mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-20 11:13:58 +08:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
317 lines
6.7 KiB
C
317 lines
6.7 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_M68K_SETUP_H
|
|
#define _ASM_M68K_SETUP_H
|
|
|
|
#include <asm/setup.h>
|
|
#include <linux/linkage.h>
|
|
|
|
/* Status Register bits */
|
|
|
|
/* accrued exception bits */
|
|
#define FPSR_AEXC_INEX 3
|
|
#define FPSR_AEXC_DZ 4
|
|
#define FPSR_AEXC_UNFL 5
|
|
#define FPSR_AEXC_OVFL 6
|
|
#define FPSR_AEXC_IOP 7
|
|
|
|
/* exception status bits */
|
|
#define FPSR_EXC_INEX1 8
|
|
#define FPSR_EXC_INEX2 9
|
|
#define FPSR_EXC_DZ 10
|
|
#define FPSR_EXC_UNFL 11
|
|
#define FPSR_EXC_OVFL 12
|
|
#define FPSR_EXC_OPERR 13
|
|
#define FPSR_EXC_SNAN 14
|
|
#define FPSR_EXC_BSUN 15
|
|
|
|
/* quotient byte, assumes big-endian, of course */
|
|
#define FPSR_QUOTIENT(fpsr) (*((signed char *) &(fpsr) + 1))
|
|
|
|
/* condition code bits */
|
|
#define FPSR_CC_NAN 24
|
|
#define FPSR_CC_INF 25
|
|
#define FPSR_CC_Z 26
|
|
#define FPSR_CC_NEG 27
|
|
|
|
|
|
/* Control register bits */
|
|
|
|
/* rounding mode */
|
|
#define FPCR_ROUND_RN 0 /* round to nearest/even */
|
|
#define FPCR_ROUND_RZ 1 /* round to zero */
|
|
#define FPCR_ROUND_RM 2 /* minus infinity */
|
|
#define FPCR_ROUND_RP 3 /* plus infinity */
|
|
|
|
/* rounding precision */
|
|
#define FPCR_PRECISION_X 0 /* long double */
|
|
#define FPCR_PRECISION_S 1 /* double */
|
|
#define FPCR_PRECISION_D 2 /* float */
|
|
|
|
|
|
/* Flags to select the debugging output */
|
|
#define PDECODE 0
|
|
#define PEXECUTE 1
|
|
#define PCONV 2
|
|
#define PNORM 3
|
|
#define PREGISTER 4
|
|
#define PINSTR 5
|
|
#define PUNIMPL 6
|
|
#define PMOVEM 7
|
|
|
|
#define PMDECODE (1<<PDECODE)
|
|
#define PMEXECUTE (1<<PEXECUTE)
|
|
#define PMCONV (1<<PCONV)
|
|
#define PMNORM (1<<PNORM)
|
|
#define PMREGISTER (1<<PREGISTER)
|
|
#define PMINSTR (1<<PINSTR)
|
|
#define PMUNIMPL (1<<PUNIMPL)
|
|
#define PMMOVEM (1<<PMOVEM)
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
|
|
union fp_mant64 {
|
|
unsigned long long m64;
|
|
unsigned long m32[2];
|
|
};
|
|
|
|
union fp_mant128 {
|
|
unsigned long long m64[2];
|
|
unsigned long m32[4];
|
|
};
|
|
|
|
/* internal representation of extended fp numbers */
|
|
struct fp_ext {
|
|
unsigned char lowmant;
|
|
unsigned char sign;
|
|
unsigned short exp;
|
|
union fp_mant64 mant;
|
|
};
|
|
|
|
/* C representation of FPU registers */
|
|
/* NOTE: if you change this, you have to change the assembler offsets
|
|
below and the size in <asm/fpu.h>, too */
|
|
struct fp_data {
|
|
struct fp_ext fpreg[8];
|
|
unsigned int fpcr;
|
|
unsigned int fpsr;
|
|
unsigned int fpiar;
|
|
unsigned short prec;
|
|
unsigned short rnd;
|
|
struct fp_ext temp[2];
|
|
};
|
|
|
|
#ifdef FPU_EMU_DEBUG
|
|
extern unsigned int fp_debugprint;
|
|
|
|
#define dprint(bit, fmt, ...) ({ \
|
|
if (fp_debugprint & (1 << (bit))) \
|
|
pr_info(fmt, ##__VA_ARGS__); \
|
|
})
|
|
#else
|
|
#define dprint(bit, fmt, ...) no_printk(fmt, ##__VA_ARGS__)
|
|
#endif
|
|
|
|
#define uprint(str) ({ \
|
|
static int __count = 3; \
|
|
\
|
|
if (__count > 0) { \
|
|
pr_err("You just hit an unimplemented " \
|
|
"fpu instruction (%s)\n", str); \
|
|
pr_err("Please report this to ....\n"); \
|
|
__count--; \
|
|
} \
|
|
})
|
|
|
|
#define FPDATA ((struct fp_data *)current->thread.fp)
|
|
|
|
#else /* __ASSEMBLY__ */
|
|
|
|
#define FPDATA %a2
|
|
|
|
/* offsets from the base register to the floating point data in the task struct */
|
|
#define FPD_FPREG (TASK_THREAD+THREAD_FPREG+0)
|
|
#define FPD_FPCR (TASK_THREAD+THREAD_FPREG+96)
|
|
#define FPD_FPSR (TASK_THREAD+THREAD_FPREG+100)
|
|
#define FPD_FPIAR (TASK_THREAD+THREAD_FPREG+104)
|
|
#define FPD_PREC (TASK_THREAD+THREAD_FPREG+108)
|
|
#define FPD_RND (TASK_THREAD+THREAD_FPREG+110)
|
|
#define FPD_TEMPFP1 (TASK_THREAD+THREAD_FPREG+112)
|
|
#define FPD_TEMPFP2 (TASK_THREAD+THREAD_FPREG+124)
|
|
#define FPD_SIZEOF (TASK_THREAD+THREAD_FPREG+136)
|
|
|
|
/* offsets on the stack to access saved registers,
|
|
* these are only used during instruction decoding
|
|
* where we always know how deep we're on the stack.
|
|
*/
|
|
#define FPS_DO (PT_OFF_D0)
|
|
#define FPS_D1 (PT_OFF_D1)
|
|
#define FPS_D2 (PT_OFF_D2)
|
|
#define FPS_A0 (PT_OFF_A0)
|
|
#define FPS_A1 (PT_OFF_A1)
|
|
#define FPS_A2 (PT_OFF_A2)
|
|
#define FPS_SR (PT_OFF_SR)
|
|
#define FPS_PC (PT_OFF_PC)
|
|
#define FPS_EA (PT_OFF_PC+6)
|
|
#define FPS_PC2 (PT_OFF_PC+10)
|
|
|
|
.macro fp_get_fp_reg
|
|
lea (FPD_FPREG,FPDATA,%d0.w*4),%a0
|
|
lea (%a0,%d0.w*8),%a0
|
|
.endm
|
|
|
|
/* Macros used to get/put the current program counter.
|
|
* 020/030 use a different stack frame then 040/060, for the
|
|
* 040/060 the return pc points already to the next location,
|
|
* so this only needs to be modified for jump instructions.
|
|
*/
|
|
.macro fp_get_pc dest
|
|
move.l (FPS_PC+4,%sp),\dest
|
|
.endm
|
|
|
|
.macro fp_put_pc src,jump=0
|
|
move.l \src,(FPS_PC+4,%sp)
|
|
.endm
|
|
|
|
.macro fp_get_instr_data f,s,dest,label
|
|
getuser \f,%sp@(FPS_PC+4)@(0),\dest,\label,%sp@(FPS_PC+4)
|
|
addq.l #\s,%sp@(FPS_PC+4)
|
|
.endm
|
|
|
|
.macro fp_get_instr_word dest,label,addr
|
|
fp_get_instr_data w,2,\dest,\label,\addr
|
|
.endm
|
|
|
|
.macro fp_get_instr_long dest,label,addr
|
|
fp_get_instr_data l,4,\dest,\label,\addr
|
|
.endm
|
|
|
|
/* These macros are used to read from/write to user space
|
|
* on error we jump to the fixup section, load the fault
|
|
* address into %a0 and jump to the exit.
|
|
* (derived from <asm/uaccess.h>)
|
|
*/
|
|
.macro getuser size,src,dest,label,addr
|
|
| printf ,"[\size<%08x]",1,\addr
|
|
.Lu1\@: moves\size \src,\dest
|
|
|
|
.section .fixup,"ax"
|
|
.even
|
|
.Lu2\@: move.l \addr,%a0
|
|
jra \label
|
|
.previous
|
|
|
|
.section __ex_table,"a"
|
|
.align 4
|
|
.long .Lu1\@,.Lu2\@
|
|
.previous
|
|
.endm
|
|
|
|
.macro putuser size,src,dest,label,addr
|
|
| printf ,"[\size>%08x]",1,\addr
|
|
.Lu1\@: moves\size \src,\dest
|
|
.Lu2\@:
|
|
|
|
.section .fixup,"ax"
|
|
.even
|
|
.Lu3\@: move.l \addr,%a0
|
|
jra \label
|
|
.previous
|
|
|
|
.section __ex_table,"a"
|
|
.align 4
|
|
.long .Lu1\@,.Lu3\@
|
|
.long .Lu2\@,.Lu3\@
|
|
.previous
|
|
.endm
|
|
|
|
/* work around binutils idiocy */
|
|
old_gas=-1
|
|
.irp gas_ident.x .x
|
|
old_gas=old_gas+1
|
|
.endr
|
|
.if !old_gas
|
|
.irp m b,w,l
|
|
.macro getuser.\m src,dest,label,addr
|
|
getuser .\m,\src,\dest,\label,\addr
|
|
.endm
|
|
.macro putuser.\m src,dest,label,addr
|
|
putuser .\m,\src,\dest,\label,\addr
|
|
.endm
|
|
.endr
|
|
.endif
|
|
|
|
.macro movestack nr,arg1,arg2,arg3,arg4,arg5
|
|
.if \nr
|
|
movestack (\nr-1),\arg2,\arg3,\arg4,\arg5
|
|
move.l \arg1,-(%sp)
|
|
.endif
|
|
.endm
|
|
|
|
.macro printf bit=-1,string,nr=0,arg1,arg2,arg3,arg4,arg5
|
|
#ifdef FPU_EMU_DEBUG
|
|
.data
|
|
.Lpdata\@:
|
|
.string "\string"
|
|
.previous
|
|
|
|
movem.l %d0/%d1/%a0/%a1,-(%sp)
|
|
.if \bit+1
|
|
#if 0
|
|
moveq #\bit,%d0
|
|
andw #7,%d0
|
|
btst %d0,fp_debugprint+((31-\bit)/8)
|
|
#else
|
|
btst #\bit,fp_debugprint+((31-\bit)/8)
|
|
#endif
|
|
jeq .Lpskip\@
|
|
.endif
|
|
movestack \nr,\arg1,\arg2,\arg3,\arg4,\arg5
|
|
pea .Lpdata\@
|
|
jsr printk
|
|
lea ((\nr+1)*4,%sp),%sp
|
|
.Lpskip\@:
|
|
movem.l (%sp)+,%d0/%d1/%a0/%a1
|
|
#endif
|
|
.endm
|
|
|
|
.macro printx bit,fp
|
|
#ifdef FPU_EMU_DEBUG
|
|
movem.l %d0/%a0,-(%sp)
|
|
lea \fp,%a0
|
|
#if 0
|
|
moveq #'+',%d0
|
|
tst.w (%a0)
|
|
jeq .Lx1\@
|
|
moveq #'-',%d0
|
|
.Lx1\@: printf \bit," %c",1,%d0
|
|
move.l (4,%a0),%d0
|
|
bclr #31,%d0
|
|
jne .Lx2\@
|
|
printf \bit,"0."
|
|
jra .Lx3\@
|
|
.Lx2\@: printf \bit,"1."
|
|
.Lx3\@: printf \bit,"%08x%08x",2,%d0,%a0@(8)
|
|
move.w (2,%a0),%d0
|
|
ext.l %d0
|
|
printf \bit,"E%04x",1,%d0
|
|
#else
|
|
printf \bit," %08x%08x%08x",3,%a0@,%a0@(4),%a0@(8)
|
|
#endif
|
|
movem.l (%sp)+,%d0/%a0
|
|
#endif
|
|
.endm
|
|
|
|
.macro debug instr,args
|
|
#ifdef FPU_EMU_DEBUG
|
|
\instr \args
|
|
#endif
|
|
.endm
|
|
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#endif /* _ASM_M68K_SETUP_H */
|