2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-24 13:13:57 +08:00
linux-next/drivers/video/omap2/dss/hdmi.c
Tomi Valkeinen c49d005b6c OMAPDSS: HDMI: PHY burnout fix
A hardware bug in the OMAP4 HDMI PHY causes physical damage to the board
if the HDMI PHY is kept powered on when the cable is not connected.

This patch solves the problem by adding hot-plug-detection into the HDMI
IP driver. This is not a real HPD support in the sense that nobody else
than the IP driver gets to know about the HPD events, but is only meant
to fix the HW bug.

The strategy is simple: If the display device is turned off by the user,
the PHY power is set to OFF. When the display device is turned on by the
user, the PHY power is set either to LDOON or TXON, depending on whether
the HDMI cable is connected.

The reason to avoid PHY OFF when the display device is on, but the cable
is disconnected, is that when the PHY is turned OFF, the HDMI IP is not
"ticking" and thus the DISPC does not receive pixel clock from the HDMI
IP. This would, for example, prevent any VSYNCs from happening, and
would thus affect the users of omapdss. By using LDOON when the cable is
disconnected we'll avoid the HW bug, but keep the HDMI working as usual
from the user's point of view.

Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
2012-01-26 13:51:36 +02:00

926 lines
24 KiB
C

/*
* hdmi.c
*
* HDMI interface DSS driver setting for TI's OMAP4 family of processor.
* Copyright (C) 2010-2011 Texas Instruments Incorporated - http://www.ti.com/
* Authors: Yong Zhi
* Mythri pk <mythripk@ti.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define DSS_SUBSYS_NAME "HDMI"
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <video/omapdss.h>
#if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \
defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
#include <sound/soc.h>
#include <sound/pcm_params.h>
#include "ti_hdmi_4xxx_ip.h"
#endif
#include "ti_hdmi.h"
#include "dss.h"
#include "dss_features.h"
#define HDMI_WP 0x0
#define HDMI_CORE_SYS 0x400
#define HDMI_CORE_AV 0x900
#define HDMI_PLLCTRL 0x200
#define HDMI_PHY 0x300
/* HDMI EDID Length move this */
#define HDMI_EDID_MAX_LENGTH 256
#define EDID_TIMING_DESCRIPTOR_SIZE 0x12
#define EDID_DESCRIPTOR_BLOCK0_ADDRESS 0x36
#define EDID_DESCRIPTOR_BLOCK1_ADDRESS 0x80
#define EDID_SIZE_BLOCK0_TIMING_DESCRIPTOR 4
#define EDID_SIZE_BLOCK1_TIMING_DESCRIPTOR 4
#define OMAP_HDMI_TIMINGS_NB 34
#define HDMI_DEFAULT_REGN 16
#define HDMI_DEFAULT_REGM2 1
static struct {
struct mutex lock;
struct omap_display_platform_data *pdata;
struct platform_device *pdev;
struct hdmi_ip_data ip_data;
int code;
int mode;
struct clk *sys_clk;
} hdmi;
/*
* Logic for the below structure :
* user enters the CEA or VESA timings by specifying the HDMI/DVI code.
* There is a correspondence between CEA/VESA timing and code, please
* refer to section 6.3 in HDMI 1.3 specification for timing code.
*
* In the below structure, cea_vesa_timings corresponds to all OMAP4
* supported CEA and VESA timing values.code_cea corresponds to the CEA
* code, It is used to get the timing from cea_vesa_timing array.Similarly
* with code_vesa. Code_index is used for back mapping, that is once EDID
* is read from the TV, EDID is parsed to find the timing values and then
* map it to corresponding CEA or VESA index.
*/
static const struct hdmi_timings cea_vesa_timings[OMAP_HDMI_TIMINGS_NB] = {
{ {640, 480, 25200, 96, 16, 48, 2, 10, 33} , 0 , 0},
{ {1280, 720, 74250, 40, 440, 220, 5, 5, 20}, 1, 1},
{ {1280, 720, 74250, 40, 110, 220, 5, 5, 20}, 1, 1},
{ {720, 480, 27027, 62, 16, 60, 6, 9, 30}, 0, 0},
{ {2880, 576, 108000, 256, 48, 272, 5, 5, 39}, 0, 0},
{ {1440, 240, 27027, 124, 38, 114, 3, 4, 15}, 0, 0},
{ {1440, 288, 27000, 126, 24, 138, 3, 2, 19}, 0, 0},
{ {1920, 540, 74250, 44, 528, 148, 5, 2, 15}, 1, 1},
{ {1920, 540, 74250, 44, 88, 148, 5, 2, 15}, 1, 1},
{ {1920, 1080, 148500, 44, 88, 148, 5, 4, 36}, 1, 1},
{ {720, 576, 27000, 64, 12, 68, 5, 5, 39}, 0, 0},
{ {1440, 576, 54000, 128, 24, 136, 5, 5, 39}, 0, 0},
{ {1920, 1080, 148500, 44, 528, 148, 5, 4, 36}, 1, 1},
{ {2880, 480, 108108, 248, 64, 240, 6, 9, 30}, 0, 0},
{ {1920, 1080, 74250, 44, 638, 148, 5, 4, 36}, 1, 1},
/* VESA From Here */
{ {640, 480, 25175, 96, 16, 48, 2 , 11, 31}, 0, 0},
{ {800, 600, 40000, 128, 40, 88, 4 , 1, 23}, 1, 1},
{ {848, 480, 33750, 112, 16, 112, 8 , 6, 23}, 1, 1},
{ {1280, 768, 79500, 128, 64, 192, 7 , 3, 20}, 1, 0},
{ {1280, 800, 83500, 128, 72, 200, 6 , 3, 22}, 1, 0},
{ {1360, 768, 85500, 112, 64, 256, 6 , 3, 18}, 1, 1},
{ {1280, 960, 108000, 112, 96, 312, 3 , 1, 36}, 1, 1},
{ {1280, 1024, 108000, 112, 48, 248, 3 , 1, 38}, 1, 1},
{ {1024, 768, 65000, 136, 24, 160, 6, 3, 29}, 0, 0},
{ {1400, 1050, 121750, 144, 88, 232, 4, 3, 32}, 1, 0},
{ {1440, 900, 106500, 152, 80, 232, 6, 3, 25}, 1, 0},
{ {1680, 1050, 146250, 176 , 104, 280, 6, 3, 30}, 1, 0},
{ {1366, 768, 85500, 143, 70, 213, 3, 3, 24}, 1, 1},
{ {1920, 1080, 148500, 44, 148, 80, 5, 4, 36}, 1, 1},
{ {1280, 768, 68250, 32, 48, 80, 7, 3, 12}, 0, 1},
{ {1400, 1050, 101000, 32, 48, 80, 4, 3, 23}, 0, 1},
{ {1680, 1050, 119000, 32, 48, 80, 6, 3, 21}, 0, 1},
{ {1280, 800, 79500, 32, 48, 80, 6, 3, 14}, 0, 1},
{ {1280, 720, 74250, 40, 110, 220, 5, 5, 20}, 1, 1}
};
/*
* This is a static mapping array which maps the timing values
* with corresponding CEA / VESA code
*/
static const int code_index[OMAP_HDMI_TIMINGS_NB] = {
1, 19, 4, 2, 37, 6, 21, 20, 5, 16, 17, 29, 31, 35, 32,
/* <--15 CEA 17--> vesa*/
4, 9, 0xE, 0x17, 0x1C, 0x27, 0x20, 0x23, 0x10, 0x2A,
0X2F, 0x3A, 0X51, 0X52, 0x16, 0x29, 0x39, 0x1B
};
/*
* This is reverse static mapping which maps the CEA / VESA code
* to the corresponding timing values
*/
static const int code_cea[39] = {
-1, 0, 3, 3, 2, 8, 5, 5, -1, -1,
-1, -1, -1, -1, -1, -1, 9, 10, 10, 1,
7, 6, 6, -1, -1, -1, -1, -1, -1, 11,
11, 12, 14, -1, -1, 13, 13, 4, 4
};
static const int code_vesa[85] = {
-1, -1, -1, -1, 15, -1, -1, -1, -1, 16,
-1, -1, -1, -1, 17, -1, 23, -1, -1, -1,
-1, -1, 29, 18, -1, -1, -1, 32, 19, -1,
-1, -1, 21, -1, -1, 22, -1, -1, -1, 20,
-1, 30, 24, -1, -1, -1, -1, 25, -1, -1,
-1, -1, -1, -1, -1, -1, -1, 31, 26, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 27, 28, -1, 33};
static int hdmi_runtime_get(void)
{
int r;
DSSDBG("hdmi_runtime_get\n");
r = pm_runtime_get_sync(&hdmi.pdev->dev);
WARN_ON(r < 0);
return r < 0 ? r : 0;
}
static void hdmi_runtime_put(void)
{
int r;
DSSDBG("hdmi_runtime_put\n");
r = pm_runtime_put_sync(&hdmi.pdev->dev);
WARN_ON(r < 0);
}
int hdmi_init_display(struct omap_dss_device *dssdev)
{
DSSDBG("init_display\n");
dss_init_hdmi_ip_ops(&hdmi.ip_data);
return 0;
}
static int get_timings_index(void)
{
int code;
if (hdmi.mode == 0)
code = code_vesa[hdmi.code];
else
code = code_cea[hdmi.code];
if (code == -1) {
/* HDMI code 4 corresponds to 640 * 480 VGA */
hdmi.code = 4;
/* DVI mode 1 corresponds to HDMI 0 to DVI */
hdmi.mode = HDMI_DVI;
code = code_vesa[hdmi.code];
}
return code;
}
static struct hdmi_cm hdmi_get_code(struct omap_video_timings *timing)
{
int i = 0, code = -1, temp_vsync = 0, temp_hsync = 0;
int timing_vsync = 0, timing_hsync = 0;
struct hdmi_video_timings temp;
struct hdmi_cm cm = {-1};
DSSDBG("hdmi_get_code\n");
for (i = 0; i < OMAP_HDMI_TIMINGS_NB; i++) {
temp = cea_vesa_timings[i].timings;
if ((temp.pixel_clock == timing->pixel_clock) &&
(temp.x_res == timing->x_res) &&
(temp.y_res == timing->y_res)) {
temp_hsync = temp.hfp + temp.hsw + temp.hbp;
timing_hsync = timing->hfp + timing->hsw + timing->hbp;
temp_vsync = temp.vfp + temp.vsw + temp.vbp;
timing_vsync = timing->vfp + timing->vsw + timing->vbp;
DSSDBG("temp_hsync = %d , temp_vsync = %d"
"timing_hsync = %d, timing_vsync = %d\n",
temp_hsync, temp_hsync,
timing_hsync, timing_vsync);
if ((temp_hsync == timing_hsync) &&
(temp_vsync == timing_vsync)) {
code = i;
cm.code = code_index[i];
if (code < 14)
cm.mode = HDMI_HDMI;
else
cm.mode = HDMI_DVI;
DSSDBG("Hdmi_code = %d mode = %d\n",
cm.code, cm.mode);
break;
}
}
}
return cm;
}
static void update_hdmi_timings(struct hdmi_config *cfg,
struct omap_video_timings *timings, int code)
{
cfg->timings.timings.x_res = timings->x_res;
cfg->timings.timings.y_res = timings->y_res;
cfg->timings.timings.hbp = timings->hbp;
cfg->timings.timings.hfp = timings->hfp;
cfg->timings.timings.hsw = timings->hsw;
cfg->timings.timings.vbp = timings->vbp;
cfg->timings.timings.vfp = timings->vfp;
cfg->timings.timings.vsw = timings->vsw;
cfg->timings.timings.pixel_clock = timings->pixel_clock;
cfg->timings.vsync_pol = cea_vesa_timings[code].vsync_pol;
cfg->timings.hsync_pol = cea_vesa_timings[code].hsync_pol;
}
unsigned long hdmi_get_pixel_clock(void)
{
/* HDMI Pixel Clock in Mhz */
return hdmi.ip_data.cfg.timings.timings.pixel_clock * 1000;
}
static void hdmi_compute_pll(struct omap_dss_device *dssdev, int phy,
struct hdmi_pll_info *pi)
{
unsigned long clkin, refclk;
u32 mf;
clkin = clk_get_rate(hdmi.sys_clk) / 10000;
/*
* Input clock is predivided by N + 1
* out put of which is reference clk
*/
if (dssdev->clocks.hdmi.regn == 0)
pi->regn = HDMI_DEFAULT_REGN;
else
pi->regn = dssdev->clocks.hdmi.regn;
refclk = clkin / pi->regn;
/*
* multiplier is pixel_clk/ref_clk
* Multiplying by 100 to avoid fractional part removal
*/
pi->regm = (phy * 100 / (refclk)) / 100;
if (dssdev->clocks.hdmi.regm2 == 0)
pi->regm2 = HDMI_DEFAULT_REGM2;
else
pi->regm2 = dssdev->clocks.hdmi.regm2;
/*
* fractional multiplier is remainder of the difference between
* multiplier and actual phy(required pixel clock thus should be
* multiplied by 2^18(262144) divided by the reference clock
*/
mf = (phy - pi->regm * refclk) * 262144;
pi->regmf = mf / (refclk);
/*
* Dcofreq should be set to 1 if required pixel clock
* is greater than 1000MHz
*/
pi->dcofreq = phy > 1000 * 100;
pi->regsd = ((pi->regm * clkin / 10) / (pi->regn * 250) + 5) / 10;
/* Set the reference clock to sysclk reference */
pi->refsel = HDMI_REFSEL_SYSCLK;
DSSDBG("M = %d Mf = %d\n", pi->regm, pi->regmf);
DSSDBG("range = %d sd = %d\n", pi->dcofreq, pi->regsd);
}
static int hdmi_power_on(struct omap_dss_device *dssdev)
{
int r, code = 0;
struct omap_video_timings *p;
unsigned long phy;
r = hdmi_runtime_get();
if (r)
return r;
dss_mgr_disable(dssdev->manager);
p = &dssdev->panel.timings;
DSSDBG("hdmi_power_on x_res= %d y_res = %d\n",
dssdev->panel.timings.x_res,
dssdev->panel.timings.y_res);
code = get_timings_index();
update_hdmi_timings(&hdmi.ip_data.cfg, p, code);
phy = p->pixel_clock;
hdmi_compute_pll(dssdev, phy, &hdmi.ip_data.pll_data);
hdmi.ip_data.ops->video_enable(&hdmi.ip_data, 0);
/* config the PLL and PHY hdmi_set_pll_pwrfirst */
r = hdmi.ip_data.ops->pll_enable(&hdmi.ip_data);
if (r) {
DSSDBG("Failed to lock PLL\n");
goto err;
}
r = hdmi.ip_data.ops->phy_enable(&hdmi.ip_data);
if (r) {
DSSDBG("Failed to start PHY\n");
goto err;
}
hdmi.ip_data.cfg.cm.mode = hdmi.mode;
hdmi.ip_data.cfg.cm.code = hdmi.code;
hdmi.ip_data.ops->video_configure(&hdmi.ip_data);
/* Make selection of HDMI in DSS */
dss_select_hdmi_venc_clk_source(DSS_HDMI_M_PCLK);
/* Select the dispc clock source as PRCM clock, to ensure that it is not
* DSI PLL source as the clock selected by DSI PLL might not be
* sufficient for the resolution selected / that can be changed
* dynamically by user. This can be moved to single location , say
* Boardfile.
*/
dss_select_dispc_clk_source(dssdev->clocks.dispc.dispc_fclk_src);
/* bypass TV gamma table */
dispc_enable_gamma_table(0);
/* tv size */
dispc_set_digit_size(dssdev->panel.timings.x_res,
dssdev->panel.timings.y_res);
hdmi.ip_data.ops->video_enable(&hdmi.ip_data, 1);
r = dss_mgr_enable(dssdev->manager);
if (r)
goto err_mgr_enable;
return 0;
err_mgr_enable:
hdmi.ip_data.ops->video_enable(&hdmi.ip_data, 0);
hdmi.ip_data.ops->phy_disable(&hdmi.ip_data);
hdmi.ip_data.ops->pll_disable(&hdmi.ip_data);
err:
hdmi_runtime_put();
return -EIO;
}
static void hdmi_power_off(struct omap_dss_device *dssdev)
{
dss_mgr_disable(dssdev->manager);
hdmi.ip_data.ops->video_enable(&hdmi.ip_data, 0);
hdmi.ip_data.ops->phy_disable(&hdmi.ip_data);
hdmi.ip_data.ops->pll_disable(&hdmi.ip_data);
hdmi_runtime_put();
}
int omapdss_hdmi_display_check_timing(struct omap_dss_device *dssdev,
struct omap_video_timings *timings)
{
struct hdmi_cm cm;
cm = hdmi_get_code(timings);
if (cm.code == -1) {
return -EINVAL;
}
return 0;
}
void omapdss_hdmi_display_set_timing(struct omap_dss_device *dssdev)
{
struct hdmi_cm cm;
cm = hdmi_get_code(&dssdev->panel.timings);
hdmi.code = cm.code;
hdmi.mode = cm.mode;
if (dssdev->state == OMAP_DSS_DISPLAY_ACTIVE) {
int r;
hdmi_power_off(dssdev);
r = hdmi_power_on(dssdev);
if (r)
DSSERR("failed to power on device\n");
}
}
void hdmi_dump_regs(struct seq_file *s)
{
mutex_lock(&hdmi.lock);
if (hdmi_runtime_get())
return;
hdmi.ip_data.ops->dump_wrapper(&hdmi.ip_data, s);
hdmi.ip_data.ops->dump_pll(&hdmi.ip_data, s);
hdmi.ip_data.ops->dump_phy(&hdmi.ip_data, s);
hdmi.ip_data.ops->dump_core(&hdmi.ip_data, s);
hdmi_runtime_put();
mutex_unlock(&hdmi.lock);
}
int omapdss_hdmi_read_edid(u8 *buf, int len)
{
int r;
mutex_lock(&hdmi.lock);
r = hdmi_runtime_get();
BUG_ON(r);
r = hdmi.ip_data.ops->read_edid(&hdmi.ip_data, buf, len);
hdmi_runtime_put();
mutex_unlock(&hdmi.lock);
return r;
}
bool omapdss_hdmi_detect(void)
{
int r;
mutex_lock(&hdmi.lock);
r = hdmi_runtime_get();
BUG_ON(r);
r = hdmi.ip_data.ops->detect(&hdmi.ip_data);
hdmi_runtime_put();
mutex_unlock(&hdmi.lock);
return r == 1;
}
int omapdss_hdmi_display_enable(struct omap_dss_device *dssdev)
{
struct omap_dss_hdmi_data *priv = dssdev->data;
int r = 0;
DSSDBG("ENTER hdmi_display_enable\n");
mutex_lock(&hdmi.lock);
if (dssdev->manager == NULL) {
DSSERR("failed to enable display: no manager\n");
r = -ENODEV;
goto err0;
}
hdmi.ip_data.hpd_gpio = priv->hpd_gpio;
r = omap_dss_start_device(dssdev);
if (r) {
DSSERR("failed to start device\n");
goto err0;
}
if (dssdev->platform_enable) {
r = dssdev->platform_enable(dssdev);
if (r) {
DSSERR("failed to enable GPIO's\n");
goto err1;
}
}
r = hdmi_power_on(dssdev);
if (r) {
DSSERR("failed to power on device\n");
goto err2;
}
mutex_unlock(&hdmi.lock);
return 0;
err2:
if (dssdev->platform_disable)
dssdev->platform_disable(dssdev);
err1:
omap_dss_stop_device(dssdev);
err0:
mutex_unlock(&hdmi.lock);
return r;
}
void omapdss_hdmi_display_disable(struct omap_dss_device *dssdev)
{
DSSDBG("Enter hdmi_display_disable\n");
mutex_lock(&hdmi.lock);
hdmi_power_off(dssdev);
if (dssdev->platform_disable)
dssdev->platform_disable(dssdev);
omap_dss_stop_device(dssdev);
mutex_unlock(&hdmi.lock);
}
#if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \
defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
static int hdmi_audio_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_codec *codec = rtd->codec;
struct platform_device *pdev = to_platform_device(codec->dev);
struct hdmi_ip_data *ip_data = snd_soc_codec_get_drvdata(codec);
int err = 0;
if (!(ip_data->ops) && !(ip_data->ops->audio_enable)) {
dev_err(&pdev->dev, "Cannot enable/disable audio\n");
return -ENODEV;
}
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
ip_data->ops->audio_enable(ip_data, true);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
ip_data->ops->audio_enable(ip_data, false);
break;
default:
err = -EINVAL;
}
return err;
}
static int hdmi_audio_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_codec *codec = rtd->codec;
struct hdmi_ip_data *ip_data = snd_soc_codec_get_drvdata(codec);
struct hdmi_audio_format audio_format;
struct hdmi_audio_dma audio_dma;
struct hdmi_core_audio_config core_cfg;
struct hdmi_core_infoframe_audio aud_if_cfg;
int err, n, cts;
enum hdmi_core_audio_sample_freq sample_freq;
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
core_cfg.i2s_cfg.word_max_length =
HDMI_AUDIO_I2S_MAX_WORD_20BITS;
core_cfg.i2s_cfg.word_length = HDMI_AUDIO_I2S_CHST_WORD_16_BITS;
core_cfg.i2s_cfg.in_length_bits =
HDMI_AUDIO_I2S_INPUT_LENGTH_16;
core_cfg.i2s_cfg.justification = HDMI_AUDIO_JUSTIFY_LEFT;
audio_format.samples_per_word = HDMI_AUDIO_ONEWORD_TWOSAMPLES;
audio_format.sample_size = HDMI_AUDIO_SAMPLE_16BITS;
audio_format.justification = HDMI_AUDIO_JUSTIFY_LEFT;
audio_dma.transfer_size = 0x10;
break;
case SNDRV_PCM_FORMAT_S24_LE:
core_cfg.i2s_cfg.word_max_length =
HDMI_AUDIO_I2S_MAX_WORD_24BITS;
core_cfg.i2s_cfg.word_length = HDMI_AUDIO_I2S_CHST_WORD_24_BITS;
core_cfg.i2s_cfg.in_length_bits =
HDMI_AUDIO_I2S_INPUT_LENGTH_24;
audio_format.samples_per_word = HDMI_AUDIO_ONEWORD_ONESAMPLE;
audio_format.sample_size = HDMI_AUDIO_SAMPLE_24BITS;
audio_format.justification = HDMI_AUDIO_JUSTIFY_RIGHT;
core_cfg.i2s_cfg.justification = HDMI_AUDIO_JUSTIFY_RIGHT;
audio_dma.transfer_size = 0x20;
break;
default:
return -EINVAL;
}
switch (params_rate(params)) {
case 32000:
sample_freq = HDMI_AUDIO_FS_32000;
break;
case 44100:
sample_freq = HDMI_AUDIO_FS_44100;
break;
case 48000:
sample_freq = HDMI_AUDIO_FS_48000;
break;
default:
return -EINVAL;
}
err = hdmi_config_audio_acr(ip_data, params_rate(params), &n, &cts);
if (err < 0)
return err;
/* Audio wrapper config */
audio_format.stereo_channels = HDMI_AUDIO_STEREO_ONECHANNEL;
audio_format.active_chnnls_msk = 0x03;
audio_format.type = HDMI_AUDIO_TYPE_LPCM;
audio_format.sample_order = HDMI_AUDIO_SAMPLE_LEFT_FIRST;
/* Disable start/stop signals of IEC 60958 blocks */
audio_format.en_sig_blk_strt_end = HDMI_AUDIO_BLOCK_SIG_STARTEND_OFF;
audio_dma.block_size = 0xC0;
audio_dma.mode = HDMI_AUDIO_TRANSF_DMA;
audio_dma.fifo_threshold = 0x20; /* in number of samples */
hdmi_wp_audio_config_dma(ip_data, &audio_dma);
hdmi_wp_audio_config_format(ip_data, &audio_format);
/*
* I2S config
*/
core_cfg.i2s_cfg.en_high_bitrate_aud = false;
/* Only used with high bitrate audio */
core_cfg.i2s_cfg.cbit_order = false;
/* Serial data and word select should change on sck rising edge */
core_cfg.i2s_cfg.sck_edge_mode = HDMI_AUDIO_I2S_SCK_EDGE_RISING;
core_cfg.i2s_cfg.vbit = HDMI_AUDIO_I2S_VBIT_FOR_PCM;
/* Set I2S word select polarity */
core_cfg.i2s_cfg.ws_polarity = HDMI_AUDIO_I2S_WS_POLARITY_LOW_IS_LEFT;
core_cfg.i2s_cfg.direction = HDMI_AUDIO_I2S_MSB_SHIFTED_FIRST;
/* Set serial data to word select shift. See Phillips spec. */
core_cfg.i2s_cfg.shift = HDMI_AUDIO_I2S_FIRST_BIT_SHIFT;
/* Enable one of the four available serial data channels */
core_cfg.i2s_cfg.active_sds = HDMI_AUDIO_I2S_SD0_EN;
/* Core audio config */
core_cfg.freq_sample = sample_freq;
core_cfg.n = n;
core_cfg.cts = cts;
if (dss_has_feature(FEAT_HDMI_CTS_SWMODE)) {
core_cfg.aud_par_busclk = 0;
core_cfg.cts_mode = HDMI_AUDIO_CTS_MODE_SW;
core_cfg.use_mclk = false;
} else {
core_cfg.aud_par_busclk = (((128 * 31) - 1) << 8);
core_cfg.cts_mode = HDMI_AUDIO_CTS_MODE_HW;
core_cfg.use_mclk = true;
core_cfg.mclk_mode = HDMI_AUDIO_MCLK_128FS;
}
core_cfg.layout = HDMI_AUDIO_LAYOUT_2CH;
core_cfg.en_spdif = false;
/* Use sample frequency from channel status word */
core_cfg.fs_override = true;
/* Enable ACR packets */
core_cfg.en_acr_pkt = true;
/* Disable direct streaming digital audio */
core_cfg.en_dsd_audio = false;
/* Use parallel audio interface */
core_cfg.en_parallel_aud_input = true;
hdmi_core_audio_config(ip_data, &core_cfg);
/*
* Configure packet
* info frame audio see doc CEA861-D page 74
*/
aud_if_cfg.db1_coding_type = HDMI_INFOFRAME_AUDIO_DB1CT_FROM_STREAM;
aud_if_cfg.db1_channel_count = 2;
aud_if_cfg.db2_sample_freq = HDMI_INFOFRAME_AUDIO_DB2SF_FROM_STREAM;
aud_if_cfg.db2_sample_size = HDMI_INFOFRAME_AUDIO_DB2SS_FROM_STREAM;
aud_if_cfg.db4_channel_alloc = 0x00;
aud_if_cfg.db5_downmix_inh = false;
aud_if_cfg.db5_lsv = 0;
hdmi_core_audio_infoframe_config(ip_data, &aud_if_cfg);
return 0;
}
static int hdmi_audio_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
if (!hdmi.mode) {
pr_err("Current video settings do not support audio.\n");
return -EIO;
}
return 0;
}
static int hdmi_audio_codec_probe(struct snd_soc_codec *codec)
{
struct hdmi_ip_data *priv = &hdmi.ip_data;
snd_soc_codec_set_drvdata(codec, priv);
return 0;
}
static struct snd_soc_codec_driver hdmi_audio_codec_drv = {
.probe = hdmi_audio_codec_probe,
};
static struct snd_soc_dai_ops hdmi_audio_codec_ops = {
.hw_params = hdmi_audio_hw_params,
.trigger = hdmi_audio_trigger,
.startup = hdmi_audio_startup,
};
static struct snd_soc_dai_driver hdmi_codec_dai_drv = {
.name = "hdmi-audio-codec",
.playback = {
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE,
},
.ops = &hdmi_audio_codec_ops,
};
#endif
static int hdmi_get_clocks(struct platform_device *pdev)
{
struct clk *clk;
clk = clk_get(&pdev->dev, "sys_clk");
if (IS_ERR(clk)) {
DSSERR("can't get sys_clk\n");
return PTR_ERR(clk);
}
hdmi.sys_clk = clk;
return 0;
}
static void hdmi_put_clocks(void)
{
if (hdmi.sys_clk)
clk_put(hdmi.sys_clk);
}
/* HDMI HW IP initialisation */
static int omapdss_hdmihw_probe(struct platform_device *pdev)
{
struct resource *hdmi_mem;
int r;
hdmi.pdata = pdev->dev.platform_data;
hdmi.pdev = pdev;
mutex_init(&hdmi.lock);
hdmi_mem = platform_get_resource(hdmi.pdev, IORESOURCE_MEM, 0);
if (!hdmi_mem) {
DSSERR("can't get IORESOURCE_MEM HDMI\n");
return -EINVAL;
}
/* Base address taken from platform */
hdmi.ip_data.base_wp = ioremap(hdmi_mem->start,
resource_size(hdmi_mem));
if (!hdmi.ip_data.base_wp) {
DSSERR("can't ioremap WP\n");
return -ENOMEM;
}
r = hdmi_get_clocks(pdev);
if (r) {
iounmap(hdmi.ip_data.base_wp);
return r;
}
pm_runtime_enable(&pdev->dev);
hdmi.ip_data.core_sys_offset = HDMI_CORE_SYS;
hdmi.ip_data.core_av_offset = HDMI_CORE_AV;
hdmi.ip_data.pll_offset = HDMI_PLLCTRL;
hdmi.ip_data.phy_offset = HDMI_PHY;
hdmi_panel_init();
#if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \
defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
/* Register ASoC codec DAI */
r = snd_soc_register_codec(&pdev->dev, &hdmi_audio_codec_drv,
&hdmi_codec_dai_drv, 1);
if (r) {
DSSERR("can't register ASoC HDMI audio codec\n");
return r;
}
#endif
return 0;
}
static int omapdss_hdmihw_remove(struct platform_device *pdev)
{
hdmi_panel_exit();
#if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \
defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
snd_soc_unregister_codec(&pdev->dev);
#endif
pm_runtime_disable(&pdev->dev);
hdmi_put_clocks();
iounmap(hdmi.ip_data.base_wp);
return 0;
}
static int hdmi_runtime_suspend(struct device *dev)
{
clk_disable(hdmi.sys_clk);
dispc_runtime_put();
dss_runtime_put();
return 0;
}
static int hdmi_runtime_resume(struct device *dev)
{
int r;
r = dss_runtime_get();
if (r < 0)
goto err_get_dss;
r = dispc_runtime_get();
if (r < 0)
goto err_get_dispc;
clk_enable(hdmi.sys_clk);
return 0;
err_get_dispc:
dss_runtime_put();
err_get_dss:
return r;
}
static const struct dev_pm_ops hdmi_pm_ops = {
.runtime_suspend = hdmi_runtime_suspend,
.runtime_resume = hdmi_runtime_resume,
};
static struct platform_driver omapdss_hdmihw_driver = {
.probe = omapdss_hdmihw_probe,
.remove = omapdss_hdmihw_remove,
.driver = {
.name = "omapdss_hdmi",
.owner = THIS_MODULE,
.pm = &hdmi_pm_ops,
},
};
int hdmi_init_platform_driver(void)
{
return platform_driver_register(&omapdss_hdmihw_driver);
}
void hdmi_uninit_platform_driver(void)
{
return platform_driver_unregister(&omapdss_hdmihw_driver);
}