2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 23:26:03 +08:00
linux-next/mm/frontswap.c
Dan Streetman d1dc6f1bcf frontswap: allow multiple backends
Change frontswap single pointer to a singly linked list of frontswap
implementations.  Update Xen tmem implementation as register no longer
returns anything.

Frontswap only keeps track of a single implementation; any
implementation that registers second (or later) will replace the
previously registered implementation, and gets a pointer to the previous
implementation that the new implementation is expected to pass all
frontswap functions to if it can't handle the function itself.  However
that method doesn't really make much sense, as passing that work on to
every implementation adds unnecessary work to implementations; instead,
frontswap should simply keep a list of all registered implementations
and try each implementation for any function.  Most importantly, neither
of the two currently existing frontswap implementations in the kernel
actually do anything with any previous frontswap implementation that
they replace when registering.

This allows frontswap to successfully manage multiple implementations by
keeping a list of them all.

Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:45 -07:00

505 lines
14 KiB
C

/*
* Frontswap frontend
*
* This code provides the generic "frontend" layer to call a matching
* "backend" driver implementation of frontswap. See
* Documentation/vm/frontswap.txt for more information.
*
* Copyright (C) 2009-2012 Oracle Corp. All rights reserved.
* Author: Dan Magenheimer
*
* This work is licensed under the terms of the GNU GPL, version 2.
*/
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/security.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/frontswap.h>
#include <linux/swapfile.h>
/*
* frontswap_ops are added by frontswap_register_ops, and provide the
* frontswap "backend" implementation functions. Multiple implementations
* may be registered, but implementations can never deregister. This
* is a simple singly-linked list of all registered implementations.
*/
static struct frontswap_ops *frontswap_ops __read_mostly;
#define for_each_frontswap_ops(ops) \
for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next)
/*
* If enabled, frontswap_store will return failure even on success. As
* a result, the swap subsystem will always write the page to swap, in
* effect converting frontswap into a writethrough cache. In this mode,
* there is no direct reduction in swap writes, but a frontswap backend
* can unilaterally "reclaim" any pages in use with no data loss, thus
* providing increases control over maximum memory usage due to frontswap.
*/
static bool frontswap_writethrough_enabled __read_mostly;
/*
* If enabled, the underlying tmem implementation is capable of doing
* exclusive gets, so frontswap_load, on a successful tmem_get must
* mark the page as no longer in frontswap AND mark it dirty.
*/
static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
#ifdef CONFIG_DEBUG_FS
/*
* Counters available via /sys/kernel/debug/frontswap (if debugfs is
* properly configured). These are for information only so are not protected
* against increment races.
*/
static u64 frontswap_loads;
static u64 frontswap_succ_stores;
static u64 frontswap_failed_stores;
static u64 frontswap_invalidates;
static inline void inc_frontswap_loads(void) {
frontswap_loads++;
}
static inline void inc_frontswap_succ_stores(void) {
frontswap_succ_stores++;
}
static inline void inc_frontswap_failed_stores(void) {
frontswap_failed_stores++;
}
static inline void inc_frontswap_invalidates(void) {
frontswap_invalidates++;
}
#else
static inline void inc_frontswap_loads(void) { }
static inline void inc_frontswap_succ_stores(void) { }
static inline void inc_frontswap_failed_stores(void) { }
static inline void inc_frontswap_invalidates(void) { }
#endif
/*
* Due to the asynchronous nature of the backends loading potentially
* _after_ the swap system has been activated, we have chokepoints
* on all frontswap functions to not call the backend until the backend
* has registered.
*
* This would not guards us against the user deciding to call swapoff right as
* we are calling the backend to initialize (so swapon is in action).
* Fortunatly for us, the swapon_mutex has been taked by the callee so we are
* OK. The other scenario where calls to frontswap_store (called via
* swap_writepage) is racing with frontswap_invalidate_area (called via
* swapoff) is again guarded by the swap subsystem.
*
* While no backend is registered all calls to frontswap_[store|load|
* invalidate_area|invalidate_page] are ignored or fail.
*
* The time between the backend being registered and the swap file system
* calling the backend (via the frontswap_* functions) is indeterminate as
* frontswap_ops is not atomic_t (or a value guarded by a spinlock).
* That is OK as we are comfortable missing some of these calls to the newly
* registered backend.
*
* Obviously the opposite (unloading the backend) must be done after all
* the frontswap_[store|load|invalidate_area|invalidate_page] start
* ignoring or failing the requests. However, there is currently no way
* to unload a backend once it is registered.
*/
/*
* Register operations for frontswap
*/
void frontswap_register_ops(struct frontswap_ops *ops)
{
DECLARE_BITMAP(a, MAX_SWAPFILES);
DECLARE_BITMAP(b, MAX_SWAPFILES);
struct swap_info_struct *si;
unsigned int i;
bitmap_zero(a, MAX_SWAPFILES);
bitmap_zero(b, MAX_SWAPFILES);
spin_lock(&swap_lock);
plist_for_each_entry(si, &swap_active_head, list) {
if (!WARN_ON(!si->frontswap_map))
set_bit(si->type, a);
}
spin_unlock(&swap_lock);
/* the new ops needs to know the currently active swap devices */
for_each_set_bit(i, a, MAX_SWAPFILES)
ops->init(i);
/*
* Setting frontswap_ops must happen after the ops->init() calls
* above; cmpxchg implies smp_mb() which will ensure the init is
* complete at this point.
*/
do {
ops->next = frontswap_ops;
} while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next);
spin_lock(&swap_lock);
plist_for_each_entry(si, &swap_active_head, list) {
if (si->frontswap_map)
set_bit(si->type, b);
}
spin_unlock(&swap_lock);
/*
* On the very unlikely chance that a swap device was added or
* removed between setting the "a" list bits and the ops init
* calls, we re-check and do init or invalidate for any changed
* bits.
*/
if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) {
for (i = 0; i < MAX_SWAPFILES; i++) {
if (!test_bit(i, a) && test_bit(i, b))
ops->init(i);
else if (test_bit(i, a) && !test_bit(i, b))
ops->invalidate_area(i);
}
}
}
EXPORT_SYMBOL(frontswap_register_ops);
/*
* Enable/disable frontswap writethrough (see above).
*/
void frontswap_writethrough(bool enable)
{
frontswap_writethrough_enabled = enable;
}
EXPORT_SYMBOL(frontswap_writethrough);
/*
* Enable/disable frontswap exclusive gets (see above).
*/
void frontswap_tmem_exclusive_gets(bool enable)
{
frontswap_tmem_exclusive_gets_enabled = enable;
}
EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
/*
* Called when a swap device is swapon'd.
*/
void __frontswap_init(unsigned type, unsigned long *map)
{
struct swap_info_struct *sis = swap_info[type];
struct frontswap_ops *ops;
BUG_ON(sis == NULL);
/*
* p->frontswap is a bitmap that we MUST have to figure out which page
* has gone in frontswap. Without it there is no point of continuing.
*/
if (WARN_ON(!map))
return;
/*
* Irregardless of whether the frontswap backend has been loaded
* before this function or it will be later, we _MUST_ have the
* p->frontswap set to something valid to work properly.
*/
frontswap_map_set(sis, map);
for_each_frontswap_ops(ops)
ops->init(type);
}
EXPORT_SYMBOL(__frontswap_init);
bool __frontswap_test(struct swap_info_struct *sis,
pgoff_t offset)
{
if (sis->frontswap_map)
return test_bit(offset, sis->frontswap_map);
return false;
}
EXPORT_SYMBOL(__frontswap_test);
static inline void __frontswap_set(struct swap_info_struct *sis,
pgoff_t offset)
{
set_bit(offset, sis->frontswap_map);
atomic_inc(&sis->frontswap_pages);
}
static inline void __frontswap_clear(struct swap_info_struct *sis,
pgoff_t offset)
{
clear_bit(offset, sis->frontswap_map);
atomic_dec(&sis->frontswap_pages);
}
/*
* "Store" data from a page to frontswap and associate it with the page's
* swaptype and offset. Page must be locked and in the swap cache.
* If frontswap already contains a page with matching swaptype and
* offset, the frontswap implementation may either overwrite the data and
* return success or invalidate the page from frontswap and return failure.
*/
int __frontswap_store(struct page *page)
{
int ret = -1;
swp_entry_t entry = { .val = page_private(page), };
int type = swp_type(entry);
struct swap_info_struct *sis = swap_info[type];
pgoff_t offset = swp_offset(entry);
struct frontswap_ops *ops;
/*
* Return if no backend registed.
* Don't need to inc frontswap_failed_stores here.
*/
if (!frontswap_ops)
return -1;
BUG_ON(!PageLocked(page));
BUG_ON(sis == NULL);
/*
* If a dup, we must remove the old page first; we can't leave the
* old page no matter if the store of the new page succeeds or fails,
* and we can't rely on the new page replacing the old page as we may
* not store to the same implementation that contains the old page.
*/
if (__frontswap_test(sis, offset)) {
__frontswap_clear(sis, offset);
for_each_frontswap_ops(ops)
ops->invalidate_page(type, offset);
}
/* Try to store in each implementation, until one succeeds. */
for_each_frontswap_ops(ops) {
ret = ops->store(type, offset, page);
if (!ret) /* successful store */
break;
}
if (ret == 0) {
__frontswap_set(sis, offset);
inc_frontswap_succ_stores();
} else {
inc_frontswap_failed_stores();
}
if (frontswap_writethrough_enabled)
/* report failure so swap also writes to swap device */
ret = -1;
return ret;
}
EXPORT_SYMBOL(__frontswap_store);
/*
* "Get" data from frontswap associated with swaptype and offset that were
* specified when the data was put to frontswap and use it to fill the
* specified page with data. Page must be locked and in the swap cache.
*/
int __frontswap_load(struct page *page)
{
int ret = -1;
swp_entry_t entry = { .val = page_private(page), };
int type = swp_type(entry);
struct swap_info_struct *sis = swap_info[type];
pgoff_t offset = swp_offset(entry);
struct frontswap_ops *ops;
if (!frontswap_ops)
return -1;
BUG_ON(!PageLocked(page));
BUG_ON(sis == NULL);
if (!__frontswap_test(sis, offset))
return -1;
/* Try loading from each implementation, until one succeeds. */
for_each_frontswap_ops(ops) {
ret = ops->load(type, offset, page);
if (!ret) /* successful load */
break;
}
if (ret == 0) {
inc_frontswap_loads();
if (frontswap_tmem_exclusive_gets_enabled) {
SetPageDirty(page);
__frontswap_clear(sis, offset);
}
}
return ret;
}
EXPORT_SYMBOL(__frontswap_load);
/*
* Invalidate any data from frontswap associated with the specified swaptype
* and offset so that a subsequent "get" will fail.
*/
void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
{
struct swap_info_struct *sis = swap_info[type];
struct frontswap_ops *ops;
if (!frontswap_ops)
return;
BUG_ON(sis == NULL);
if (!__frontswap_test(sis, offset))
return;
for_each_frontswap_ops(ops)
ops->invalidate_page(type, offset);
__frontswap_clear(sis, offset);
inc_frontswap_invalidates();
}
EXPORT_SYMBOL(__frontswap_invalidate_page);
/*
* Invalidate all data from frontswap associated with all offsets for the
* specified swaptype.
*/
void __frontswap_invalidate_area(unsigned type)
{
struct swap_info_struct *sis = swap_info[type];
struct frontswap_ops *ops;
if (!frontswap_ops)
return;
BUG_ON(sis == NULL);
if (sis->frontswap_map == NULL)
return;
for_each_frontswap_ops(ops)
ops->invalidate_area(type);
atomic_set(&sis->frontswap_pages, 0);
bitmap_zero(sis->frontswap_map, sis->max);
}
EXPORT_SYMBOL(__frontswap_invalidate_area);
static unsigned long __frontswap_curr_pages(void)
{
unsigned long totalpages = 0;
struct swap_info_struct *si = NULL;
assert_spin_locked(&swap_lock);
plist_for_each_entry(si, &swap_active_head, list)
totalpages += atomic_read(&si->frontswap_pages);
return totalpages;
}
static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
int *swapid)
{
int ret = -EINVAL;
struct swap_info_struct *si = NULL;
int si_frontswap_pages;
unsigned long total_pages_to_unuse = total;
unsigned long pages = 0, pages_to_unuse = 0;
assert_spin_locked(&swap_lock);
plist_for_each_entry(si, &swap_active_head, list) {
si_frontswap_pages = atomic_read(&si->frontswap_pages);
if (total_pages_to_unuse < si_frontswap_pages) {
pages = pages_to_unuse = total_pages_to_unuse;
} else {
pages = si_frontswap_pages;
pages_to_unuse = 0; /* unuse all */
}
/* ensure there is enough RAM to fetch pages from frontswap */
if (security_vm_enough_memory_mm(current->mm, pages)) {
ret = -ENOMEM;
continue;
}
vm_unacct_memory(pages);
*unused = pages_to_unuse;
*swapid = si->type;
ret = 0;
break;
}
return ret;
}
/*
* Used to check if it's necessory and feasible to unuse pages.
* Return 1 when nothing to do, 0 when need to shink pages,
* error code when there is an error.
*/
static int __frontswap_shrink(unsigned long target_pages,
unsigned long *pages_to_unuse,
int *type)
{
unsigned long total_pages = 0, total_pages_to_unuse;
assert_spin_locked(&swap_lock);
total_pages = __frontswap_curr_pages();
if (total_pages <= target_pages) {
/* Nothing to do */
*pages_to_unuse = 0;
return 1;
}
total_pages_to_unuse = total_pages - target_pages;
return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
}
/*
* Frontswap, like a true swap device, may unnecessarily retain pages
* under certain circumstances; "shrink" frontswap is essentially a
* "partial swapoff" and works by calling try_to_unuse to attempt to
* unuse enough frontswap pages to attempt to -- subject to memory
* constraints -- reduce the number of pages in frontswap to the
* number given in the parameter target_pages.
*/
void frontswap_shrink(unsigned long target_pages)
{
unsigned long pages_to_unuse = 0;
int uninitialized_var(type), ret;
/*
* we don't want to hold swap_lock while doing a very
* lengthy try_to_unuse, but swap_list may change
* so restart scan from swap_active_head each time
*/
spin_lock(&swap_lock);
ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
spin_unlock(&swap_lock);
if (ret == 0)
try_to_unuse(type, true, pages_to_unuse);
return;
}
EXPORT_SYMBOL(frontswap_shrink);
/*
* Count and return the number of frontswap pages across all
* swap devices. This is exported so that backend drivers can
* determine current usage without reading debugfs.
*/
unsigned long frontswap_curr_pages(void)
{
unsigned long totalpages = 0;
spin_lock(&swap_lock);
totalpages = __frontswap_curr_pages();
spin_unlock(&swap_lock);
return totalpages;
}
EXPORT_SYMBOL(frontswap_curr_pages);
static int __init init_frontswap(void)
{
#ifdef CONFIG_DEBUG_FS
struct dentry *root = debugfs_create_dir("frontswap", NULL);
if (root == NULL)
return -ENXIO;
debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
debugfs_create_u64("failed_stores", S_IRUGO, root,
&frontswap_failed_stores);
debugfs_create_u64("invalidates", S_IRUGO,
root, &frontswap_invalidates);
#endif
return 0;
}
module_init(init_frontswap);