_driver = {
.driver = {
.name = "mrf24j40",
.bus = &spi_bus_type,
.owner = THIS_MODULE,
},
.id_table = mrf24j40_ids,
.probe = mrf24j40_probe,
.remove = mrf24j40_remove,
};
module_spi_driver(mrf24j40_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alan Ott");
MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");