mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-26 06:04:14 +08:00
53f676977d
The per-cpu interrupt ACK using EIRR has to be done just once after all the bits in the status register are processed. PIC ack has to be done once in case of MSI, and for every interrupt in case of MSI-X Signed-off-by: Jayachandran C <jchandra@broadcom.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/8887/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
572 lines
16 KiB
C
572 lines
16 KiB
C
/*
|
|
* Copyright (c) 2003-2012 Broadcom Corporation
|
|
* All Rights Reserved
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the Broadcom
|
|
* license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
|
|
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/irqdesc.h>
|
|
#include <linux/console.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/netlogic/interrupt.h>
|
|
#include <asm/netlogic/haldefs.h>
|
|
#include <asm/netlogic/common.h>
|
|
#include <asm/netlogic/mips-extns.h>
|
|
|
|
#include <asm/netlogic/xlp-hal/iomap.h>
|
|
#include <asm/netlogic/xlp-hal/xlp.h>
|
|
#include <asm/netlogic/xlp-hal/pic.h>
|
|
#include <asm/netlogic/xlp-hal/pcibus.h>
|
|
#include <asm/netlogic/xlp-hal/bridge.h>
|
|
|
|
#define XLP_MSIVEC_PER_LINK 32
|
|
#define XLP_MSIXVEC_TOTAL (cpu_is_xlp9xx() ? 128 : 32)
|
|
#define XLP_MSIXVEC_PER_LINK (cpu_is_xlp9xx() ? 32 : 8)
|
|
|
|
/* 128 MSI irqs per node, mapped starting at NLM_MSI_VEC_BASE */
|
|
static inline int nlm_link_msiirq(int link, int msivec)
|
|
{
|
|
return NLM_MSI_VEC_BASE + link * XLP_MSIVEC_PER_LINK + msivec;
|
|
}
|
|
|
|
/* get the link MSI vector from irq number */
|
|
static inline int nlm_irq_msivec(int irq)
|
|
{
|
|
return (irq - NLM_MSI_VEC_BASE) % XLP_MSIVEC_PER_LINK;
|
|
}
|
|
|
|
/* get the link from the irq number */
|
|
static inline int nlm_irq_msilink(int irq)
|
|
{
|
|
int total_msivec = XLP_MSIVEC_PER_LINK * PCIE_NLINKS;
|
|
|
|
return ((irq - NLM_MSI_VEC_BASE) % total_msivec) /
|
|
XLP_MSIVEC_PER_LINK;
|
|
}
|
|
|
|
/*
|
|
* For XLP 8xx/4xx/3xx/2xx, only 32 MSI-X vectors are possible because
|
|
* there are only 32 PIC interrupts for MSI. We split them statically
|
|
* and use 8 MSI-X vectors per link - this keeps the allocation and
|
|
* lookup simple.
|
|
* On XLP 9xx, there are 32 vectors per link, and the interrupts are
|
|
* not routed thru PIC, so we can use all 128 MSI-X vectors.
|
|
*/
|
|
static inline int nlm_link_msixirq(int link, int bit)
|
|
{
|
|
return NLM_MSIX_VEC_BASE + link * XLP_MSIXVEC_PER_LINK + bit;
|
|
}
|
|
|
|
/* get the link MSI vector from irq number */
|
|
static inline int nlm_irq_msixvec(int irq)
|
|
{
|
|
return (irq - NLM_MSIX_VEC_BASE) % XLP_MSIXVEC_TOTAL;
|
|
}
|
|
|
|
/* get the link from MSIX vec */
|
|
static inline int nlm_irq_msixlink(int msixvec)
|
|
{
|
|
return msixvec / XLP_MSIXVEC_PER_LINK;
|
|
}
|
|
|
|
/*
|
|
* Per link MSI and MSI-X information, set as IRQ handler data for
|
|
* MSI and MSI-X interrupts.
|
|
*/
|
|
struct xlp_msi_data {
|
|
struct nlm_soc_info *node;
|
|
uint64_t lnkbase;
|
|
uint32_t msi_enabled_mask;
|
|
uint32_t msi_alloc_mask;
|
|
uint32_t msix_alloc_mask;
|
|
spinlock_t msi_lock;
|
|
};
|
|
|
|
/*
|
|
* MSI Chip definitions
|
|
*
|
|
* On XLP, there is a PIC interrupt associated with each PCIe link on the
|
|
* chip (which appears as a PCI bridge to us). This gives us 32 MSI irqa
|
|
* per link and 128 overall.
|
|
*
|
|
* When a device connected to the link raises a MSI interrupt, we get a
|
|
* link interrupt and we then have to look at PCIE_MSI_STATUS register at
|
|
* the bridge to map it to the IRQ
|
|
*/
|
|
static void xlp_msi_enable(struct irq_data *d)
|
|
{
|
|
struct xlp_msi_data *md = irq_data_get_irq_handler_data(d);
|
|
unsigned long flags;
|
|
int vec;
|
|
|
|
vec = nlm_irq_msivec(d->irq);
|
|
spin_lock_irqsave(&md->msi_lock, flags);
|
|
md->msi_enabled_mask |= 1u << vec;
|
|
if (cpu_is_xlp9xx())
|
|
nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN,
|
|
md->msi_enabled_mask);
|
|
else
|
|
nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask);
|
|
spin_unlock_irqrestore(&md->msi_lock, flags);
|
|
}
|
|
|
|
static void xlp_msi_disable(struct irq_data *d)
|
|
{
|
|
struct xlp_msi_data *md = irq_data_get_irq_handler_data(d);
|
|
unsigned long flags;
|
|
int vec;
|
|
|
|
vec = nlm_irq_msivec(d->irq);
|
|
spin_lock_irqsave(&md->msi_lock, flags);
|
|
md->msi_enabled_mask &= ~(1u << vec);
|
|
if (cpu_is_xlp9xx())
|
|
nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN,
|
|
md->msi_enabled_mask);
|
|
else
|
|
nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask);
|
|
spin_unlock_irqrestore(&md->msi_lock, flags);
|
|
}
|
|
|
|
static void xlp_msi_mask_ack(struct irq_data *d)
|
|
{
|
|
struct xlp_msi_data *md = irq_data_get_irq_handler_data(d);
|
|
int link, vec;
|
|
|
|
link = nlm_irq_msilink(d->irq);
|
|
vec = nlm_irq_msivec(d->irq);
|
|
xlp_msi_disable(d);
|
|
|
|
/* Ack MSI on bridge */
|
|
if (cpu_is_xlp9xx())
|
|
nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_STATUS, 1u << vec);
|
|
else
|
|
nlm_write_reg(md->lnkbase, PCIE_MSI_STATUS, 1u << vec);
|
|
|
|
}
|
|
|
|
static struct irq_chip xlp_msi_chip = {
|
|
.name = "XLP-MSI",
|
|
.irq_enable = xlp_msi_enable,
|
|
.irq_disable = xlp_msi_disable,
|
|
.irq_mask_ack = xlp_msi_mask_ack,
|
|
.irq_unmask = xlp_msi_enable,
|
|
};
|
|
|
|
/*
|
|
* XLP8XX/4XX/3XX/2XX:
|
|
* The MSI-X interrupt handling is different from MSI, there are 32 MSI-X
|
|
* interrupts generated by the PIC and each of these correspond to a MSI-X
|
|
* vector (0-31) that can be assigned.
|
|
*
|
|
* We divide the MSI-X vectors to 8 per link and do a per-link allocation
|
|
*
|
|
* XLP9XX:
|
|
* 32 MSI-X vectors are available per link, and the interrupts are not routed
|
|
* thru the PIC. PIC ack not needed.
|
|
*
|
|
* Enable and disable done using standard MSI functions.
|
|
*/
|
|
static void xlp_msix_mask_ack(struct irq_data *d)
|
|
{
|
|
struct xlp_msi_data *md;
|
|
int link, msixvec;
|
|
uint32_t status_reg, bit;
|
|
|
|
msixvec = nlm_irq_msixvec(d->irq);
|
|
link = nlm_irq_msixlink(msixvec);
|
|
pci_msi_mask_irq(d);
|
|
md = irq_data_get_irq_handler_data(d);
|
|
|
|
/* Ack MSI on bridge */
|
|
if (cpu_is_xlp9xx()) {
|
|
status_reg = PCIE_9XX_MSIX_STATUSX(link);
|
|
bit = msixvec % XLP_MSIXVEC_PER_LINK;
|
|
} else {
|
|
status_reg = PCIE_MSIX_STATUS;
|
|
bit = msixvec;
|
|
}
|
|
nlm_write_reg(md->lnkbase, status_reg, 1u << bit);
|
|
|
|
if (!cpu_is_xlp9xx())
|
|
nlm_pic_ack(md->node->picbase,
|
|
PIC_IRT_PCIE_MSIX_INDEX(msixvec));
|
|
}
|
|
|
|
static struct irq_chip xlp_msix_chip = {
|
|
.name = "XLP-MSIX",
|
|
.irq_enable = pci_msi_unmask_irq,
|
|
.irq_disable = pci_msi_mask_irq,
|
|
.irq_mask_ack = xlp_msix_mask_ack,
|
|
.irq_unmask = pci_msi_unmask_irq,
|
|
};
|
|
|
|
void arch_teardown_msi_irq(unsigned int irq)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Setup a PCIe link for MSI. By default, the links are in
|
|
* legacy interrupt mode. We will switch them to MSI mode
|
|
* at the first MSI request.
|
|
*/
|
|
static void xlp_config_link_msi(uint64_t lnkbase, int lirq, uint64_t msiaddr)
|
|
{
|
|
u32 val;
|
|
|
|
if (cpu_is_xlp9xx()) {
|
|
val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0);
|
|
if ((val & 0x200) == 0) {
|
|
val |= 0x200; /* MSI Interrupt enable */
|
|
nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val);
|
|
}
|
|
} else {
|
|
val = nlm_read_reg(lnkbase, PCIE_INT_EN0);
|
|
if ((val & 0x200) == 0) {
|
|
val |= 0x200;
|
|
nlm_write_reg(lnkbase, PCIE_INT_EN0, val);
|
|
}
|
|
}
|
|
|
|
val = nlm_read_reg(lnkbase, 0x1); /* CMD */
|
|
if ((val & 0x0400) == 0) {
|
|
val |= 0x0400;
|
|
nlm_write_reg(lnkbase, 0x1, val);
|
|
}
|
|
|
|
/* Update IRQ in the PCI irq reg */
|
|
val = nlm_read_pci_reg(lnkbase, 0xf);
|
|
val &= ~0x1fu;
|
|
val |= (1 << 8) | lirq;
|
|
nlm_write_pci_reg(lnkbase, 0xf, val);
|
|
|
|
/* MSI addr */
|
|
nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRH, msiaddr >> 32);
|
|
nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRL, msiaddr & 0xffffffff);
|
|
|
|
/* MSI cap for bridge */
|
|
val = nlm_read_reg(lnkbase, PCIE_BRIDGE_MSI_CAP);
|
|
if ((val & (1 << 16)) == 0) {
|
|
val |= 0xb << 16; /* mmc32, msi enable */
|
|
nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_CAP, val);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate a MSI vector on a link
|
|
*/
|
|
static int xlp_setup_msi(uint64_t lnkbase, int node, int link,
|
|
struct msi_desc *desc)
|
|
{
|
|
struct xlp_msi_data *md;
|
|
struct msi_msg msg;
|
|
unsigned long flags;
|
|
int msivec, irt, lirq, xirq, ret;
|
|
uint64_t msiaddr;
|
|
|
|
/* Get MSI data for the link */
|
|
lirq = PIC_PCIE_LINK_MSI_IRQ(link);
|
|
xirq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
|
|
md = irq_get_handler_data(xirq);
|
|
msiaddr = MSI_LINK_ADDR(node, link);
|
|
|
|
spin_lock_irqsave(&md->msi_lock, flags);
|
|
if (md->msi_alloc_mask == 0) {
|
|
xlp_config_link_msi(lnkbase, lirq, msiaddr);
|
|
/* switch the link IRQ to MSI range */
|
|
if (cpu_is_xlp9xx())
|
|
irt = PIC_9XX_IRT_PCIE_LINK_INDEX(link);
|
|
else
|
|
irt = PIC_IRT_PCIE_LINK_INDEX(link);
|
|
nlm_setup_pic_irq(node, lirq, lirq, irt);
|
|
nlm_pic_init_irt(nlm_get_node(node)->picbase, irt, lirq,
|
|
node * nlm_threads_per_node(), 1 /*en */);
|
|
}
|
|
|
|
/* allocate a MSI vec, and tell the bridge about it */
|
|
msivec = fls(md->msi_alloc_mask);
|
|
if (msivec == XLP_MSIVEC_PER_LINK) {
|
|
spin_unlock_irqrestore(&md->msi_lock, flags);
|
|
return -ENOMEM;
|
|
}
|
|
md->msi_alloc_mask |= (1u << msivec);
|
|
spin_unlock_irqrestore(&md->msi_lock, flags);
|
|
|
|
msg.address_hi = msiaddr >> 32;
|
|
msg.address_lo = msiaddr & 0xffffffff;
|
|
msg.data = 0xc00 | msivec;
|
|
|
|
xirq = xirq + msivec; /* msi mapped to global irq space */
|
|
ret = irq_set_msi_desc(xirq, desc);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
pci_write_msi_msg(xirq, &msg);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Switch a link to MSI-X mode
|
|
*/
|
|
static void xlp_config_link_msix(uint64_t lnkbase, int lirq, uint64_t msixaddr)
|
|
{
|
|
u32 val;
|
|
|
|
val = nlm_read_reg(lnkbase, 0x2C);
|
|
if ((val & 0x80000000U) == 0) {
|
|
val |= 0x80000000U;
|
|
nlm_write_reg(lnkbase, 0x2C, val);
|
|
}
|
|
|
|
if (cpu_is_xlp9xx()) {
|
|
val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0);
|
|
if ((val & 0x200) == 0) {
|
|
val |= 0x200; /* MSI Interrupt enable */
|
|
nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val);
|
|
}
|
|
} else {
|
|
val = nlm_read_reg(lnkbase, PCIE_INT_EN0);
|
|
if ((val & 0x200) == 0) {
|
|
val |= 0x200; /* MSI Interrupt enable */
|
|
nlm_write_reg(lnkbase, PCIE_INT_EN0, val);
|
|
}
|
|
}
|
|
|
|
val = nlm_read_reg(lnkbase, 0x1); /* CMD */
|
|
if ((val & 0x0400) == 0) {
|
|
val |= 0x0400;
|
|
nlm_write_reg(lnkbase, 0x1, val);
|
|
}
|
|
|
|
/* Update IRQ in the PCI irq reg */
|
|
val = nlm_read_pci_reg(lnkbase, 0xf);
|
|
val &= ~0x1fu;
|
|
val |= (1 << 8) | lirq;
|
|
nlm_write_pci_reg(lnkbase, 0xf, val);
|
|
|
|
if (cpu_is_xlp9xx()) {
|
|
/* MSI-X addresses */
|
|
nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_BASE,
|
|
msixaddr >> 8);
|
|
nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_LIMIT,
|
|
(msixaddr + MSI_ADDR_SZ) >> 8);
|
|
} else {
|
|
/* MSI-X addresses */
|
|
nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_BASE,
|
|
msixaddr >> 8);
|
|
nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_LIMIT,
|
|
(msixaddr + MSI_ADDR_SZ) >> 8);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate a MSI-X vector
|
|
*/
|
|
static int xlp_setup_msix(uint64_t lnkbase, int node, int link,
|
|
struct msi_desc *desc)
|
|
{
|
|
struct xlp_msi_data *md;
|
|
struct msi_msg msg;
|
|
unsigned long flags;
|
|
int t, msixvec, lirq, xirq, ret;
|
|
uint64_t msixaddr;
|
|
|
|
/* Get MSI data for the link */
|
|
lirq = PIC_PCIE_MSIX_IRQ(link);
|
|
xirq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0));
|
|
md = irq_get_handler_data(xirq);
|
|
msixaddr = MSIX_LINK_ADDR(node, link);
|
|
|
|
spin_lock_irqsave(&md->msi_lock, flags);
|
|
/* switch the PCIe link to MSI-X mode at the first alloc */
|
|
if (md->msix_alloc_mask == 0)
|
|
xlp_config_link_msix(lnkbase, lirq, msixaddr);
|
|
|
|
/* allocate a MSI-X vec, and tell the bridge about it */
|
|
t = fls(md->msix_alloc_mask);
|
|
if (t == XLP_MSIXVEC_PER_LINK) {
|
|
spin_unlock_irqrestore(&md->msi_lock, flags);
|
|
return -ENOMEM;
|
|
}
|
|
md->msix_alloc_mask |= (1u << t);
|
|
spin_unlock_irqrestore(&md->msi_lock, flags);
|
|
|
|
xirq += t;
|
|
msixvec = nlm_irq_msixvec(xirq);
|
|
|
|
msg.address_hi = msixaddr >> 32;
|
|
msg.address_lo = msixaddr & 0xffffffff;
|
|
msg.data = 0xc00 | msixvec;
|
|
|
|
ret = irq_set_msi_desc(xirq, desc);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
pci_write_msi_msg(xirq, &msg);
|
|
return 0;
|
|
}
|
|
|
|
int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
|
|
{
|
|
struct pci_dev *lnkdev;
|
|
uint64_t lnkbase;
|
|
int node, link, slot;
|
|
|
|
lnkdev = xlp_get_pcie_link(dev);
|
|
if (lnkdev == NULL) {
|
|
dev_err(&dev->dev, "Could not find bridge\n");
|
|
return 1;
|
|
}
|
|
slot = PCI_SLOT(lnkdev->devfn);
|
|
link = PCI_FUNC(lnkdev->devfn);
|
|
node = slot / 8;
|
|
lnkbase = nlm_get_pcie_base(node, link);
|
|
|
|
if (desc->msi_attrib.is_msix)
|
|
return xlp_setup_msix(lnkbase, node, link, desc);
|
|
else
|
|
return xlp_setup_msi(lnkbase, node, link, desc);
|
|
}
|
|
|
|
void __init xlp_init_node_msi_irqs(int node, int link)
|
|
{
|
|
struct nlm_soc_info *nodep;
|
|
struct xlp_msi_data *md;
|
|
int irq, i, irt, msixvec, val;
|
|
|
|
pr_info("[%d %d] Init node PCI IRT\n", node, link);
|
|
nodep = nlm_get_node(node);
|
|
|
|
/* Alloc an MSI block for the link */
|
|
md = kzalloc(sizeof(*md), GFP_KERNEL);
|
|
spin_lock_init(&md->msi_lock);
|
|
md->msi_enabled_mask = 0;
|
|
md->msi_alloc_mask = 0;
|
|
md->msix_alloc_mask = 0;
|
|
md->node = nodep;
|
|
md->lnkbase = nlm_get_pcie_base(node, link);
|
|
|
|
/* extended space for MSI interrupts */
|
|
irq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
|
|
for (i = irq; i < irq + XLP_MSIVEC_PER_LINK; i++) {
|
|
irq_set_chip_and_handler(i, &xlp_msi_chip, handle_level_irq);
|
|
irq_set_handler_data(i, md);
|
|
}
|
|
|
|
for (i = 0; i < XLP_MSIXVEC_PER_LINK ; i++) {
|
|
if (cpu_is_xlp9xx()) {
|
|
val = ((node * nlm_threads_per_node()) << 7 |
|
|
PIC_PCIE_MSIX_IRQ(link) << 1 | 0 << 0);
|
|
nlm_write_pcie_reg(md->lnkbase, PCIE_9XX_MSIX_VECX(i +
|
|
(link * XLP_MSIXVEC_PER_LINK)), val);
|
|
} else {
|
|
/* Initialize MSI-X irts to generate one interrupt
|
|
* per link
|
|
*/
|
|
msixvec = link * XLP_MSIXVEC_PER_LINK + i;
|
|
irt = PIC_IRT_PCIE_MSIX_INDEX(msixvec);
|
|
nlm_pic_init_irt(nodep->picbase, irt,
|
|
PIC_PCIE_MSIX_IRQ(link),
|
|
node * nlm_threads_per_node(), 1);
|
|
}
|
|
|
|
/* Initialize MSI-X extended irq space for the link */
|
|
irq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, i));
|
|
irq_set_chip_and_handler(irq, &xlp_msix_chip, handle_level_irq);
|
|
irq_set_handler_data(irq, md);
|
|
}
|
|
}
|
|
|
|
void nlm_dispatch_msi(int node, int lirq)
|
|
{
|
|
struct xlp_msi_data *md;
|
|
int link, i, irqbase;
|
|
u32 status;
|
|
|
|
link = lirq - PIC_PCIE_LINK_MSI_IRQ_BASE;
|
|
irqbase = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
|
|
md = irq_get_handler_data(irqbase);
|
|
if (cpu_is_xlp9xx())
|
|
status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSI_STATUS) &
|
|
md->msi_enabled_mask;
|
|
else
|
|
status = nlm_read_reg(md->lnkbase, PCIE_MSI_STATUS) &
|
|
md->msi_enabled_mask;
|
|
while (status) {
|
|
i = __ffs(status);
|
|
do_IRQ(irqbase + i);
|
|
status &= status - 1;
|
|
}
|
|
|
|
/* Ack at eirr and PIC */
|
|
ack_c0_eirr(PIC_PCIE_LINK_MSI_IRQ(link));
|
|
if (cpu_is_xlp9xx())
|
|
nlm_pic_ack(md->node->picbase,
|
|
PIC_9XX_IRT_PCIE_LINK_INDEX(link));
|
|
else
|
|
nlm_pic_ack(md->node->picbase, PIC_IRT_PCIE_LINK_INDEX(link));
|
|
}
|
|
|
|
void nlm_dispatch_msix(int node, int lirq)
|
|
{
|
|
struct xlp_msi_data *md;
|
|
int link, i, irqbase;
|
|
u32 status;
|
|
|
|
link = lirq - PIC_PCIE_MSIX_IRQ_BASE;
|
|
irqbase = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0));
|
|
md = irq_get_handler_data(irqbase);
|
|
if (cpu_is_xlp9xx())
|
|
status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSIX_STATUSX(link));
|
|
else
|
|
status = nlm_read_reg(md->lnkbase, PCIE_MSIX_STATUS);
|
|
|
|
/* narrow it down to the MSI-x vectors for our link */
|
|
if (!cpu_is_xlp9xx())
|
|
status = (status >> (link * XLP_MSIXVEC_PER_LINK)) &
|
|
((1 << XLP_MSIXVEC_PER_LINK) - 1);
|
|
|
|
while (status) {
|
|
i = __ffs(status);
|
|
do_IRQ(irqbase + i);
|
|
status &= status - 1;
|
|
}
|
|
/* Ack at eirr and PIC */
|
|
ack_c0_eirr(PIC_PCIE_MSIX_IRQ(link));
|
|
}
|