2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-11-19 16:14:13 +08:00
linux-next/arch/ia64/ia32/sys_ia32.c
David Howells 86a264abe5 CRED: Wrap current->cred and a few other accessors
Wrap current->cred and a few other accessors to hide their actual
implementation.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:18 +11:00

2818 lines
70 KiB
C

/*
* sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c.
*
* Copyright (C) 2000 VA Linux Co
* Copyright (C) 2000 Don Dugger <n0ano@valinux.com>
* Copyright (C) 1999 Arun Sharma <arun.sharma@intel.com>
* Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 2000-2003, 2005 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Copyright (C) 2004 Gordon Jin <gordon.jin@intel.com>
*
* These routines maintain argument size conversion between 32bit and 64bit
* environment.
*/
#include <linux/kernel.h>
#include <linux/syscalls.h>
#include <linux/sysctl.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/signal.h>
#include <linux/resource.h>
#include <linux/times.h>
#include <linux/utsname.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/sem.h>
#include <linux/msg.h>
#include <linux/mm.h>
#include <linux/shm.h>
#include <linux/slab.h>
#include <linux/uio.h>
#include <linux/socket.h>
#include <linux/quota.h>
#include <linux/poll.h>
#include <linux/eventpoll.h>
#include <linux/personality.h>
#include <linux/ptrace.h>
#include <linux/regset.h>
#include <linux/stat.h>
#include <linux/ipc.h>
#include <linux/capability.h>
#include <linux/compat.h>
#include <linux/vfs.h>
#include <linux/mman.h>
#include <linux/mutex.h>
#include <asm/intrinsics.h>
#include <asm/types.h>
#include <asm/uaccess.h>
#include <asm/unistd.h>
#include "ia32priv.h"
#include <net/scm.h>
#include <net/sock.h>
#define DEBUG 0
#if DEBUG
# define DBG(fmt...) printk(KERN_DEBUG fmt)
#else
# define DBG(fmt...)
#endif
#define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1)))
#define OFFSET4K(a) ((a) & 0xfff)
#define PAGE_START(addr) ((addr) & PAGE_MASK)
#define MINSIGSTKSZ_IA32 2048
#define high2lowuid(uid) ((uid) > 65535 ? 65534 : (uid))
#define high2lowgid(gid) ((gid) > 65535 ? 65534 : (gid))
/*
* Anything that modifies or inspects ia32 user virtual memory must hold this semaphore
* while doing so.
*/
/* XXX make per-mm: */
static DEFINE_MUTEX(ia32_mmap_mutex);
asmlinkage long
sys32_execve (char __user *name, compat_uptr_t __user *argv, compat_uptr_t __user *envp,
struct pt_regs *regs)
{
long error;
char *filename;
unsigned long old_map_base, old_task_size, tssd;
filename = getname(name);
error = PTR_ERR(filename);
if (IS_ERR(filename))
return error;
old_map_base = current->thread.map_base;
old_task_size = current->thread.task_size;
tssd = ia64_get_kr(IA64_KR_TSSD);
/* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */
current->thread.map_base = DEFAULT_MAP_BASE;
current->thread.task_size = DEFAULT_TASK_SIZE;
ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
error = compat_do_execve(filename, argv, envp, regs);
putname(filename);
if (error < 0) {
/* oops, execve failed, switch back to old values... */
ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE);
ia64_set_kr(IA64_KR_TSSD, tssd);
current->thread.map_base = old_map_base;
current->thread.task_size = old_task_size;
}
return error;
}
#if PAGE_SHIFT > IA32_PAGE_SHIFT
static int
get_page_prot (struct vm_area_struct *vma, unsigned long addr)
{
int prot = 0;
if (!vma || vma->vm_start > addr)
return 0;
if (vma->vm_flags & VM_READ)
prot |= PROT_READ;
if (vma->vm_flags & VM_WRITE)
prot |= PROT_WRITE;
if (vma->vm_flags & VM_EXEC)
prot |= PROT_EXEC;
return prot;
}
/*
* Map a subpage by creating an anonymous page that contains the union of the old page and
* the subpage.
*/
static unsigned long
mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags,
loff_t off)
{
void *page = NULL;
struct inode *inode;
unsigned long ret = 0;
struct vm_area_struct *vma = find_vma(current->mm, start);
int old_prot = get_page_prot(vma, start);
DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n",
file, start, end, prot, flags, off);
/* Optimize the case where the old mmap and the new mmap are both anonymous */
if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) {
if (clear_user((void __user *) start, end - start)) {
ret = -EFAULT;
goto out;
}
goto skip_mmap;
}
page = (void *) get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
if (old_prot)
copy_from_user(page, (void __user *) PAGE_START(start), PAGE_SIZE);
down_write(&current->mm->mmap_sem);
{
ret = do_mmap(NULL, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE,
flags | MAP_FIXED | MAP_ANONYMOUS, 0);
}
up_write(&current->mm->mmap_sem);
if (IS_ERR((void *) ret))
goto out;
if (old_prot) {
/* copy back the old page contents. */
if (offset_in_page(start))
copy_to_user((void __user *) PAGE_START(start), page,
offset_in_page(start));
if (offset_in_page(end))
copy_to_user((void __user *) end, page + offset_in_page(end),
PAGE_SIZE - offset_in_page(end));
}
if (!(flags & MAP_ANONYMOUS)) {
/* read the file contents */
inode = file->f_path.dentry->d_inode;
if (!inode->i_fop || !file->f_op->read
|| ((*file->f_op->read)(file, (char __user *) start, end - start, &off) < 0))
{
ret = -EINVAL;
goto out;
}
}
skip_mmap:
if (!(prot & PROT_WRITE))
ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot);
out:
if (page)
free_page((unsigned long) page);
return ret;
}
/* SLAB cache for ia64_partial_page structures */
struct kmem_cache *ia64_partial_page_cachep;
/*
* init ia64_partial_page_list.
* return 0 means kmalloc fail.
*/
struct ia64_partial_page_list*
ia32_init_pp_list(void)
{
struct ia64_partial_page_list *p;
if ((p = kmalloc(sizeof(*p), GFP_KERNEL)) == NULL)
return p;
p->pp_head = NULL;
p->ppl_rb = RB_ROOT;
p->pp_hint = NULL;
atomic_set(&p->pp_count, 1);
return p;
}
/*
* Search for the partial page with @start in partial page list @ppl.
* If finds the partial page, return the found partial page.
* Else, return 0 and provide @pprev, @rb_link, @rb_parent to
* be used by later __ia32_insert_pp().
*/
static struct ia64_partial_page *
__ia32_find_pp(struct ia64_partial_page_list *ppl, unsigned int start,
struct ia64_partial_page **pprev, struct rb_node ***rb_link,
struct rb_node **rb_parent)
{
struct ia64_partial_page *pp;
struct rb_node **__rb_link, *__rb_parent, *rb_prev;
pp = ppl->pp_hint;
if (pp && pp->base == start)
return pp;
__rb_link = &ppl->ppl_rb.rb_node;
rb_prev = __rb_parent = NULL;
while (*__rb_link) {
__rb_parent = *__rb_link;
pp = rb_entry(__rb_parent, struct ia64_partial_page, pp_rb);
if (pp->base == start) {
ppl->pp_hint = pp;
return pp;
} else if (pp->base < start) {
rb_prev = __rb_parent;
__rb_link = &__rb_parent->rb_right;
} else {
__rb_link = &__rb_parent->rb_left;
}
}
*rb_link = __rb_link;
*rb_parent = __rb_parent;
*pprev = NULL;
if (rb_prev)
*pprev = rb_entry(rb_prev, struct ia64_partial_page, pp_rb);
return NULL;
}
/*
* insert @pp into @ppl.
*/
static void
__ia32_insert_pp(struct ia64_partial_page_list *ppl,
struct ia64_partial_page *pp, struct ia64_partial_page *prev,
struct rb_node **rb_link, struct rb_node *rb_parent)
{
/* link list */
if (prev) {
pp->next = prev->next;
prev->next = pp;
} else {
ppl->pp_head = pp;
if (rb_parent)
pp->next = rb_entry(rb_parent,
struct ia64_partial_page, pp_rb);
else
pp->next = NULL;
}
/* link rb */
rb_link_node(&pp->pp_rb, rb_parent, rb_link);
rb_insert_color(&pp->pp_rb, &ppl->ppl_rb);
ppl->pp_hint = pp;
}
/*
* delete @pp from partial page list @ppl.
*/
static void
__ia32_delete_pp(struct ia64_partial_page_list *ppl,
struct ia64_partial_page *pp, struct ia64_partial_page *prev)
{
if (prev) {
prev->next = pp->next;
if (ppl->pp_hint == pp)
ppl->pp_hint = prev;
} else {
ppl->pp_head = pp->next;
if (ppl->pp_hint == pp)
ppl->pp_hint = pp->next;
}
rb_erase(&pp->pp_rb, &ppl->ppl_rb);
kmem_cache_free(ia64_partial_page_cachep, pp);
}
static struct ia64_partial_page *
__pp_prev(struct ia64_partial_page *pp)
{
struct rb_node *prev = rb_prev(&pp->pp_rb);
if (prev)
return rb_entry(prev, struct ia64_partial_page, pp_rb);
else
return NULL;
}
/*
* Delete partial pages with address between @start and @end.
* @start and @end are page aligned.
*/
static void
__ia32_delete_pp_range(unsigned int start, unsigned int end)
{
struct ia64_partial_page *pp, *prev;
struct rb_node **rb_link, *rb_parent;
if (start >= end)
return;
pp = __ia32_find_pp(current->thread.ppl, start, &prev,
&rb_link, &rb_parent);
if (pp)
prev = __pp_prev(pp);
else {
if (prev)
pp = prev->next;
else
pp = current->thread.ppl->pp_head;
}
while (pp && pp->base < end) {
struct ia64_partial_page *tmp = pp->next;
__ia32_delete_pp(current->thread.ppl, pp, prev);
pp = tmp;
}
}
/*
* Set the range between @start and @end in bitmap.
* @start and @end should be IA32 page aligned and in the same IA64 page.
*/
static int
__ia32_set_pp(unsigned int start, unsigned int end, int flags)
{
struct ia64_partial_page *pp, *prev;
struct rb_node ** rb_link, *rb_parent;
unsigned int pstart, start_bit, end_bit, i;
pstart = PAGE_START(start);
start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
if (end_bit == 0)
end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
&rb_link, &rb_parent);
if (pp) {
for (i = start_bit; i < end_bit; i++)
set_bit(i, &pp->bitmap);
/*
* Check: if this partial page has been set to a full page,
* then delete it.
*/
if (find_first_zero_bit(&pp->bitmap, sizeof(pp->bitmap)*8) >=
PAGE_SIZE/IA32_PAGE_SIZE) {
__ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
}
return 0;
}
/*
* MAP_FIXED may lead to overlapping mmap.
* In this case, the requested mmap area may already mmaped as a full
* page. So check vma before adding a new partial page.
*/
if (flags & MAP_FIXED) {
struct vm_area_struct *vma = find_vma(current->mm, pstart);
if (vma && vma->vm_start <= pstart)
return 0;
}
/* new a ia64_partial_page */
pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
if (!pp)
return -ENOMEM;
pp->base = pstart;
pp->bitmap = 0;
for (i=start_bit; i<end_bit; i++)
set_bit(i, &(pp->bitmap));
pp->next = NULL;
__ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
return 0;
}
/*
* @start and @end should be IA32 page aligned, but don't need to be in the
* same IA64 page. Split @start and @end to make sure they're in the same IA64
* page, then call __ia32_set_pp().
*/
static void
ia32_set_pp(unsigned int start, unsigned int end, int flags)
{
down_write(&current->mm->mmap_sem);
if (flags & MAP_FIXED) {
/*
* MAP_FIXED may lead to overlapping mmap. When this happens,
* a series of complete IA64 pages results in deletion of
* old partial pages in that range.
*/
__ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
}
if (end < PAGE_ALIGN(start)) {
__ia32_set_pp(start, end, flags);
} else {
if (offset_in_page(start))
__ia32_set_pp(start, PAGE_ALIGN(start), flags);
if (offset_in_page(end))
__ia32_set_pp(PAGE_START(end), end, flags);
}
up_write(&current->mm->mmap_sem);
}
/*
* Unset the range between @start and @end in bitmap.
* @start and @end should be IA32 page aligned and in the same IA64 page.
* After doing that, if the bitmap is 0, then free the page and return 1,
* else return 0;
* If not find the partial page in the list, then
* If the vma exists, then the full page is set to a partial page;
* Else return -ENOMEM.
*/
static int
__ia32_unset_pp(unsigned int start, unsigned int end)
{
struct ia64_partial_page *pp, *prev;
struct rb_node ** rb_link, *rb_parent;
unsigned int pstart, start_bit, end_bit, i;
struct vm_area_struct *vma;
pstart = PAGE_START(start);
start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
if (end_bit == 0)
end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
&rb_link, &rb_parent);
if (pp) {
for (i = start_bit; i < end_bit; i++)
clear_bit(i, &pp->bitmap);
if (pp->bitmap == 0) {
__ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
return 1;
}
return 0;
}
vma = find_vma(current->mm, pstart);
if (!vma || vma->vm_start > pstart) {
return -ENOMEM;
}
/* new a ia64_partial_page */
pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
if (!pp)
return -ENOMEM;
pp->base = pstart;
pp->bitmap = 0;
for (i = 0; i < start_bit; i++)
set_bit(i, &(pp->bitmap));
for (i = end_bit; i < PAGE_SIZE / IA32_PAGE_SIZE; i++)
set_bit(i, &(pp->bitmap));
pp->next = NULL;
__ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
return 0;
}
/*
* Delete pp between PAGE_ALIGN(start) and PAGE_START(end) by calling
* __ia32_delete_pp_range(). Unset possible partial pages by calling
* __ia32_unset_pp().
* The returned value see __ia32_unset_pp().
*/
static int
ia32_unset_pp(unsigned int *startp, unsigned int *endp)
{
unsigned int start = *startp, end = *endp;
int ret = 0;
down_write(&current->mm->mmap_sem);
__ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
if (end < PAGE_ALIGN(start)) {
ret = __ia32_unset_pp(start, end);
if (ret == 1) {
*startp = PAGE_START(start);
*endp = PAGE_ALIGN(end);
}
if (ret == 0) {
/* to shortcut sys_munmap() in sys32_munmap() */
*startp = PAGE_START(start);
*endp = PAGE_START(end);
}
} else {
if (offset_in_page(start)) {
ret = __ia32_unset_pp(start, PAGE_ALIGN(start));
if (ret == 1)
*startp = PAGE_START(start);
if (ret == 0)
*startp = PAGE_ALIGN(start);
if (ret < 0)
goto out;
}
if (offset_in_page(end)) {
ret = __ia32_unset_pp(PAGE_START(end), end);
if (ret == 1)
*endp = PAGE_ALIGN(end);
if (ret == 0)
*endp = PAGE_START(end);
}
}
out:
up_write(&current->mm->mmap_sem);
return ret;
}
/*
* Compare the range between @start and @end with bitmap in partial page.
* @start and @end should be IA32 page aligned and in the same IA64 page.
*/
static int
__ia32_compare_pp(unsigned int start, unsigned int end)
{
struct ia64_partial_page *pp, *prev;
struct rb_node ** rb_link, *rb_parent;
unsigned int pstart, start_bit, end_bit, size;
unsigned int first_bit, next_zero_bit; /* the first range in bitmap */
pstart = PAGE_START(start);
pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
&rb_link, &rb_parent);
if (!pp)
return 1;
start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
size = sizeof(pp->bitmap) * 8;
first_bit = find_first_bit(&pp->bitmap, size);
next_zero_bit = find_next_zero_bit(&pp->bitmap, size, first_bit);
if ((start_bit < first_bit) || (end_bit > next_zero_bit)) {
/* exceeds the first range in bitmap */
return -ENOMEM;
} else if ((start_bit == first_bit) && (end_bit == next_zero_bit)) {
first_bit = find_next_bit(&pp->bitmap, size, next_zero_bit);
if ((next_zero_bit < first_bit) && (first_bit < size))
return 1; /* has next range */
else
return 0; /* no next range */
} else
return 1;
}
/*
* @start and @end should be IA32 page aligned, but don't need to be in the
* same IA64 page. Split @start and @end to make sure they're in the same IA64
* page, then call __ia32_compare_pp().
*
* Take this as example: the range is the 1st and 2nd 4K page.
* Return 0 if they fit bitmap exactly, i.e. bitmap = 00000011;
* Return 1 if the range doesn't cover whole bitmap, e.g. bitmap = 00001111;
* Return -ENOMEM if the range exceeds the bitmap, e.g. bitmap = 00000001 or
* bitmap = 00000101.
*/
static int
ia32_compare_pp(unsigned int *startp, unsigned int *endp)
{
unsigned int start = *startp, end = *endp;
int retval = 0;
down_write(&current->mm->mmap_sem);
if (end < PAGE_ALIGN(start)) {
retval = __ia32_compare_pp(start, end);
if (retval == 0) {
*startp = PAGE_START(start);
*endp = PAGE_ALIGN(end);
}
} else {
if (offset_in_page(start)) {
retval = __ia32_compare_pp(start,
PAGE_ALIGN(start));
if (retval == 0)
*startp = PAGE_START(start);
if (retval < 0)
goto out;
}
if (offset_in_page(end)) {
retval = __ia32_compare_pp(PAGE_START(end), end);
if (retval == 0)
*endp = PAGE_ALIGN(end);
}
}
out:
up_write(&current->mm->mmap_sem);
return retval;
}
static void
__ia32_drop_pp_list(struct ia64_partial_page_list *ppl)
{
struct ia64_partial_page *pp = ppl->pp_head;
while (pp) {
struct ia64_partial_page *next = pp->next;
kmem_cache_free(ia64_partial_page_cachep, pp);
pp = next;
}
kfree(ppl);
}
void
ia32_drop_ia64_partial_page_list(struct task_struct *task)
{
struct ia64_partial_page_list* ppl = task->thread.ppl;
if (ppl && atomic_dec_and_test(&ppl->pp_count))
__ia32_drop_pp_list(ppl);
}
/*
* Copy current->thread.ppl to ppl (already initialized).
*/
static int
__ia32_copy_pp_list(struct ia64_partial_page_list *ppl)
{
struct ia64_partial_page *pp, *tmp, *prev;
struct rb_node **rb_link, *rb_parent;
ppl->pp_head = NULL;
ppl->pp_hint = NULL;
ppl->ppl_rb = RB_ROOT;
rb_link = &ppl->ppl_rb.rb_node;
rb_parent = NULL;
prev = NULL;
for (pp = current->thread.ppl->pp_head; pp; pp = pp->next) {
tmp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
*tmp = *pp;
__ia32_insert_pp(ppl, tmp, prev, rb_link, rb_parent);
prev = tmp;
rb_link = &tmp->pp_rb.rb_right;
rb_parent = &tmp->pp_rb;
}
return 0;
}
int
ia32_copy_ia64_partial_page_list(struct task_struct *p,
unsigned long clone_flags)
{
int retval = 0;
if (clone_flags & CLONE_VM) {
atomic_inc(&current->thread.ppl->pp_count);
p->thread.ppl = current->thread.ppl;
} else {
p->thread.ppl = ia32_init_pp_list();
if (!p->thread.ppl)
return -ENOMEM;
down_write(&current->mm->mmap_sem);
{
retval = __ia32_copy_pp_list(p->thread.ppl);
}
up_write(&current->mm->mmap_sem);
}
return retval;
}
static unsigned long
emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags,
loff_t off)
{
unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0;
struct inode *inode;
loff_t poff;
end = start + len;
pstart = PAGE_START(start);
pend = PAGE_ALIGN(end);
if (flags & MAP_FIXED) {
ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
if (start > pstart) {
if (flags & MAP_SHARED)
printk(KERN_INFO
"%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n",
current->comm, task_pid_nr(current), start);
ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags,
off);
if (IS_ERR((void *) ret))
return ret;
pstart += PAGE_SIZE;
if (pstart >= pend)
goto out; /* done */
}
if (end < pend) {
if (flags & MAP_SHARED)
printk(KERN_INFO
"%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n",
current->comm, task_pid_nr(current), end);
ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags,
(off + len) - offset_in_page(end));
if (IS_ERR((void *) ret))
return ret;
pend -= PAGE_SIZE;
if (pstart >= pend)
goto out; /* done */
}
} else {
/*
* If a start address was specified, use it if the entire rounded out area
* is available.
*/
if (start && !pstart)
fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */
tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags);
if (tmp != pstart) {
pstart = tmp;
start = pstart + offset_in_page(off); /* make start congruent with off */
end = start + len;
pend = PAGE_ALIGN(end);
}
}
poff = off + (pstart - start); /* note: (pstart - start) may be negative */
is_congruent = (flags & MAP_ANONYMOUS) || (offset_in_page(poff) == 0);
if ((flags & MAP_SHARED) && !is_congruent)
printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap "
"(addr=0x%lx,off=0x%llx)\n", current->comm, task_pid_nr(current), start, off);
DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend,
is_congruent ? "congruent" : "not congruent", poff);
down_write(&current->mm->mmap_sem);
{
if (!(flags & MAP_ANONYMOUS) && is_congruent)
ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff);
else
ret = do_mmap(NULL, pstart, pend - pstart,
prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE),
flags | MAP_FIXED | MAP_ANONYMOUS, 0);
}
up_write(&current->mm->mmap_sem);
if (IS_ERR((void *) ret))
return ret;
if (!is_congruent) {
/* read the file contents */
inode = file->f_path.dentry->d_inode;
if (!inode->i_fop || !file->f_op->read
|| ((*file->f_op->read)(file, (char __user *) pstart, pend - pstart, &poff)
< 0))
{
sys_munmap(pstart, pend - pstart);
return -EINVAL;
}
if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0)
return -EINVAL;
}
if (!(flags & MAP_FIXED))
ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
out:
return start;
}
#endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
static inline unsigned int
get_prot32 (unsigned int prot)
{
if (prot & PROT_WRITE)
/* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */
prot |= PROT_READ | PROT_WRITE | PROT_EXEC;
else if (prot & (PROT_READ | PROT_EXEC))
/* on x86, there is no distinction between PROT_READ and PROT_EXEC */
prot |= (PROT_READ | PROT_EXEC);
return prot;
}
unsigned long
ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags,
loff_t offset)
{
DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n",
file, addr, len, prot, flags, offset);
if (file && (!file->f_op || !file->f_op->mmap))
return -ENODEV;
len = IA32_PAGE_ALIGN(len);
if (len == 0)
return addr;
if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len)
{
if (flags & MAP_FIXED)
return -ENOMEM;
else
return -EINVAL;
}
if (OFFSET4K(offset))
return -EINVAL;
prot = get_prot32(prot);
#if PAGE_SHIFT > IA32_PAGE_SHIFT
mutex_lock(&ia32_mmap_mutex);
{
addr = emulate_mmap(file, addr, len, prot, flags, offset);
}
mutex_unlock(&ia32_mmap_mutex);
#else
down_write(&current->mm->mmap_sem);
{
addr = do_mmap(file, addr, len, prot, flags, offset);
}
up_write(&current->mm->mmap_sem);
#endif
DBG("ia32_do_mmap: returning 0x%lx\n", addr);
return addr;
}
/*
* Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these
* system calls used a memory block for parameter passing..
*/
struct mmap_arg_struct {
unsigned int addr;
unsigned int len;
unsigned int prot;
unsigned int flags;
unsigned int fd;
unsigned int offset;
};
asmlinkage long
sys32_mmap (struct mmap_arg_struct __user *arg)
{
struct mmap_arg_struct a;
struct file *file = NULL;
unsigned long addr;
int flags;
if (copy_from_user(&a, arg, sizeof(a)))
return -EFAULT;
if (OFFSET4K(a.offset))
return -EINVAL;
flags = a.flags;
flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
if (!(flags & MAP_ANONYMOUS)) {
file = fget(a.fd);
if (!file)
return -EBADF;
}
addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset);
if (file)
fput(file);
return addr;
}
asmlinkage long
sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags,
unsigned int fd, unsigned int pgoff)
{
struct file *file = NULL;
unsigned long retval;
flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
if (!(flags & MAP_ANONYMOUS)) {
file = fget(fd);
if (!file)
return -EBADF;
}
retval = ia32_do_mmap(file, addr, len, prot, flags,
(unsigned long) pgoff << IA32_PAGE_SHIFT);
if (file)
fput(file);
return retval;
}
asmlinkage long
sys32_munmap (unsigned int start, unsigned int len)
{
unsigned int end = start + len;
long ret;
#if PAGE_SHIFT <= IA32_PAGE_SHIFT
ret = sys_munmap(start, end - start);
#else
if (OFFSET4K(start))
return -EINVAL;
end = IA32_PAGE_ALIGN(end);
if (start >= end)
return -EINVAL;
ret = ia32_unset_pp(&start, &end);
if (ret < 0)
return ret;
if (start >= end)
return 0;
mutex_lock(&ia32_mmap_mutex);
ret = sys_munmap(start, end - start);
mutex_unlock(&ia32_mmap_mutex);
#endif
return ret;
}
#if PAGE_SHIFT > IA32_PAGE_SHIFT
/*
* When mprotect()ing a partial page, we set the permission to the union of the old
* settings and the new settings. In other words, it's only possible to make access to a
* partial page less restrictive.
*/
static long
mprotect_subpage (unsigned long address, int new_prot)
{
int old_prot;
struct vm_area_struct *vma;
if (new_prot == PROT_NONE)
return 0; /* optimize case where nothing changes... */
vma = find_vma(current->mm, address);
old_prot = get_page_prot(vma, address);
return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot);
}
#endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
asmlinkage long
sys32_mprotect (unsigned int start, unsigned int len, int prot)
{
unsigned int end = start + len;
#if PAGE_SHIFT > IA32_PAGE_SHIFT
long retval = 0;
#endif
prot = get_prot32(prot);
#if PAGE_SHIFT <= IA32_PAGE_SHIFT
return sys_mprotect(start, end - start, prot);
#else
if (OFFSET4K(start))
return -EINVAL;
end = IA32_PAGE_ALIGN(end);
if (end < start)
return -EINVAL;
retval = ia32_compare_pp(&start, &end);
if (retval < 0)
return retval;
mutex_lock(&ia32_mmap_mutex);
{
if (offset_in_page(start)) {
/* start address is 4KB aligned but not page aligned. */
retval = mprotect_subpage(PAGE_START(start), prot);
if (retval < 0)
goto out;
start = PAGE_ALIGN(start);
if (start >= end)
goto out; /* retval is already zero... */
}
if (offset_in_page(end)) {
/* end address is 4KB aligned but not page aligned. */
retval = mprotect_subpage(PAGE_START(end), prot);
if (retval < 0)
goto out;
end = PAGE_START(end);
}
retval = sys_mprotect(start, end - start, prot);
}
out:
mutex_unlock(&ia32_mmap_mutex);
return retval;
#endif
}
asmlinkage long
sys32_mremap (unsigned int addr, unsigned int old_len, unsigned int new_len,
unsigned int flags, unsigned int new_addr)
{
long ret;
#if PAGE_SHIFT <= IA32_PAGE_SHIFT
ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
#else
unsigned int old_end, new_end;
if (OFFSET4K(addr))
return -EINVAL;
old_len = IA32_PAGE_ALIGN(old_len);
new_len = IA32_PAGE_ALIGN(new_len);
old_end = addr + old_len;
new_end = addr + new_len;
if (!new_len)
return -EINVAL;
if ((flags & MREMAP_FIXED) && (OFFSET4K(new_addr)))
return -EINVAL;
if (old_len >= new_len) {
ret = sys32_munmap(addr + new_len, old_len - new_len);
if (ret && old_len != new_len)
return ret;
ret = addr;
if (!(flags & MREMAP_FIXED) || (new_addr == addr))
return ret;
old_len = new_len;
}
addr = PAGE_START(addr);
old_len = PAGE_ALIGN(old_end) - addr;
new_len = PAGE_ALIGN(new_end) - addr;
mutex_lock(&ia32_mmap_mutex);
ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
mutex_unlock(&ia32_mmap_mutex);
if ((ret >= 0) && (old_len < new_len)) {
/* mremap expanded successfully */
ia32_set_pp(old_end, new_end, flags);
}
#endif
return ret;
}
asmlinkage unsigned long
sys32_alarm (unsigned int seconds)
{
return alarm_setitimer(seconds);
}
struct sel_arg_struct {
unsigned int n;
unsigned int inp;
unsigned int outp;
unsigned int exp;
unsigned int tvp;
};
asmlinkage long
sys32_old_select (struct sel_arg_struct __user *arg)
{
struct sel_arg_struct a;
if (copy_from_user(&a, arg, sizeof(a)))
return -EFAULT;
return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp),
compat_ptr(a.exp), compat_ptr(a.tvp));
}
#define SEMOP 1
#define SEMGET 2
#define SEMCTL 3
#define SEMTIMEDOP 4
#define MSGSND 11
#define MSGRCV 12
#define MSGGET 13
#define MSGCTL 14
#define SHMAT 21
#define SHMDT 22
#define SHMGET 23
#define SHMCTL 24
asmlinkage long
sys32_ipc(u32 call, int first, int second, int third, u32 ptr, u32 fifth)
{
int version;
version = call >> 16; /* hack for backward compatibility */
call &= 0xffff;
switch (call) {
case SEMTIMEDOP:
if (fifth)
return compat_sys_semtimedop(first, compat_ptr(ptr),
second, compat_ptr(fifth));
/* else fall through for normal semop() */
case SEMOP:
/* struct sembuf is the same on 32 and 64bit :)) */
return sys_semtimedop(first, compat_ptr(ptr), second,
NULL);
case SEMGET:
return sys_semget(first, second, third);
case SEMCTL:
return compat_sys_semctl(first, second, third, compat_ptr(ptr));
case MSGSND:
return compat_sys_msgsnd(first, second, third, compat_ptr(ptr));
case MSGRCV:
return compat_sys_msgrcv(first, second, fifth, third, version, compat_ptr(ptr));
case MSGGET:
return sys_msgget((key_t) first, second);
case MSGCTL:
return compat_sys_msgctl(first, second, compat_ptr(ptr));
case SHMAT:
return compat_sys_shmat(first, second, third, version, compat_ptr(ptr));
break;
case SHMDT:
return sys_shmdt(compat_ptr(ptr));
case SHMGET:
return sys_shmget(first, (unsigned)second, third);
case SHMCTL:
return compat_sys_shmctl(first, second, compat_ptr(ptr));
default:
return -ENOSYS;
}
return -EINVAL;
}
asmlinkage long
compat_sys_wait4 (compat_pid_t pid, compat_uint_t * stat_addr, int options,
struct compat_rusage *ru);
asmlinkage long
sys32_waitpid (int pid, unsigned int *stat_addr, int options)
{
return compat_sys_wait4(pid, stat_addr, options, NULL);
}
/*
* The order in which registers are stored in the ptrace regs structure
*/
#define PT_EBX 0
#define PT_ECX 1
#define PT_EDX 2
#define PT_ESI 3
#define PT_EDI 4
#define PT_EBP 5
#define PT_EAX 6
#define PT_DS 7
#define PT_ES 8
#define PT_FS 9
#define PT_GS 10
#define PT_ORIG_EAX 11
#define PT_EIP 12
#define PT_CS 13
#define PT_EFL 14
#define PT_UESP 15
#define PT_SS 16
static unsigned int
getreg (struct task_struct *child, int regno)
{
struct pt_regs *child_regs;
child_regs = task_pt_regs(child);
switch (regno / sizeof(int)) {
case PT_EBX: return child_regs->r11;
case PT_ECX: return child_regs->r9;
case PT_EDX: return child_regs->r10;
case PT_ESI: return child_regs->r14;
case PT_EDI: return child_regs->r15;
case PT_EBP: return child_regs->r13;
case PT_EAX: return child_regs->r8;
case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */
case PT_EIP: return child_regs->cr_iip;
case PT_UESP: return child_regs->r12;
case PT_EFL: return child->thread.eflag;
case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
return __USER_DS;
case PT_CS: return __USER_CS;
default:
printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno);
break;
}
return 0;
}
static void
putreg (struct task_struct *child, int regno, unsigned int value)
{
struct pt_regs *child_regs;
child_regs = task_pt_regs(child);
switch (regno / sizeof(int)) {
case PT_EBX: child_regs->r11 = value; break;
case PT_ECX: child_regs->r9 = value; break;
case PT_EDX: child_regs->r10 = value; break;
case PT_ESI: child_regs->r14 = value; break;
case PT_EDI: child_regs->r15 = value; break;
case PT_EBP: child_regs->r13 = value; break;
case PT_EAX: child_regs->r8 = value; break;
case PT_ORIG_EAX: child_regs->r1 = value; break;
case PT_EIP: child_regs->cr_iip = value; break;
case PT_UESP: child_regs->r12 = value; break;
case PT_EFL: child->thread.eflag = value; break;
case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
if (value != __USER_DS)
printk(KERN_ERR
"ia32.putreg: attempt to set invalid segment register %d = %x\n",
regno, value);
break;
case PT_CS:
if (value != __USER_CS)
printk(KERN_ERR
"ia32.putreg: attempt to to set invalid segment register %d = %x\n",
regno, value);
break;
default:
printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno);
break;
}
}
static void
put_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
struct switch_stack *swp, int tos)
{
struct _fpreg_ia32 *f;
char buf[32];
f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15);
if ((regno += tos) >= 8)
regno -= 8;
switch (regno) {
case 0:
ia64f2ia32f(f, &ptp->f8);
break;
case 1:
ia64f2ia32f(f, &ptp->f9);
break;
case 2:
ia64f2ia32f(f, &ptp->f10);
break;
case 3:
ia64f2ia32f(f, &ptp->f11);
break;
case 4:
case 5:
case 6:
case 7:
ia64f2ia32f(f, &swp->f12 + (regno - 4));
break;
}
copy_to_user(reg, f, sizeof(*reg));
}
static void
get_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
struct switch_stack *swp, int tos)
{
if ((regno += tos) >= 8)
regno -= 8;
switch (regno) {
case 0:
copy_from_user(&ptp->f8, reg, sizeof(*reg));
break;
case 1:
copy_from_user(&ptp->f9, reg, sizeof(*reg));
break;
case 2:
copy_from_user(&ptp->f10, reg, sizeof(*reg));
break;
case 3:
copy_from_user(&ptp->f11, reg, sizeof(*reg));
break;
case 4:
case 5:
case 6:
case 7:
copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg));
break;
}
return;
}
int
save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
{
struct switch_stack *swp;
struct pt_regs *ptp;
int i, tos;
if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
return -EFAULT;
__put_user(tsk->thread.fcr & 0xffff, &save->cwd);
__put_user(tsk->thread.fsr & 0xffff, &save->swd);
__put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
__put_user(tsk->thread.fir, &save->fip);
__put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
__put_user(tsk->thread.fdr, &save->foo);
__put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
/*
* Stack frames start with 16-bytes of temp space
*/
swp = (struct switch_stack *)(tsk->thread.ksp + 16);
ptp = task_pt_regs(tsk);
tos = (tsk->thread.fsr >> 11) & 7;
for (i = 0; i < 8; i++)
put_fpreg(i, &save->st_space[i], ptp, swp, tos);
return 0;
}
static int
restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
{
struct switch_stack *swp;
struct pt_regs *ptp;
int i, tos;
unsigned int fsrlo, fsrhi, num32;
if (!access_ok(VERIFY_READ, save, sizeof(*save)))
return(-EFAULT);
__get_user(num32, (unsigned int __user *)&save->cwd);
tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
__get_user(fsrlo, (unsigned int __user *)&save->swd);
__get_user(fsrhi, (unsigned int __user *)&save->twd);
num32 = (fsrhi << 16) | fsrlo;
tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
__get_user(num32, (unsigned int __user *)&save->fip);
tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
__get_user(num32, (unsigned int __user *)&save->foo);
tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
/*
* Stack frames start with 16-bytes of temp space
*/
swp = (struct switch_stack *)(tsk->thread.ksp + 16);
ptp = task_pt_regs(tsk);
tos = (tsk->thread.fsr >> 11) & 7;
for (i = 0; i < 8; i++)
get_fpreg(i, &save->st_space[i], ptp, swp, tos);
return 0;
}
int
save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
{
struct switch_stack *swp;
struct pt_regs *ptp;
int i, tos;
unsigned long mxcsr=0;
unsigned long num128[2];
if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
return -EFAULT;
__put_user(tsk->thread.fcr & 0xffff, &save->cwd);
__put_user(tsk->thread.fsr & 0xffff, &save->swd);
__put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
__put_user(tsk->thread.fir, &save->fip);
__put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
__put_user(tsk->thread.fdr, &save->foo);
__put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
/*
* Stack frames start with 16-bytes of temp space
*/
swp = (struct switch_stack *)(tsk->thread.ksp + 16);
ptp = task_pt_regs(tsk);
tos = (tsk->thread.fsr >> 11) & 7;
for (i = 0; i < 8; i++)
put_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f);
__put_user(mxcsr & 0xffff, &save->mxcsr);
for (i = 0; i < 8; i++) {
memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long));
memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long));
copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32));
}
return 0;
}
static int
restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
{
struct switch_stack *swp;
struct pt_regs *ptp;
int i, tos;
unsigned int fsrlo, fsrhi, num32;
int mxcsr;
unsigned long num64;
unsigned long num128[2];
if (!access_ok(VERIFY_READ, save, sizeof(*save)))
return(-EFAULT);
__get_user(num32, (unsigned int __user *)&save->cwd);
tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
__get_user(fsrlo, (unsigned int __user *)&save->swd);
__get_user(fsrhi, (unsigned int __user *)&save->twd);
num32 = (fsrhi << 16) | fsrlo;
tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
__get_user(num32, (unsigned int __user *)&save->fip);
tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
__get_user(num32, (unsigned int __user *)&save->foo);
tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
/*
* Stack frames start with 16-bytes of temp space
*/
swp = (struct switch_stack *)(tsk->thread.ksp + 16);
ptp = task_pt_regs(tsk);
tos = (tsk->thread.fsr >> 11) & 7;
for (i = 0; i < 8; i++)
get_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
__get_user(mxcsr, (unsigned int __user *)&save->mxcsr);
num64 = mxcsr & 0xff10;
tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000UL)) | (num64<<32);
num64 = mxcsr & 0x3f;
tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000UL)) | (num64<<32);
for (i = 0; i < 8; i++) {
copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32));
memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long));
memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long));
}
return 0;
}
long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
compat_ulong_t caddr, compat_ulong_t cdata)
{
unsigned long addr = caddr;
unsigned long data = cdata;
unsigned int tmp;
long i, ret;
switch (request) {
case PTRACE_PEEKUSR: /* read word at addr in USER area */
ret = -EIO;
if ((addr & 3) || addr > 17*sizeof(int))
break;
tmp = getreg(child, addr);
if (!put_user(tmp, (unsigned int __user *) compat_ptr(data)))
ret = 0;
break;
case PTRACE_POKEUSR: /* write word at addr in USER area */
ret = -EIO;
if ((addr & 3) || addr > 17*sizeof(int))
break;
putreg(child, addr, data);
ret = 0;
break;
case IA32_PTRACE_GETREGS:
if (!access_ok(VERIFY_WRITE, compat_ptr(data), 17*sizeof(int))) {
ret = -EIO;
break;
}
for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
put_user(getreg(child, i), (unsigned int __user *) compat_ptr(data));
data += sizeof(int);
}
ret = 0;
break;
case IA32_PTRACE_SETREGS:
if (!access_ok(VERIFY_READ, compat_ptr(data), 17*sizeof(int))) {
ret = -EIO;
break;
}
for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
get_user(tmp, (unsigned int __user *) compat_ptr(data));
putreg(child, i, tmp);
data += sizeof(int);
}
ret = 0;
break;
case IA32_PTRACE_GETFPREGS:
ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
compat_ptr(data));
break;
case IA32_PTRACE_GETFPXREGS:
ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
compat_ptr(data));
break;
case IA32_PTRACE_SETFPREGS:
ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
compat_ptr(data));
break;
case IA32_PTRACE_SETFPXREGS:
ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
compat_ptr(data));
break;
default:
return compat_ptrace_request(child, request, caddr, cdata);
}
return ret;
}
typedef struct {
unsigned int ss_sp;
unsigned int ss_flags;
unsigned int ss_size;
} ia32_stack_t;
asmlinkage long
sys32_sigaltstack (ia32_stack_t __user *uss32, ia32_stack_t __user *uoss32,
long arg2, long arg3, long arg4, long arg5, long arg6,
long arg7, struct pt_regs pt)
{
stack_t uss, uoss;
ia32_stack_t buf32;
int ret;
mm_segment_t old_fs = get_fs();
if (uss32) {
if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t)))
return -EFAULT;
uss.ss_sp = (void __user *) (long) buf32.ss_sp;
uss.ss_flags = buf32.ss_flags;
/* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the
check and set it to the user requested value later */
if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) {
ret = -ENOMEM;
goto out;
}
uss.ss_size = MINSIGSTKSZ;
}
set_fs(KERNEL_DS);
ret = do_sigaltstack(uss32 ? (stack_t __user *) &uss : NULL,
(stack_t __user *) &uoss, pt.r12);
current->sas_ss_size = buf32.ss_size;
set_fs(old_fs);
out:
if (ret < 0)
return(ret);
if (uoss32) {
buf32.ss_sp = (long __user) uoss.ss_sp;
buf32.ss_flags = uoss.ss_flags;
buf32.ss_size = uoss.ss_size;
if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t)))
return -EFAULT;
}
return ret;
}
asmlinkage int
sys32_msync (unsigned int start, unsigned int len, int flags)
{
unsigned int addr;
if (OFFSET4K(start))
return -EINVAL;
addr = PAGE_START(start);
return sys_msync(addr, len + (start - addr), flags);
}
struct sysctl32 {
unsigned int name;
int nlen;
unsigned int oldval;
unsigned int oldlenp;
unsigned int newval;
unsigned int newlen;
unsigned int __unused[4];
};
#ifdef CONFIG_SYSCTL_SYSCALL
asmlinkage long
sys32_sysctl (struct sysctl32 __user *args)
{
struct sysctl32 a32;
mm_segment_t old_fs = get_fs ();
void __user *oldvalp, *newvalp;
size_t oldlen;
int __user *namep;
long ret;
if (copy_from_user(&a32, args, sizeof(a32)))
return -EFAULT;
/*
* We need to pre-validate these because we have to disable address checking
* before calling do_sysctl() because of OLDLEN but we can't run the risk of the
* user specifying bad addresses here. Well, since we're dealing with 32 bit
* addresses, we KNOW that access_ok() will always succeed, so this is an
* expensive NOP, but so what...
*/
namep = (int __user *) compat_ptr(a32.name);
oldvalp = compat_ptr(a32.oldval);
newvalp = compat_ptr(a32.newval);
if ((oldvalp && get_user(oldlen, (int __user *) compat_ptr(a32.oldlenp)))
|| !access_ok(VERIFY_WRITE, namep, 0)
|| !access_ok(VERIFY_WRITE, oldvalp, 0)
|| !access_ok(VERIFY_WRITE, newvalp, 0))
return -EFAULT;
set_fs(KERNEL_DS);
lock_kernel();
ret = do_sysctl(namep, a32.nlen, oldvalp, (size_t __user *) &oldlen,
newvalp, (size_t) a32.newlen);
unlock_kernel();
set_fs(old_fs);
if (oldvalp && put_user (oldlen, (int __user *) compat_ptr(a32.oldlenp)))
return -EFAULT;
return ret;
}
#endif
asmlinkage long
sys32_newuname (struct new_utsname __user *name)
{
int ret = sys_newuname(name);
if (!ret)
if (copy_to_user(name->machine, "i686\0\0\0", 8))
ret = -EFAULT;
return ret;
}
asmlinkage long
sys32_getresuid16 (u16 __user *ruid, u16 __user *euid, u16 __user *suid)
{
uid_t a, b, c;
int ret;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_getresuid((uid_t __user *) &a, (uid_t __user *) &b, (uid_t __user *) &c);
set_fs(old_fs);
if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid))
return -EFAULT;
return ret;
}
asmlinkage long
sys32_getresgid16 (u16 __user *rgid, u16 __user *egid, u16 __user *sgid)
{
gid_t a, b, c;
int ret;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_getresgid((gid_t __user *) &a, (gid_t __user *) &b, (gid_t __user *) &c);
set_fs(old_fs);
if (ret)
return ret;
return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid);
}
asmlinkage long
sys32_lseek (unsigned int fd, int offset, unsigned int whence)
{
/* Sign-extension of "offset" is important here... */
return sys_lseek(fd, offset, whence);
}
static int
groups16_to_user(short __user *grouplist, struct group_info *group_info)
{
int i;
short group;
for (i = 0; i < group_info->ngroups; i++) {
group = (short)GROUP_AT(group_info, i);
if (put_user(group, grouplist+i))
return -EFAULT;
}
return 0;
}
static int
groups16_from_user(struct group_info *group_info, short __user *grouplist)
{
int i;
short group;
for (i = 0; i < group_info->ngroups; i++) {
if (get_user(group, grouplist+i))
return -EFAULT;
GROUP_AT(group_info, i) = (gid_t)group;
}
return 0;
}
asmlinkage long
sys32_getgroups16 (int gidsetsize, short __user *grouplist)
{
const struct cred *cred = current_cred();
int i;
if (gidsetsize < 0)
return -EINVAL;
i = cred->group_info->ngroups;
if (gidsetsize) {
if (i > gidsetsize) {
i = -EINVAL;
goto out;
}
if (groups16_to_user(grouplist, cred->group_info)) {
i = -EFAULT;
goto out;
}
}
out:
return i;
}
asmlinkage long
sys32_setgroups16 (int gidsetsize, short __user *grouplist)
{
struct group_info *group_info;
int retval;
if (!capable(CAP_SETGID))
return -EPERM;
if ((unsigned)gidsetsize > NGROUPS_MAX)
return -EINVAL;
group_info = groups_alloc(gidsetsize);
if (!group_info)
return -ENOMEM;
retval = groups16_from_user(group_info, grouplist);
if (retval) {
put_group_info(group_info);
return retval;
}
retval = set_current_groups(group_info);
put_group_info(group_info);
return retval;
}
asmlinkage long
sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi)
{
return sys_truncate(compat_ptr(path), ((unsigned long) len_hi << 32) | len_lo);
}
asmlinkage long
sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi)
{
return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo);
}
static int
putstat64 (struct stat64 __user *ubuf, struct kstat *kbuf)
{
int err;
u64 hdev;
if (clear_user(ubuf, sizeof(*ubuf)))
return -EFAULT;
hdev = huge_encode_dev(kbuf->dev);
err = __put_user(hdev, (u32 __user*)&ubuf->st_dev);
err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_dev) + 1);
err |= __put_user(kbuf->ino, &ubuf->__st_ino);
err |= __put_user(kbuf->ino, &ubuf->st_ino_lo);
err |= __put_user(kbuf->ino >> 32, &ubuf->st_ino_hi);
err |= __put_user(kbuf->mode, &ubuf->st_mode);
err |= __put_user(kbuf->nlink, &ubuf->st_nlink);
err |= __put_user(kbuf->uid, &ubuf->st_uid);
err |= __put_user(kbuf->gid, &ubuf->st_gid);
hdev = huge_encode_dev(kbuf->rdev);
err = __put_user(hdev, (u32 __user*)&ubuf->st_rdev);
err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_rdev) + 1);
err |= __put_user(kbuf->size, &ubuf->st_size_lo);
err |= __put_user((kbuf->size >> 32), &ubuf->st_size_hi);
err |= __put_user(kbuf->atime.tv_sec, &ubuf->st_atime);
err |= __put_user(kbuf->atime.tv_nsec, &ubuf->st_atime_nsec);
err |= __put_user(kbuf->mtime.tv_sec, &ubuf->st_mtime);
err |= __put_user(kbuf->mtime.tv_nsec, &ubuf->st_mtime_nsec);
err |= __put_user(kbuf->ctime.tv_sec, &ubuf->st_ctime);
err |= __put_user(kbuf->ctime.tv_nsec, &ubuf->st_ctime_nsec);
err |= __put_user(kbuf->blksize, &ubuf->st_blksize);
err |= __put_user(kbuf->blocks, &ubuf->st_blocks);
return err;
}
asmlinkage long
sys32_stat64 (char __user *filename, struct stat64 __user *statbuf)
{
struct kstat s;
long ret = vfs_stat(filename, &s);
if (!ret)
ret = putstat64(statbuf, &s);
return ret;
}
asmlinkage long
sys32_lstat64 (char __user *filename, struct stat64 __user *statbuf)
{
struct kstat s;
long ret = vfs_lstat(filename, &s);
if (!ret)
ret = putstat64(statbuf, &s);
return ret;
}
asmlinkage long
sys32_fstat64 (unsigned int fd, struct stat64 __user *statbuf)
{
struct kstat s;
long ret = vfs_fstat(fd, &s);
if (!ret)
ret = putstat64(statbuf, &s);
return ret;
}
asmlinkage long
sys32_sched_rr_get_interval (pid_t pid, struct compat_timespec __user *interval)
{
mm_segment_t old_fs = get_fs();
struct timespec t;
long ret;
set_fs(KERNEL_DS);
ret = sys_sched_rr_get_interval(pid, (struct timespec __user *) &t);
set_fs(old_fs);
if (put_compat_timespec(&t, interval))
return -EFAULT;
return ret;
}
asmlinkage long
sys32_pread (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
{
return sys_pread64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
}
asmlinkage long
sys32_pwrite (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
{
return sys_pwrite64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
}
asmlinkage long
sys32_sendfile (int out_fd, int in_fd, int __user *offset, unsigned int count)
{
mm_segment_t old_fs = get_fs();
long ret;
off_t of;
if (offset && get_user(of, offset))
return -EFAULT;
set_fs(KERNEL_DS);
ret = sys_sendfile(out_fd, in_fd, offset ? (off_t __user *) &of : NULL, count);
set_fs(old_fs);
if (offset && put_user(of, offset))
return -EFAULT;
return ret;
}
asmlinkage long
sys32_personality (unsigned int personality)
{
long ret;
if (current->personality == PER_LINUX32 && personality == PER_LINUX)
personality = PER_LINUX32;
ret = sys_personality(personality);
if (ret == PER_LINUX32)
ret = PER_LINUX;
return ret;
}
asmlinkage unsigned long
sys32_brk (unsigned int brk)
{
unsigned long ret, obrk;
struct mm_struct *mm = current->mm;
obrk = mm->brk;
ret = sys_brk(brk);
if (ret < obrk)
clear_user(compat_ptr(ret), PAGE_ALIGN(ret) - ret);
return ret;
}
/* Structure for ia32 emulation on ia64 */
struct epoll_event32
{
u32 events;
u32 data[2];
};
asmlinkage long
sys32_epoll_ctl(int epfd, int op, int fd, struct epoll_event32 __user *event)
{
mm_segment_t old_fs = get_fs();
struct epoll_event event64;
int error;
u32 data_halfword;
if (!access_ok(VERIFY_READ, event, sizeof(struct epoll_event32)))
return -EFAULT;
__get_user(event64.events, &event->events);
__get_user(data_halfword, &event->data[0]);
event64.data = data_halfword;
__get_user(data_halfword, &event->data[1]);
event64.data |= (u64)data_halfword << 32;
set_fs(KERNEL_DS);
error = sys_epoll_ctl(epfd, op, fd, (struct epoll_event __user *) &event64);
set_fs(old_fs);
return error;
}
asmlinkage long
sys32_epoll_wait(int epfd, struct epoll_event32 __user * events, int maxevents,
int timeout)
{
struct epoll_event *events64 = NULL;
mm_segment_t old_fs = get_fs();
int numevents, size;
int evt_idx;
int do_free_pages = 0;
if (maxevents <= 0) {
return -EINVAL;
}
/* Verify that the area passed by the user is writeable */
if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event32)))
return -EFAULT;
/*
* Allocate space for the intermediate copy. If the space needed
* is large enough to cause kmalloc to fail, then try again with
* __get_free_pages.
*/
size = maxevents * sizeof(struct epoll_event);
events64 = kmalloc(size, GFP_KERNEL);
if (events64 == NULL) {
events64 = (struct epoll_event *)
__get_free_pages(GFP_KERNEL, get_order(size));
if (events64 == NULL)
return -ENOMEM;
do_free_pages = 1;
}
/* Do the system call */
set_fs(KERNEL_DS); /* copy_to/from_user should work on kernel mem*/
numevents = sys_epoll_wait(epfd, (struct epoll_event __user *) events64,
maxevents, timeout);
set_fs(old_fs);
/* Don't modify userspace memory if we're returning an error */
if (numevents > 0) {
/* Translate the 64-bit structures back into the 32-bit
structures */
for (evt_idx = 0; evt_idx < numevents; evt_idx++) {
__put_user(events64[evt_idx].events,
&events[evt_idx].events);
__put_user((u32)events64[evt_idx].data,
&events[evt_idx].data[0]);
__put_user((u32)(events64[evt_idx].data >> 32),
&events[evt_idx].data[1]);
}
}
if (do_free_pages)
free_pages((unsigned long) events64, get_order(size));
else
kfree(events64);
return numevents;
}
/*
* Get a yet unused TLS descriptor index.
*/
static int
get_free_idx (void)
{
struct thread_struct *t = &current->thread;
int idx;
for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
if (desc_empty(t->tls_array + idx))
return idx + GDT_ENTRY_TLS_MIN;
return -ESRCH;
}
static void set_tls_desc(struct task_struct *p, int idx,
const struct ia32_user_desc *info, int n)
{
struct thread_struct *t = &p->thread;
struct desc_struct *desc = &t->tls_array[idx - GDT_ENTRY_TLS_MIN];
int cpu;
/*
* We must not get preempted while modifying the TLS.
*/
cpu = get_cpu();
while (n-- > 0) {
if (LDT_empty(info)) {
desc->a = 0;
desc->b = 0;
} else {
desc->a = LDT_entry_a(info);
desc->b = LDT_entry_b(info);
}
++info;
++desc;
}
if (t == &current->thread)
load_TLS(t, cpu);
put_cpu();
}
/*
* Set a given TLS descriptor:
*/
asmlinkage int
sys32_set_thread_area (struct ia32_user_desc __user *u_info)
{
struct ia32_user_desc info;
int idx;
if (copy_from_user(&info, u_info, sizeof(info)))
return -EFAULT;
idx = info.entry_number;
/*
* index -1 means the kernel should try to find and allocate an empty descriptor:
*/
if (idx == -1) {
idx = get_free_idx();
if (idx < 0)
return idx;
if (put_user(idx, &u_info->entry_number))
return -EFAULT;
}
if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
return -EINVAL;
set_tls_desc(current, idx, &info, 1);
return 0;
}
/*
* Get the current Thread-Local Storage area:
*/
#define GET_BASE(desc) ( \
(((desc)->a >> 16) & 0x0000ffff) | \
(((desc)->b << 16) & 0x00ff0000) | \
( (desc)->b & 0xff000000) )
#define GET_LIMIT(desc) ( \
((desc)->a & 0x0ffff) | \
((desc)->b & 0xf0000) )
#define GET_32BIT(desc) (((desc)->b >> 22) & 1)
#define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
#define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
#define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
#define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
#define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
static void fill_user_desc(struct ia32_user_desc *info, int idx,
const struct desc_struct *desc)
{
info->entry_number = idx;
info->base_addr = GET_BASE(desc);
info->limit = GET_LIMIT(desc);
info->seg_32bit = GET_32BIT(desc);
info->contents = GET_CONTENTS(desc);
info->read_exec_only = !GET_WRITABLE(desc);
info->limit_in_pages = GET_LIMIT_PAGES(desc);
info->seg_not_present = !GET_PRESENT(desc);
info->useable = GET_USEABLE(desc);
}
asmlinkage int
sys32_get_thread_area (struct ia32_user_desc __user *u_info)
{
struct ia32_user_desc info;
struct desc_struct *desc;
int idx;
if (get_user(idx, &u_info->entry_number))
return -EFAULT;
if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
return -EINVAL;
desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
fill_user_desc(&info, idx, desc);
if (copy_to_user(u_info, &info, sizeof(info)))
return -EFAULT;
return 0;
}
struct regset_get {
void *kbuf;
void __user *ubuf;
};
struct regset_set {
const void *kbuf;
const void __user *ubuf;
};
struct regset_getset {
struct task_struct *target;
const struct user_regset *regset;
union {
struct regset_get get;
struct regset_set set;
} u;
unsigned int pos;
unsigned int count;
int ret;
};
static void getfpreg(struct task_struct *task, int regno, int *val)
{
switch (regno / sizeof(int)) {
case 0:
*val = task->thread.fcr & 0xffff;
break;
case 1:
*val = task->thread.fsr & 0xffff;
break;
case 2:
*val = (task->thread.fsr>>16) & 0xffff;
break;
case 3:
*val = task->thread.fir;
break;
case 4:
*val = (task->thread.fir>>32) & 0xffff;
break;
case 5:
*val = task->thread.fdr;
break;
case 6:
*val = (task->thread.fdr >> 32) & 0xffff;
break;
}
}
static void setfpreg(struct task_struct *task, int regno, int val)
{
switch (regno / sizeof(int)) {
case 0:
task->thread.fcr = (task->thread.fcr & (~0x1f3f))
| (val & 0x1f3f);
break;
case 1:
task->thread.fsr = (task->thread.fsr & (~0xffff)) | val;
break;
case 2:
task->thread.fsr = (task->thread.fsr & (~0xffff0000))
| (val << 16);
break;
case 3:
task->thread.fir = (task->thread.fir & (~0xffffffff)) | val;
break;
case 5:
task->thread.fdr = (task->thread.fdr & (~0xffffffff)) | val;
break;
}
}
static void access_fpreg_ia32(int regno, void *reg,
struct pt_regs *pt, struct switch_stack *sw,
int tos, int write)
{
void *f;
if ((regno += tos) >= 8)
regno -= 8;
if (regno < 4)
f = &pt->f8 + regno;
else if (regno <= 7)
f = &sw->f12 + (regno - 4);
else {
printk(KERN_ERR "regno must be less than 7 \n");
return;
}
if (write)
memcpy(f, reg, sizeof(struct _fpreg_ia32));
else
memcpy(reg, f, sizeof(struct _fpreg_ia32));
}
static void do_fpregs_get(struct unw_frame_info *info, void *arg)
{
struct regset_getset *dst = arg;
struct task_struct *task = dst->target;
struct pt_regs *pt;
int start, end, tos;
char buf[80];
if (dst->count == 0 || unw_unwind_to_user(info) < 0)
return;
if (dst->pos < 7 * sizeof(int)) {
end = min((dst->pos + dst->count),
(unsigned int)(7 * sizeof(int)));
for (start = dst->pos; start < end; start += sizeof(int))
getfpreg(task, start, (int *)(buf + start));
dst->ret = user_regset_copyout(&dst->pos, &dst->count,
&dst->u.get.kbuf, &dst->u.get.ubuf, buf,
0, 7 * sizeof(int));
if (dst->ret || dst->count == 0)
return;
}
if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
pt = task_pt_regs(task);
tos = (task->thread.fsr >> 11) & 7;
end = min(dst->pos + dst->count,
(unsigned int)(sizeof(struct ia32_user_i387_struct)));
start = (dst->pos - 7 * sizeof(int)) /
sizeof(struct _fpreg_ia32);
end = (end - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
for (; start < end; start++)
access_fpreg_ia32(start,
(struct _fpreg_ia32 *)buf + start,
pt, info->sw, tos, 0);
dst->ret = user_regset_copyout(&dst->pos, &dst->count,
&dst->u.get.kbuf, &dst->u.get.ubuf,
buf, 7 * sizeof(int),
sizeof(struct ia32_user_i387_struct));
if (dst->ret || dst->count == 0)
return;
}
}
static void do_fpregs_set(struct unw_frame_info *info, void *arg)
{
struct regset_getset *dst = arg;
struct task_struct *task = dst->target;
struct pt_regs *pt;
char buf[80];
int end, start, tos;
if (dst->count == 0 || unw_unwind_to_user(info) < 0)
return;
if (dst->pos < 7 * sizeof(int)) {
start = dst->pos;
dst->ret = user_regset_copyin(&dst->pos, &dst->count,
&dst->u.set.kbuf, &dst->u.set.ubuf, buf,
0, 7 * sizeof(int));
if (dst->ret)
return;
for (; start < dst->pos; start += sizeof(int))
setfpreg(task, start, *((int *)(buf + start)));
if (dst->count == 0)
return;
}
if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
start = (dst->pos - 7 * sizeof(int)) /
sizeof(struct _fpreg_ia32);
dst->ret = user_regset_copyin(&dst->pos, &dst->count,
&dst->u.set.kbuf, &dst->u.set.ubuf,
buf, 7 * sizeof(int),
sizeof(struct ia32_user_i387_struct));
if (dst->ret)
return;
pt = task_pt_regs(task);
tos = (task->thread.fsr >> 11) & 7;
end = (dst->pos - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
for (; start < end; start++)
access_fpreg_ia32(start,
(struct _fpreg_ia32 *)buf + start,
pt, info->sw, tos, 1);
if (dst->count == 0)
return;
}
}
#define OFFSET(member) ((int)(offsetof(struct ia32_user_fxsr_struct, member)))
static void getfpxreg(struct task_struct *task, int start, int end, char *buf)
{
int min_val;
min_val = min(end, OFFSET(fop));
while (start < min_val) {
if (start == OFFSET(cwd))
*((short *)buf) = task->thread.fcr & 0xffff;
else if (start == OFFSET(swd))
*((short *)buf) = task->thread.fsr & 0xffff;
else if (start == OFFSET(twd))
*((short *)buf) = (task->thread.fsr>>16) & 0xffff;
buf += 2;
start += 2;
}
/* skip fop element */
if (start == OFFSET(fop)) {
start += 2;
buf += 2;
}
while (start < end) {
if (start == OFFSET(fip))
*((int *)buf) = task->thread.fir;
else if (start == OFFSET(fcs))
*((int *)buf) = (task->thread.fir>>32) & 0xffff;
else if (start == OFFSET(foo))
*((int *)buf) = task->thread.fdr;
else if (start == OFFSET(fos))
*((int *)buf) = (task->thread.fdr>>32) & 0xffff;
else if (start == OFFSET(mxcsr))
*((int *)buf) = ((task->thread.fcr>>32) & 0xff80)
| ((task->thread.fsr>>32) & 0x3f);
buf += 4;
start += 4;
}
}
static void setfpxreg(struct task_struct *task, int start, int end, char *buf)
{
int min_val, num32;
short num;
unsigned long num64;
min_val = min(end, OFFSET(fop));
while (start < min_val) {
num = *((short *)buf);
if (start == OFFSET(cwd)) {
task->thread.fcr = (task->thread.fcr & (~0x1f3f))
| (num & 0x1f3f);
} else if (start == OFFSET(swd)) {
task->thread.fsr = (task->thread.fsr & (~0xffff)) | num;
} else if (start == OFFSET(twd)) {
task->thread.fsr = (task->thread.fsr & (~0xffff0000))
| (((int)num) << 16);
}
buf += 2;
start += 2;
}
/* skip fop element */
if (start == OFFSET(fop)) {
start += 2;
buf += 2;
}
while (start < end) {
num32 = *((int *)buf);
if (start == OFFSET(fip))
task->thread.fir = (task->thread.fir & (~0xffffffff))
| num32;
else if (start == OFFSET(foo))
task->thread.fdr = (task->thread.fdr & (~0xffffffff))
| num32;
else if (start == OFFSET(mxcsr)) {
num64 = num32 & 0xff10;
task->thread.fcr = (task->thread.fcr &
(~0xff1000000000UL)) | (num64<<32);
num64 = num32 & 0x3f;
task->thread.fsr = (task->thread.fsr &
(~0x3f00000000UL)) | (num64<<32);
}
buf += 4;
start += 4;
}
}
static void do_fpxregs_get(struct unw_frame_info *info, void *arg)
{
struct regset_getset *dst = arg;
struct task_struct *task = dst->target;
struct pt_regs *pt;
char buf[128];
int start, end, tos;
if (dst->count == 0 || unw_unwind_to_user(info) < 0)
return;
if (dst->pos < OFFSET(st_space[0])) {
end = min(dst->pos + dst->count, (unsigned int)32);
getfpxreg(task, dst->pos, end, buf);
dst->ret = user_regset_copyout(&dst->pos, &dst->count,
&dst->u.get.kbuf, &dst->u.get.ubuf, buf,
0, OFFSET(st_space[0]));
if (dst->ret || dst->count == 0)
return;
}
if (dst->pos < OFFSET(xmm_space[0])) {
pt = task_pt_regs(task);
tos = (task->thread.fsr >> 11) & 7;
end = min(dst->pos + dst->count,
(unsigned int)OFFSET(xmm_space[0]));
start = (dst->pos - OFFSET(st_space[0])) / 16;
end = (end - OFFSET(st_space[0])) / 16;
for (; start < end; start++)
access_fpreg_ia32(start, buf + 16 * start, pt,
info->sw, tos, 0);
dst->ret = user_regset_copyout(&dst->pos, &dst->count,
&dst->u.get.kbuf, &dst->u.get.ubuf,
buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
if (dst->ret || dst->count == 0)
return;
}
if (dst->pos < OFFSET(padding[0]))
dst->ret = user_regset_copyout(&dst->pos, &dst->count,
&dst->u.get.kbuf, &dst->u.get.ubuf,
&info->sw->f16, OFFSET(xmm_space[0]),
OFFSET(padding[0]));
}
static void do_fpxregs_set(struct unw_frame_info *info, void *arg)
{
struct regset_getset *dst = arg;
struct task_struct *task = dst->target;
char buf[128];
int start, end;
if (dst->count == 0 || unw_unwind_to_user(info) < 0)
return;
if (dst->pos < OFFSET(st_space[0])) {
start = dst->pos;
dst->ret = user_regset_copyin(&dst->pos, &dst->count,
&dst->u.set.kbuf, &dst->u.set.ubuf,
buf, 0, OFFSET(st_space[0]));
if (dst->ret)
return;
setfpxreg(task, start, dst->pos, buf);
if (dst->count == 0)
return;
}
if (dst->pos < OFFSET(xmm_space[0])) {
struct pt_regs *pt;
int tos;
pt = task_pt_regs(task);
tos = (task->thread.fsr >> 11) & 7;
start = (dst->pos - OFFSET(st_space[0])) / 16;
dst->ret = user_regset_copyin(&dst->pos, &dst->count,
&dst->u.set.kbuf, &dst->u.set.ubuf,
buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
if (dst->ret)
return;
end = (dst->pos - OFFSET(st_space[0])) / 16;
for (; start < end; start++)
access_fpreg_ia32(start, buf + 16 * start, pt, info->sw,
tos, 1);
if (dst->count == 0)
return;
}
if (dst->pos < OFFSET(padding[0]))
dst->ret = user_regset_copyin(&dst->pos, &dst->count,
&dst->u.set.kbuf, &dst->u.set.ubuf,
&info->sw->f16, OFFSET(xmm_space[0]),
OFFSET(padding[0]));
}
#undef OFFSET
static int do_regset_call(void (*call)(struct unw_frame_info *, void *),
struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct regset_getset info = { .target = target, .regset = regset,
.pos = pos, .count = count,
.u.set = { .kbuf = kbuf, .ubuf = ubuf },
.ret = 0 };
if (target == current)
unw_init_running(call, &info);
else {
struct unw_frame_info ufi;
memset(&ufi, 0, sizeof(ufi));
unw_init_from_blocked_task(&ufi, target);
(*call)(&ufi, &info);
}
return info.ret;
}
static int ia32_fpregs_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
return do_regset_call(do_fpregs_get, target, regset, pos, count,
kbuf, ubuf);
}
static int ia32_fpregs_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
return do_regset_call(do_fpregs_set, target, regset, pos, count,
kbuf, ubuf);
}
static int ia32_fpxregs_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
return do_regset_call(do_fpxregs_get, target, regset, pos, count,
kbuf, ubuf);
}
static int ia32_fpxregs_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
return do_regset_call(do_fpxregs_set, target, regset, pos, count,
kbuf, ubuf);
}
static int ia32_genregs_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
if (kbuf) {
u32 *kp = kbuf;
while (count > 0) {
*kp++ = getreg(target, pos);
pos += 4;
count -= 4;
}
} else {
u32 __user *up = ubuf;
while (count > 0) {
if (__put_user(getreg(target, pos), up++))
return -EFAULT;
pos += 4;
count -= 4;
}
}
return 0;
}
static int ia32_genregs_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int ret = 0;
if (kbuf) {
const u32 *kp = kbuf;
while (!ret && count > 0) {
putreg(target, pos, *kp++);
pos += 4;
count -= 4;
}
} else {
const u32 __user *up = ubuf;
u32 val;
while (!ret && count > 0) {
ret = __get_user(val, up++);
if (!ret)
putreg(target, pos, val);
pos += 4;
count -= 4;
}
}
return ret;
}
static int ia32_tls_active(struct task_struct *target,
const struct user_regset *regset)
{
struct thread_struct *t = &target->thread;
int n = GDT_ENTRY_TLS_ENTRIES;
while (n > 0 && desc_empty(&t->tls_array[n -1]))
--n;
return n;
}
static int ia32_tls_get(struct task_struct *target,
const struct user_regset *regset, unsigned int pos,
unsigned int count, void *kbuf, void __user *ubuf)
{
const struct desc_struct *tls;
if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
(pos % sizeof(struct ia32_user_desc)) != 0 ||
(count % sizeof(struct ia32_user_desc)) != 0)
return -EINVAL;
pos /= sizeof(struct ia32_user_desc);
count /= sizeof(struct ia32_user_desc);
tls = &target->thread.tls_array[pos];
if (kbuf) {
struct ia32_user_desc *info = kbuf;
while (count-- > 0)
fill_user_desc(info++, GDT_ENTRY_TLS_MIN + pos++,
tls++);
} else {
struct ia32_user_desc __user *u_info = ubuf;
while (count-- > 0) {
struct ia32_user_desc info;
fill_user_desc(&info, GDT_ENTRY_TLS_MIN + pos++, tls++);
if (__copy_to_user(u_info++, &info, sizeof(info)))
return -EFAULT;
}
}
return 0;
}
static int ia32_tls_set(struct task_struct *target,
const struct user_regset *regset, unsigned int pos,
unsigned int count, const void *kbuf, const void __user *ubuf)
{
struct ia32_user_desc infobuf[GDT_ENTRY_TLS_ENTRIES];
const struct ia32_user_desc *info;
if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
(pos % sizeof(struct ia32_user_desc)) != 0 ||
(count % sizeof(struct ia32_user_desc)) != 0)
return -EINVAL;
if (kbuf)
info = kbuf;
else if (__copy_from_user(infobuf, ubuf, count))
return -EFAULT;
else
info = infobuf;
set_tls_desc(target,
GDT_ENTRY_TLS_MIN + (pos / sizeof(struct ia32_user_desc)),
info, count / sizeof(struct ia32_user_desc));
return 0;
}
/*
* This should match arch/i386/kernel/ptrace.c:native_regsets.
* XXX ioperm? vm86?
*/
static const struct user_regset ia32_regsets[] = {
{
.core_note_type = NT_PRSTATUS,
.n = sizeof(struct user_regs_struct32)/4,
.size = 4, .align = 4,
.get = ia32_genregs_get, .set = ia32_genregs_set
},
{
.core_note_type = NT_PRFPREG,
.n = sizeof(struct ia32_user_i387_struct) / 4,
.size = 4, .align = 4,
.get = ia32_fpregs_get, .set = ia32_fpregs_set
},
{
.core_note_type = NT_PRXFPREG,
.n = sizeof(struct ia32_user_fxsr_struct) / 4,
.size = 4, .align = 4,
.get = ia32_fpxregs_get, .set = ia32_fpxregs_set
},
{
.core_note_type = NT_386_TLS,
.n = GDT_ENTRY_TLS_ENTRIES,
.bias = GDT_ENTRY_TLS_MIN,
.size = sizeof(struct ia32_user_desc),
.align = sizeof(struct ia32_user_desc),
.active = ia32_tls_active,
.get = ia32_tls_get, .set = ia32_tls_set,
},
};
const struct user_regset_view user_ia32_view = {
.name = "i386", .e_machine = EM_386,
.regsets = ia32_regsets, .n = ARRAY_SIZE(ia32_regsets)
};
long sys32_fadvise64_64(int fd, __u32 offset_low, __u32 offset_high,
__u32 len_low, __u32 len_high, int advice)
{
return sys_fadvise64_64(fd,
(((u64)offset_high)<<32) | offset_low,
(((u64)len_high)<<32) | len_low,
advice);
}
#ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */
asmlinkage long sys32_setreuid(compat_uid_t ruid, compat_uid_t euid)
{
uid_t sruid, seuid;
sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
return sys_setreuid(sruid, seuid);
}
asmlinkage long
sys32_setresuid(compat_uid_t ruid, compat_uid_t euid,
compat_uid_t suid)
{
uid_t sruid, seuid, ssuid;
sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
ssuid = (suid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)suid);
return sys_setresuid(sruid, seuid, ssuid);
}
asmlinkage long
sys32_setregid(compat_gid_t rgid, compat_gid_t egid)
{
gid_t srgid, segid;
srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
return sys_setregid(srgid, segid);
}
asmlinkage long
sys32_setresgid(compat_gid_t rgid, compat_gid_t egid,
compat_gid_t sgid)
{
gid_t srgid, segid, ssgid;
srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
ssgid = (sgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)sgid);
return sys_setresgid(srgid, segid, ssgid);
}
#endif /* NOTYET */