2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 20:24:09 +08:00
linux-next/drivers/usb/misc/adutux.c
Johan Hovold 3c11c4bed0 USB: adutux: fix interface sanity check
Make sure to use the current alternate setting when verifying the
interface descriptors to avoid binding to an invalid interface.

Failing to do so could cause the driver to misbehave or trigger a WARN()
in usb_submit_urb() that kernels with panic_on_warn set would choke on.

Fixes: 03270634e2 ("USB: Add ADU support for Ontrak ADU devices")
Cc: stable <stable@vger.kernel.org>     # 2.6.19
Signed-off-by: Johan Hovold <johan@kernel.org>
Link: https://lore.kernel.org/r/20191210112601.3561-3-johan@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-10 13:11:22 +01:00

799 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* adutux - driver for ADU devices from Ontrak Control Systems
* This is an experimental driver. Use at your own risk.
* This driver is not supported by Ontrak Control Systems.
*
* Copyright (c) 2003 John Homppi (SCO, leave this notice here)
*
* derived from the Lego USB Tower driver 0.56:
* Copyright (c) 2003 David Glance <davidgsf@sourceforge.net>
* 2001 Juergen Stuber <stuber@loria.fr>
* that was derived from USB Skeleton driver - 0.5
* Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com)
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/usb.h>
#include <linux/mutex.h>
#include <linux/uaccess.h>
#define DRIVER_AUTHOR "John Homppi"
#define DRIVER_DESC "adutux (see www.ontrak.net)"
/* Define these values to match your device */
#define ADU_VENDOR_ID 0x0a07
#define ADU_PRODUCT_ID 0x0064
/* table of devices that work with this driver */
static const struct usb_device_id device_table[] = {
{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) }, /* ADU100 */
{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) }, /* ADU120 */
{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) }, /* ADU130 */
{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) }, /* ADU200 */
{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) }, /* ADU208 */
{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) }, /* ADU218 */
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE(usb, device_table);
#ifdef CONFIG_USB_DYNAMIC_MINORS
#define ADU_MINOR_BASE 0
#else
#define ADU_MINOR_BASE 67
#endif
/* we can have up to this number of device plugged in at once */
#define MAX_DEVICES 16
#define COMMAND_TIMEOUT (2*HZ)
/*
* The locking scheme is a vanilla 3-lock:
* adu_device.buflock: A spinlock, covers what IRQs touch.
* adutux_mutex: A Static lock to cover open_count. It would also cover
* any globals, but we don't have them in 2.6.
* adu_device.mtx: A mutex to hold across sleepers like copy_from_user.
* It covers all of adu_device, except the open_count
* and what .buflock covers.
*/
/* Structure to hold all of our device specific stuff */
struct adu_device {
struct mutex mtx;
struct usb_device *udev; /* save off the usb device pointer */
struct usb_interface *interface;
unsigned int minor; /* the starting minor number for this device */
char serial_number[8];
int open_count; /* number of times this port has been opened */
unsigned long disconnected:1;
char *read_buffer_primary;
int read_buffer_length;
char *read_buffer_secondary;
int secondary_head;
int secondary_tail;
spinlock_t buflock;
wait_queue_head_t read_wait;
wait_queue_head_t write_wait;
char *interrupt_in_buffer;
struct usb_endpoint_descriptor *interrupt_in_endpoint;
struct urb *interrupt_in_urb;
int read_urb_finished;
char *interrupt_out_buffer;
struct usb_endpoint_descriptor *interrupt_out_endpoint;
struct urb *interrupt_out_urb;
int out_urb_finished;
};
static DEFINE_MUTEX(adutux_mutex);
static struct usb_driver adu_driver;
static inline void adu_debug_data(struct device *dev, const char *function,
int size, const unsigned char *data)
{
dev_dbg(dev, "%s - length = %d, data = %*ph\n",
function, size, size, data);
}
/**
* adu_abort_transfers
* aborts transfers and frees associated data structures
*/
static void adu_abort_transfers(struct adu_device *dev)
{
unsigned long flags;
if (dev->disconnected)
return;
/* shutdown transfer */
/* XXX Anchor these instead */
spin_lock_irqsave(&dev->buflock, flags);
if (!dev->read_urb_finished) {
spin_unlock_irqrestore(&dev->buflock, flags);
usb_kill_urb(dev->interrupt_in_urb);
} else
spin_unlock_irqrestore(&dev->buflock, flags);
spin_lock_irqsave(&dev->buflock, flags);
if (!dev->out_urb_finished) {
spin_unlock_irqrestore(&dev->buflock, flags);
wait_event_timeout(dev->write_wait, dev->out_urb_finished,
COMMAND_TIMEOUT);
usb_kill_urb(dev->interrupt_out_urb);
} else
spin_unlock_irqrestore(&dev->buflock, flags);
}
static void adu_delete(struct adu_device *dev)
{
/* free data structures */
usb_free_urb(dev->interrupt_in_urb);
usb_free_urb(dev->interrupt_out_urb);
kfree(dev->read_buffer_primary);
kfree(dev->read_buffer_secondary);
kfree(dev->interrupt_in_buffer);
kfree(dev->interrupt_out_buffer);
usb_put_dev(dev->udev);
kfree(dev);
}
static void adu_interrupt_in_callback(struct urb *urb)
{
struct adu_device *dev = urb->context;
int status = urb->status;
unsigned long flags;
adu_debug_data(&dev->udev->dev, __func__,
urb->actual_length, urb->transfer_buffer);
spin_lock_irqsave(&dev->buflock, flags);
if (status != 0) {
if ((status != -ENOENT) && (status != -ECONNRESET) &&
(status != -ESHUTDOWN)) {
dev_dbg(&dev->udev->dev,
"%s : nonzero status received: %d\n",
__func__, status);
}
goto exit;
}
if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) {
if (dev->read_buffer_length <
(4 * usb_endpoint_maxp(dev->interrupt_in_endpoint)) -
(urb->actual_length)) {
memcpy (dev->read_buffer_primary +
dev->read_buffer_length,
dev->interrupt_in_buffer, urb->actual_length);
dev->read_buffer_length += urb->actual_length;
dev_dbg(&dev->udev->dev,"%s reading %d\n", __func__,
urb->actual_length);
} else {
dev_dbg(&dev->udev->dev,"%s : read_buffer overflow\n",
__func__);
}
}
exit:
dev->read_urb_finished = 1;
spin_unlock_irqrestore(&dev->buflock, flags);
/* always wake up so we recover from errors */
wake_up_interruptible(&dev->read_wait);
}
static void adu_interrupt_out_callback(struct urb *urb)
{
struct adu_device *dev = urb->context;
int status = urb->status;
unsigned long flags;
adu_debug_data(&dev->udev->dev, __func__,
urb->actual_length, urb->transfer_buffer);
if (status != 0) {
if ((status != -ENOENT) &&
(status != -ECONNRESET)) {
dev_dbg(&dev->udev->dev,
"%s :nonzero status received: %d\n", __func__,
status);
}
return;
}
spin_lock_irqsave(&dev->buflock, flags);
dev->out_urb_finished = 1;
wake_up(&dev->write_wait);
spin_unlock_irqrestore(&dev->buflock, flags);
}
static int adu_open(struct inode *inode, struct file *file)
{
struct adu_device *dev = NULL;
struct usb_interface *interface;
int subminor;
int retval;
subminor = iminor(inode);
retval = mutex_lock_interruptible(&adutux_mutex);
if (retval)
goto exit_no_lock;
interface = usb_find_interface(&adu_driver, subminor);
if (!interface) {
pr_err("%s - error, can't find device for minor %d\n",
__func__, subminor);
retval = -ENODEV;
goto exit_no_device;
}
dev = usb_get_intfdata(interface);
if (!dev) {
retval = -ENODEV;
goto exit_no_device;
}
/* check that nobody else is using the device */
if (dev->open_count) {
retval = -EBUSY;
goto exit_no_device;
}
++dev->open_count;
dev_dbg(&dev->udev->dev, "%s: open count %d\n", __func__,
dev->open_count);
/* save device in the file's private structure */
file->private_data = dev;
/* initialize in direction */
dev->read_buffer_length = 0;
/* fixup first read by having urb waiting for it */
usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
usb_rcvintpipe(dev->udev,
dev->interrupt_in_endpoint->bEndpointAddress),
dev->interrupt_in_buffer,
usb_endpoint_maxp(dev->interrupt_in_endpoint),
adu_interrupt_in_callback, dev,
dev->interrupt_in_endpoint->bInterval);
dev->read_urb_finished = 0;
if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL))
dev->read_urb_finished = 1;
/* we ignore failure */
/* end of fixup for first read */
/* initialize out direction */
dev->out_urb_finished = 1;
retval = 0;
exit_no_device:
mutex_unlock(&adutux_mutex);
exit_no_lock:
return retval;
}
static void adu_release_internal(struct adu_device *dev)
{
/* decrement our usage count for the device */
--dev->open_count;
dev_dbg(&dev->udev->dev, "%s : open count %d\n", __func__,
dev->open_count);
if (dev->open_count <= 0) {
adu_abort_transfers(dev);
dev->open_count = 0;
}
}
static int adu_release(struct inode *inode, struct file *file)
{
struct adu_device *dev;
int retval = 0;
if (file == NULL) {
retval = -ENODEV;
goto exit;
}
dev = file->private_data;
if (dev == NULL) {
retval = -ENODEV;
goto exit;
}
mutex_lock(&adutux_mutex); /* not interruptible */
if (dev->open_count <= 0) {
dev_dbg(&dev->udev->dev, "%s : device not opened\n", __func__);
retval = -ENODEV;
goto unlock;
}
adu_release_internal(dev);
if (dev->disconnected) {
/* the device was unplugged before the file was released */
if (!dev->open_count) /* ... and we're the last user */
adu_delete(dev);
}
unlock:
mutex_unlock(&adutux_mutex);
exit:
return retval;
}
static ssize_t adu_read(struct file *file, __user char *buffer, size_t count,
loff_t *ppos)
{
struct adu_device *dev;
size_t bytes_read = 0;
size_t bytes_to_read = count;
int retval = 0;
int timeout = 0;
int should_submit = 0;
unsigned long flags;
DECLARE_WAITQUEUE(wait, current);
dev = file->private_data;
if (mutex_lock_interruptible(&dev->mtx))
return -ERESTARTSYS;
/* verify that the device wasn't unplugged */
if (dev->disconnected) {
retval = -ENODEV;
pr_err("No device or device unplugged %d\n", retval);
goto exit;
}
/* verify that some data was requested */
if (count == 0) {
dev_dbg(&dev->udev->dev, "%s : read request of 0 bytes\n",
__func__);
goto exit;
}
timeout = COMMAND_TIMEOUT;
dev_dbg(&dev->udev->dev, "%s : about to start looping\n", __func__);
while (bytes_to_read) {
size_t data_in_secondary = dev->secondary_tail - dev->secondary_head;
dev_dbg(&dev->udev->dev,
"%s : while, data_in_secondary=%zu, status=%d\n",
__func__, data_in_secondary,
dev->interrupt_in_urb->status);
if (data_in_secondary) {
/* drain secondary buffer */
size_t amount = min(bytes_to_read, data_in_secondary);
if (copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount)) {
retval = -EFAULT;
goto exit;
}
dev->secondary_head += amount;
bytes_read += amount;
bytes_to_read -= amount;
} else {
/* we check the primary buffer */
spin_lock_irqsave (&dev->buflock, flags);
if (dev->read_buffer_length) {
/* we secure access to the primary */
char *tmp;
dev_dbg(&dev->udev->dev,
"%s : swap, read_buffer_length = %d\n",
__func__, dev->read_buffer_length);
tmp = dev->read_buffer_secondary;
dev->read_buffer_secondary = dev->read_buffer_primary;
dev->read_buffer_primary = tmp;
dev->secondary_head = 0;
dev->secondary_tail = dev->read_buffer_length;
dev->read_buffer_length = 0;
spin_unlock_irqrestore(&dev->buflock, flags);
/* we have a free buffer so use it */
should_submit = 1;
} else {
/* even the primary was empty - we may need to do IO */
if (!dev->read_urb_finished) {
/* somebody is doing IO */
spin_unlock_irqrestore(&dev->buflock, flags);
dev_dbg(&dev->udev->dev,
"%s : submitted already\n",
__func__);
} else {
/* we must initiate input */
dev_dbg(&dev->udev->dev,
"%s : initiate input\n",
__func__);
dev->read_urb_finished = 0;
spin_unlock_irqrestore(&dev->buflock, flags);
usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
usb_rcvintpipe(dev->udev,
dev->interrupt_in_endpoint->bEndpointAddress),
dev->interrupt_in_buffer,
usb_endpoint_maxp(dev->interrupt_in_endpoint),
adu_interrupt_in_callback,
dev,
dev->interrupt_in_endpoint->bInterval);
retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL);
if (retval) {
dev->read_urb_finished = 1;
if (retval == -ENOMEM) {
retval = bytes_read ? bytes_read : -ENOMEM;
}
dev_dbg(&dev->udev->dev,
"%s : submit failed\n",
__func__);
goto exit;
}
}
/* we wait for I/O to complete */
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&dev->read_wait, &wait);
spin_lock_irqsave(&dev->buflock, flags);
if (!dev->read_urb_finished) {
spin_unlock_irqrestore(&dev->buflock, flags);
timeout = schedule_timeout(COMMAND_TIMEOUT);
} else {
spin_unlock_irqrestore(&dev->buflock, flags);
set_current_state(TASK_RUNNING);
}
remove_wait_queue(&dev->read_wait, &wait);
if (timeout <= 0) {
dev_dbg(&dev->udev->dev,
"%s : timeout\n", __func__);
retval = bytes_read ? bytes_read : -ETIMEDOUT;
goto exit;
}
if (signal_pending(current)) {
dev_dbg(&dev->udev->dev,
"%s : signal pending\n",
__func__);
retval = bytes_read ? bytes_read : -EINTR;
goto exit;
}
}
}
}
retval = bytes_read;
/* if the primary buffer is empty then use it */
spin_lock_irqsave(&dev->buflock, flags);
if (should_submit && dev->read_urb_finished) {
dev->read_urb_finished = 0;
spin_unlock_irqrestore(&dev->buflock, flags);
usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
usb_rcvintpipe(dev->udev,
dev->interrupt_in_endpoint->bEndpointAddress),
dev->interrupt_in_buffer,
usb_endpoint_maxp(dev->interrupt_in_endpoint),
adu_interrupt_in_callback,
dev,
dev->interrupt_in_endpoint->bInterval);
if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL) != 0)
dev->read_urb_finished = 1;
/* we ignore failure */
} else {
spin_unlock_irqrestore(&dev->buflock, flags);
}
exit:
/* unlock the device */
mutex_unlock(&dev->mtx);
return retval;
}
static ssize_t adu_write(struct file *file, const __user char *buffer,
size_t count, loff_t *ppos)
{
DECLARE_WAITQUEUE(waita, current);
struct adu_device *dev;
size_t bytes_written = 0;
size_t bytes_to_write;
size_t buffer_size;
unsigned long flags;
int retval;
dev = file->private_data;
retval = mutex_lock_interruptible(&dev->mtx);
if (retval)
goto exit_nolock;
/* verify that the device wasn't unplugged */
if (dev->disconnected) {
retval = -ENODEV;
pr_err("No device or device unplugged %d\n", retval);
goto exit;
}
/* verify that we actually have some data to write */
if (count == 0) {
dev_dbg(&dev->udev->dev, "%s : write request of 0 bytes\n",
__func__);
goto exit;
}
while (count > 0) {
add_wait_queue(&dev->write_wait, &waita);
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&dev->buflock, flags);
if (!dev->out_urb_finished) {
spin_unlock_irqrestore(&dev->buflock, flags);
mutex_unlock(&dev->mtx);
if (signal_pending(current)) {
dev_dbg(&dev->udev->dev, "%s : interrupted\n",
__func__);
set_current_state(TASK_RUNNING);
retval = -EINTR;
goto exit_onqueue;
}
if (schedule_timeout(COMMAND_TIMEOUT) == 0) {
dev_dbg(&dev->udev->dev,
"%s - command timed out.\n", __func__);
retval = -ETIMEDOUT;
goto exit_onqueue;
}
remove_wait_queue(&dev->write_wait, &waita);
retval = mutex_lock_interruptible(&dev->mtx);
if (retval) {
retval = bytes_written ? bytes_written : retval;
goto exit_nolock;
}
dev_dbg(&dev->udev->dev,
"%s : in progress, count = %zd\n",
__func__, count);
} else {
spin_unlock_irqrestore(&dev->buflock, flags);
set_current_state(TASK_RUNNING);
remove_wait_queue(&dev->write_wait, &waita);
dev_dbg(&dev->udev->dev, "%s : sending, count = %zd\n",
__func__, count);
/* write the data into interrupt_out_buffer from userspace */
buffer_size = usb_endpoint_maxp(dev->interrupt_out_endpoint);
bytes_to_write = count > buffer_size ? buffer_size : count;
dev_dbg(&dev->udev->dev,
"%s : buffer_size = %zd, count = %zd, bytes_to_write = %zd\n",
__func__, buffer_size, count, bytes_to_write);
if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) {
retval = -EFAULT;
goto exit;
}
/* send off the urb */
usb_fill_int_urb(
dev->interrupt_out_urb,
dev->udev,
usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress),
dev->interrupt_out_buffer,
bytes_to_write,
adu_interrupt_out_callback,
dev,
dev->interrupt_out_endpoint->bInterval);
dev->interrupt_out_urb->actual_length = bytes_to_write;
dev->out_urb_finished = 0;
retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL);
if (retval < 0) {
dev->out_urb_finished = 1;
dev_err(&dev->udev->dev, "Couldn't submit "
"interrupt_out_urb %d\n", retval);
goto exit;
}
buffer += bytes_to_write;
count -= bytes_to_write;
bytes_written += bytes_to_write;
}
}
mutex_unlock(&dev->mtx);
return bytes_written;
exit:
mutex_unlock(&dev->mtx);
exit_nolock:
return retval;
exit_onqueue:
remove_wait_queue(&dev->write_wait, &waita);
return retval;
}
/* file operations needed when we register this driver */
static const struct file_operations adu_fops = {
.owner = THIS_MODULE,
.read = adu_read,
.write = adu_write,
.open = adu_open,
.release = adu_release,
.llseek = noop_llseek,
};
/*
* usb class driver info in order to get a minor number from the usb core,
* and to have the device registered with devfs and the driver core
*/
static struct usb_class_driver adu_class = {
.name = "usb/adutux%d",
.fops = &adu_fops,
.minor_base = ADU_MINOR_BASE,
};
/**
* adu_probe
*
* Called by the usb core when a new device is connected that it thinks
* this driver might be interested in.
*/
static int adu_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(interface);
struct adu_device *dev = NULL;
int retval = -ENOMEM;
int in_end_size;
int out_end_size;
int res;
/* allocate memory for our device state and initialize it */
dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL);
if (!dev)
return -ENOMEM;
mutex_init(&dev->mtx);
spin_lock_init(&dev->buflock);
dev->udev = usb_get_dev(udev);
init_waitqueue_head(&dev->read_wait);
init_waitqueue_head(&dev->write_wait);
res = usb_find_common_endpoints_reverse(interface->cur_altsetting,
NULL, NULL,
&dev->interrupt_in_endpoint,
&dev->interrupt_out_endpoint);
if (res) {
dev_err(&interface->dev, "interrupt endpoints not found\n");
retval = res;
goto error;
}
in_end_size = usb_endpoint_maxp(dev->interrupt_in_endpoint);
out_end_size = usb_endpoint_maxp(dev->interrupt_out_endpoint);
dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL);
if (!dev->read_buffer_primary)
goto error;
/* debug code prime the buffer */
memset(dev->read_buffer_primary, 'a', in_end_size);
memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size);
memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size);
memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size);
dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL);
if (!dev->read_buffer_secondary)
goto error;
/* debug code prime the buffer */
memset(dev->read_buffer_secondary, 'e', in_end_size);
memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size);
memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size);
memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size);
dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL);
if (!dev->interrupt_in_buffer)
goto error;
/* debug code prime the buffer */
memset(dev->interrupt_in_buffer, 'i', in_end_size);
dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!dev->interrupt_in_urb)
goto error;
dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL);
if (!dev->interrupt_out_buffer)
goto error;
dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!dev->interrupt_out_urb)
goto error;
if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number,
sizeof(dev->serial_number))) {
dev_err(&interface->dev, "Could not retrieve serial number\n");
retval = -EIO;
goto error;
}
dev_dbg(&interface->dev,"serial_number=%s", dev->serial_number);
/* we can register the device now, as it is ready */
usb_set_intfdata(interface, dev);
retval = usb_register_dev(interface, &adu_class);
if (retval) {
/* something prevented us from registering this driver */
dev_err(&interface->dev, "Not able to get a minor for this device.\n");
usb_set_intfdata(interface, NULL);
goto error;
}
dev->minor = interface->minor;
/* let the user know what node this device is now attached to */
dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d\n",
le16_to_cpu(udev->descriptor.idProduct), dev->serial_number,
(dev->minor - ADU_MINOR_BASE));
return 0;
error:
adu_delete(dev);
return retval;
}
/**
* adu_disconnect
*
* Called by the usb core when the device is removed from the system.
*/
static void adu_disconnect(struct usb_interface *interface)
{
struct adu_device *dev;
dev = usb_get_intfdata(interface);
usb_deregister_dev(interface, &adu_class);
usb_poison_urb(dev->interrupt_in_urb);
usb_poison_urb(dev->interrupt_out_urb);
mutex_lock(&adutux_mutex);
usb_set_intfdata(interface, NULL);
mutex_lock(&dev->mtx); /* not interruptible */
dev->disconnected = 1;
mutex_unlock(&dev->mtx);
/* if the device is not opened, then we clean up right now */
if (!dev->open_count)
adu_delete(dev);
mutex_unlock(&adutux_mutex);
}
/* usb specific object needed to register this driver with the usb subsystem */
static struct usb_driver adu_driver = {
.name = "adutux",
.probe = adu_probe,
.disconnect = adu_disconnect,
.id_table = device_table,
};
module_usb_driver(adu_driver);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");