2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 06:34:11 +08:00
linux-next/fs/btrfs/file.c
Josef Bacik be1a12a0df Btrfs: deal with the case that we run out of space in the cache
Currently we don't handle running out of space in the cache, so to fix this we
keep track of how far in the cache we are.  Then we only dirty the pages if we
successfully modify all of them, otherwise if we have an error or run out of
space we can just drop them and not worry about the vm writing them out.
Thanks,

Tested-by Johannes Hirte <johannes.hirte@fem.tu-ilmenau.de>
Signed-off-by: Josef Bacik <josef@redhat.com>
2011-04-08 13:00:27 -04:00

1428 lines
37 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mpage.h>
#include <linux/falloc.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/statfs.h>
#include <linux/compat.h>
#include <linux/slab.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "ioctl.h"
#include "print-tree.h"
#include "tree-log.h"
#include "locking.h"
#include "compat.h"
/* simple helper to fault in pages and copy. This should go away
* and be replaced with calls into generic code.
*/
static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
size_t write_bytes,
struct page **prepared_pages,
struct iov_iter *i)
{
size_t copied = 0;
size_t total_copied = 0;
int pg = 0;
int offset = pos & (PAGE_CACHE_SIZE - 1);
while (write_bytes > 0) {
size_t count = min_t(size_t,
PAGE_CACHE_SIZE - offset, write_bytes);
struct page *page = prepared_pages[pg];
/*
* Copy data from userspace to the current page
*
* Disable pagefault to avoid recursive lock since
* the pages are already locked
*/
pagefault_disable();
copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
pagefault_enable();
/* Flush processor's dcache for this page */
flush_dcache_page(page);
/*
* if we get a partial write, we can end up with
* partially up to date pages. These add
* a lot of complexity, so make sure they don't
* happen by forcing this copy to be retried.
*
* The rest of the btrfs_file_write code will fall
* back to page at a time copies after we return 0.
*/
if (!PageUptodate(page) && copied < count)
copied = 0;
iov_iter_advance(i, copied);
write_bytes -= copied;
total_copied += copied;
/* Return to btrfs_file_aio_write to fault page */
if (unlikely(copied == 0))
break;
if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
offset += copied;
} else {
pg++;
offset = 0;
}
}
return total_copied;
}
/*
* unlocks pages after btrfs_file_write is done with them
*/
void btrfs_drop_pages(struct page **pages, size_t num_pages)
{
size_t i;
for (i = 0; i < num_pages; i++) {
/* page checked is some magic around finding pages that
* have been modified without going through btrfs_set_page_dirty
* clear it here
*/
ClearPageChecked(pages[i]);
unlock_page(pages[i]);
mark_page_accessed(pages[i]);
page_cache_release(pages[i]);
}
}
/*
* after copy_from_user, pages need to be dirtied and we need to make
* sure holes are created between the current EOF and the start of
* any next extents (if required).
*
* this also makes the decision about creating an inline extent vs
* doing real data extents, marking pages dirty and delalloc as required.
*/
int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
struct page **pages, size_t num_pages,
loff_t pos, size_t write_bytes,
struct extent_state **cached)
{
int err = 0;
int i;
u64 num_bytes;
u64 start_pos;
u64 end_of_last_block;
u64 end_pos = pos + write_bytes;
loff_t isize = i_size_read(inode);
start_pos = pos & ~((u64)root->sectorsize - 1);
num_bytes = (write_bytes + pos - start_pos +
root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
end_of_last_block = start_pos + num_bytes - 1;
err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
cached);
if (err)
return err;
for (i = 0; i < num_pages; i++) {
struct page *p = pages[i];
SetPageUptodate(p);
ClearPageChecked(p);
set_page_dirty(p);
}
/*
* we've only changed i_size in ram, and we haven't updated
* the disk i_size. There is no need to log the inode
* at this time.
*/
if (end_pos > isize)
i_size_write(inode, end_pos);
return 0;
}
/*
* this drops all the extents in the cache that intersect the range
* [start, end]. Existing extents are split as required.
*/
int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
int skip_pinned)
{
struct extent_map *em;
struct extent_map *split = NULL;
struct extent_map *split2 = NULL;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
u64 len = end - start + 1;
int ret;
int testend = 1;
unsigned long flags;
int compressed = 0;
WARN_ON(end < start);
if (end == (u64)-1) {
len = (u64)-1;
testend = 0;
}
while (1) {
if (!split)
split = alloc_extent_map(GFP_NOFS);
if (!split2)
split2 = alloc_extent_map(GFP_NOFS);
BUG_ON(!split || !split2);
write_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
if (!em) {
write_unlock(&em_tree->lock);
break;
}
flags = em->flags;
if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
if (testend && em->start + em->len >= start + len) {
free_extent_map(em);
write_unlock(&em_tree->lock);
break;
}
start = em->start + em->len;
if (testend)
len = start + len - (em->start + em->len);
free_extent_map(em);
write_unlock(&em_tree->lock);
continue;
}
compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
clear_bit(EXTENT_FLAG_PINNED, &em->flags);
remove_extent_mapping(em_tree, em);
if (em->block_start < EXTENT_MAP_LAST_BYTE &&
em->start < start) {
split->start = em->start;
split->len = start - em->start;
split->orig_start = em->orig_start;
split->block_start = em->block_start;
if (compressed)
split->block_len = em->block_len;
else
split->block_len = split->len;
split->bdev = em->bdev;
split->flags = flags;
split->compress_type = em->compress_type;
ret = add_extent_mapping(em_tree, split);
BUG_ON(ret);
free_extent_map(split);
split = split2;
split2 = NULL;
}
if (em->block_start < EXTENT_MAP_LAST_BYTE &&
testend && em->start + em->len > start + len) {
u64 diff = start + len - em->start;
split->start = start + len;
split->len = em->start + em->len - (start + len);
split->bdev = em->bdev;
split->flags = flags;
split->compress_type = em->compress_type;
if (compressed) {
split->block_len = em->block_len;
split->block_start = em->block_start;
split->orig_start = em->orig_start;
} else {
split->block_len = split->len;
split->block_start = em->block_start + diff;
split->orig_start = split->start;
}
ret = add_extent_mapping(em_tree, split);
BUG_ON(ret);
free_extent_map(split);
split = NULL;
}
write_unlock(&em_tree->lock);
/* once for us */
free_extent_map(em);
/* once for the tree*/
free_extent_map(em);
}
if (split)
free_extent_map(split);
if (split2)
free_extent_map(split2);
return 0;
}
/*
* this is very complex, but the basic idea is to drop all extents
* in the range start - end. hint_block is filled in with a block number
* that would be a good hint to the block allocator for this file.
*
* If an extent intersects the range but is not entirely inside the range
* it is either truncated or split. Anything entirely inside the range
* is deleted from the tree.
*/
int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
u64 start, u64 end, u64 *hint_byte, int drop_cache)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct btrfs_path *path;
struct btrfs_key key;
struct btrfs_key new_key;
u64 search_start = start;
u64 disk_bytenr = 0;
u64 num_bytes = 0;
u64 extent_offset = 0;
u64 extent_end = 0;
int del_nr = 0;
int del_slot = 0;
int extent_type;
int recow;
int ret;
if (drop_cache)
btrfs_drop_extent_cache(inode, start, end - 1, 0);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while (1) {
recow = 0;
ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
search_start, -1);
if (ret < 0)
break;
if (ret > 0 && path->slots[0] > 0 && search_start == start) {
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
if (key.objectid == inode->i_ino &&
key.type == BTRFS_EXTENT_DATA_KEY)
path->slots[0]--;
}
ret = 0;
next_slot:
leaf = path->nodes[0];
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
BUG_ON(del_nr > 0);
ret = btrfs_next_leaf(root, path);
if (ret < 0)
break;
if (ret > 0) {
ret = 0;
break;
}
leaf = path->nodes[0];
recow = 1;
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid > inode->i_ino ||
key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
break;
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(leaf, fi);
if (extent_type == BTRFS_FILE_EXTENT_REG ||
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
extent_offset = btrfs_file_extent_offset(leaf, fi);
extent_end = key.offset +
btrfs_file_extent_num_bytes(leaf, fi);
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
extent_end = key.offset +
btrfs_file_extent_inline_len(leaf, fi);
} else {
WARN_ON(1);
extent_end = search_start;
}
if (extent_end <= search_start) {
path->slots[0]++;
goto next_slot;
}
search_start = max(key.offset, start);
if (recow) {
btrfs_release_path(root, path);
continue;
}
/*
* | - range to drop - |
* | -------- extent -------- |
*/
if (start > key.offset && end < extent_end) {
BUG_ON(del_nr > 0);
BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
memcpy(&new_key, &key, sizeof(new_key));
new_key.offset = start;
ret = btrfs_duplicate_item(trans, root, path,
&new_key);
if (ret == -EAGAIN) {
btrfs_release_path(root, path);
continue;
}
if (ret < 0)
break;
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_num_bytes(leaf, fi,
start - key.offset);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_offset += start - key.offset;
btrfs_set_file_extent_offset(leaf, fi, extent_offset);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - start);
btrfs_mark_buffer_dirty(leaf);
if (disk_bytenr > 0) {
ret = btrfs_inc_extent_ref(trans, root,
disk_bytenr, num_bytes, 0,
root->root_key.objectid,
new_key.objectid,
start - extent_offset);
BUG_ON(ret);
*hint_byte = disk_bytenr;
}
key.offset = start;
}
/*
* | ---- range to drop ----- |
* | -------- extent -------- |
*/
if (start <= key.offset && end < extent_end) {
BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
memcpy(&new_key, &key, sizeof(new_key));
new_key.offset = end;
btrfs_set_item_key_safe(trans, root, path, &new_key);
extent_offset += end - key.offset;
btrfs_set_file_extent_offset(leaf, fi, extent_offset);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - end);
btrfs_mark_buffer_dirty(leaf);
if (disk_bytenr > 0) {
inode_sub_bytes(inode, end - key.offset);
*hint_byte = disk_bytenr;
}
break;
}
search_start = extent_end;
/*
* | ---- range to drop ----- |
* | -------- extent -------- |
*/
if (start > key.offset && end >= extent_end) {
BUG_ON(del_nr > 0);
BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
btrfs_set_file_extent_num_bytes(leaf, fi,
start - key.offset);
btrfs_mark_buffer_dirty(leaf);
if (disk_bytenr > 0) {
inode_sub_bytes(inode, extent_end - start);
*hint_byte = disk_bytenr;
}
if (end == extent_end)
break;
path->slots[0]++;
goto next_slot;
}
/*
* | ---- range to drop ----- |
* | ------ extent ------ |
*/
if (start <= key.offset && end >= extent_end) {
if (del_nr == 0) {
del_slot = path->slots[0];
del_nr = 1;
} else {
BUG_ON(del_slot + del_nr != path->slots[0]);
del_nr++;
}
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
inode_sub_bytes(inode,
extent_end - key.offset);
extent_end = ALIGN(extent_end,
root->sectorsize);
} else if (disk_bytenr > 0) {
ret = btrfs_free_extent(trans, root,
disk_bytenr, num_bytes, 0,
root->root_key.objectid,
key.objectid, key.offset -
extent_offset);
BUG_ON(ret);
inode_sub_bytes(inode,
extent_end - key.offset);
*hint_byte = disk_bytenr;
}
if (end == extent_end)
break;
if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
path->slots[0]++;
goto next_slot;
}
ret = btrfs_del_items(trans, root, path, del_slot,
del_nr);
BUG_ON(ret);
del_nr = 0;
del_slot = 0;
btrfs_release_path(root, path);
continue;
}
BUG_ON(1);
}
if (del_nr > 0) {
ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
BUG_ON(ret);
}
btrfs_free_path(path);
return ret;
}
static int extent_mergeable(struct extent_buffer *leaf, int slot,
u64 objectid, u64 bytenr, u64 orig_offset,
u64 *start, u64 *end)
{
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
u64 extent_end;
if (slot < 0 || slot >= btrfs_header_nritems(leaf))
return 0;
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
return 0;
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
btrfs_file_extent_compression(leaf, fi) ||
btrfs_file_extent_encryption(leaf, fi) ||
btrfs_file_extent_other_encoding(leaf, fi))
return 0;
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
if ((*start && *start != key.offset) || (*end && *end != extent_end))
return 0;
*start = key.offset;
*end = extent_end;
return 1;
}
/*
* Mark extent in the range start - end as written.
*
* This changes extent type from 'pre-allocated' to 'regular'. If only
* part of extent is marked as written, the extent will be split into
* two or three.
*/
int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
struct inode *inode, u64 start, u64 end)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_buffer *leaf;
struct btrfs_path *path;
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
struct btrfs_key new_key;
u64 bytenr;
u64 num_bytes;
u64 extent_end;
u64 orig_offset;
u64 other_start;
u64 other_end;
u64 split;
int del_nr = 0;
int del_slot = 0;
int recow;
int ret;
btrfs_drop_extent_cache(inode, start, end - 1, 0);
path = btrfs_alloc_path();
BUG_ON(!path);
again:
recow = 0;
split = start;
key.objectid = inode->i_ino;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = split;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0 && path->slots[0] > 0)
path->slots[0]--;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
BUG_ON(key.objectid != inode->i_ino ||
key.type != BTRFS_EXTENT_DATA_KEY);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
BUG_ON(btrfs_file_extent_type(leaf, fi) !=
BTRFS_FILE_EXTENT_PREALLOC);
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
BUG_ON(key.offset > start || extent_end < end);
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
memcpy(&new_key, &key, sizeof(new_key));
if (start == key.offset && end < extent_end) {
other_start = 0;
other_end = start;
if (extent_mergeable(leaf, path->slots[0] - 1,
inode->i_ino, bytenr, orig_offset,
&other_start, &other_end)) {
new_key.offset = end;
btrfs_set_item_key_safe(trans, root, path, &new_key);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - end);
btrfs_set_file_extent_offset(leaf, fi,
end - orig_offset);
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_num_bytes(leaf, fi,
end - other_start);
btrfs_mark_buffer_dirty(leaf);
goto out;
}
}
if (start > key.offset && end == extent_end) {
other_start = end;
other_end = 0;
if (extent_mergeable(leaf, path->slots[0] + 1,
inode->i_ino, bytenr, orig_offset,
&other_start, &other_end)) {
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_num_bytes(leaf, fi,
start - key.offset);
path->slots[0]++;
new_key.offset = start;
btrfs_set_item_key_safe(trans, root, path, &new_key);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_num_bytes(leaf, fi,
other_end - start);
btrfs_set_file_extent_offset(leaf, fi,
start - orig_offset);
btrfs_mark_buffer_dirty(leaf);
goto out;
}
}
while (start > key.offset || end < extent_end) {
if (key.offset == start)
split = end;
new_key.offset = split;
ret = btrfs_duplicate_item(trans, root, path, &new_key);
if (ret == -EAGAIN) {
btrfs_release_path(root, path);
goto again;
}
BUG_ON(ret < 0);
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_num_bytes(leaf, fi,
split - key.offset);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - split);
btrfs_mark_buffer_dirty(leaf);
ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
root->root_key.objectid,
inode->i_ino, orig_offset);
BUG_ON(ret);
if (split == start) {
key.offset = start;
} else {
BUG_ON(start != key.offset);
path->slots[0]--;
extent_end = end;
}
recow = 1;
}
other_start = end;
other_end = 0;
if (extent_mergeable(leaf, path->slots[0] + 1,
inode->i_ino, bytenr, orig_offset,
&other_start, &other_end)) {
if (recow) {
btrfs_release_path(root, path);
goto again;
}
extent_end = other_end;
del_slot = path->slots[0] + 1;
del_nr++;
ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
0, root->root_key.objectid,
inode->i_ino, orig_offset);
BUG_ON(ret);
}
other_start = 0;
other_end = start;
if (extent_mergeable(leaf, path->slots[0] - 1,
inode->i_ino, bytenr, orig_offset,
&other_start, &other_end)) {
if (recow) {
btrfs_release_path(root, path);
goto again;
}
key.offset = other_start;
del_slot = path->slots[0];
del_nr++;
ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
0, root->root_key.objectid,
inode->i_ino, orig_offset);
BUG_ON(ret);
}
if (del_nr == 0) {
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_type(leaf, fi,
BTRFS_FILE_EXTENT_REG);
btrfs_mark_buffer_dirty(leaf);
} else {
fi = btrfs_item_ptr(leaf, del_slot - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_type(leaf, fi,
BTRFS_FILE_EXTENT_REG);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - key.offset);
btrfs_mark_buffer_dirty(leaf);
ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
BUG_ON(ret);
}
out:
btrfs_free_path(path);
return 0;
}
/*
* on error we return an unlocked page and the error value
* on success we return a locked page and 0
*/
static int prepare_uptodate_page(struct page *page, u64 pos)
{
int ret = 0;
if ((pos & (PAGE_CACHE_SIZE - 1)) && !PageUptodate(page)) {
ret = btrfs_readpage(NULL, page);
if (ret)
return ret;
lock_page(page);
if (!PageUptodate(page)) {
unlock_page(page);
return -EIO;
}
}
return 0;
}
/*
* this gets pages into the page cache and locks them down, it also properly
* waits for data=ordered extents to finish before allowing the pages to be
* modified.
*/
static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
struct page **pages, size_t num_pages,
loff_t pos, unsigned long first_index,
unsigned long last_index, size_t write_bytes)
{
struct extent_state *cached_state = NULL;
int i;
unsigned long index = pos >> PAGE_CACHE_SHIFT;
struct inode *inode = fdentry(file)->d_inode;
int err = 0;
int faili = 0;
u64 start_pos;
u64 last_pos;
start_pos = pos & ~((u64)root->sectorsize - 1);
last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
if (start_pos > inode->i_size) {
err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
if (err)
return err;
}
again:
for (i = 0; i < num_pages; i++) {
pages[i] = grab_cache_page(inode->i_mapping, index + i);
if (!pages[i]) {
faili = i - 1;
err = -ENOMEM;
goto fail;
}
if (i == 0)
err = prepare_uptodate_page(pages[i], pos);
if (i == num_pages - 1)
err = prepare_uptodate_page(pages[i],
pos + write_bytes);
if (err) {
page_cache_release(pages[i]);
faili = i - 1;
goto fail;
}
wait_on_page_writeback(pages[i]);
}
err = 0;
if (start_pos < inode->i_size) {
struct btrfs_ordered_extent *ordered;
lock_extent_bits(&BTRFS_I(inode)->io_tree,
start_pos, last_pos - 1, 0, &cached_state,
GFP_NOFS);
ordered = btrfs_lookup_first_ordered_extent(inode,
last_pos - 1);
if (ordered &&
ordered->file_offset + ordered->len > start_pos &&
ordered->file_offset < last_pos) {
btrfs_put_ordered_extent(ordered);
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
start_pos, last_pos - 1,
&cached_state, GFP_NOFS);
for (i = 0; i < num_pages; i++) {
unlock_page(pages[i]);
page_cache_release(pages[i]);
}
btrfs_wait_ordered_range(inode, start_pos,
last_pos - start_pos);
goto again;
}
if (ordered)
btrfs_put_ordered_extent(ordered);
clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
GFP_NOFS);
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
start_pos, last_pos - 1, &cached_state,
GFP_NOFS);
}
for (i = 0; i < num_pages; i++) {
clear_page_dirty_for_io(pages[i]);
set_page_extent_mapped(pages[i]);
WARN_ON(!PageLocked(pages[i]));
}
return 0;
fail:
while (faili >= 0) {
unlock_page(pages[faili]);
page_cache_release(pages[faili]);
faili--;
}
return err;
}
static noinline ssize_t __btrfs_buffered_write(struct file *file,
struct iov_iter *i,
loff_t pos)
{
struct inode *inode = fdentry(file)->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct page **pages = NULL;
unsigned long first_index;
unsigned long last_index;
size_t num_written = 0;
int nrptrs;
int ret = 0;
nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
(sizeof(struct page *)));
pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
if (!pages)
return -ENOMEM;
first_index = pos >> PAGE_CACHE_SHIFT;
last_index = (pos + iov_iter_count(i)) >> PAGE_CACHE_SHIFT;
while (iov_iter_count(i) > 0) {
size_t offset = pos & (PAGE_CACHE_SIZE - 1);
size_t write_bytes = min(iov_iter_count(i),
nrptrs * (size_t)PAGE_CACHE_SIZE -
offset);
size_t num_pages = (write_bytes + offset +
PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
size_t dirty_pages;
size_t copied;
WARN_ON(num_pages > nrptrs);
/*
* Fault pages before locking them in prepare_pages
* to avoid recursive lock
*/
if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
ret = -EFAULT;
break;
}
ret = btrfs_delalloc_reserve_space(inode,
num_pages << PAGE_CACHE_SHIFT);
if (ret)
break;
/*
* This is going to setup the pages array with the number of
* pages we want, so we don't really need to worry about the
* contents of pages from loop to loop
*/
ret = prepare_pages(root, file, pages, num_pages,
pos, first_index, last_index,
write_bytes);
if (ret) {
btrfs_delalloc_release_space(inode,
num_pages << PAGE_CACHE_SHIFT);
break;
}
copied = btrfs_copy_from_user(pos, num_pages,
write_bytes, pages, i);
/*
* if we have trouble faulting in the pages, fall
* back to one page at a time
*/
if (copied < write_bytes)
nrptrs = 1;
if (copied == 0)
dirty_pages = 0;
else
dirty_pages = (copied + offset +
PAGE_CACHE_SIZE - 1) >>
PAGE_CACHE_SHIFT;
/*
* If we had a short copy we need to release the excess delaloc
* bytes we reserved. We need to increment outstanding_extents
* because btrfs_delalloc_release_space will decrement it, but
* we still have an outstanding extent for the chunk we actually
* managed to copy.
*/
if (num_pages > dirty_pages) {
if (copied > 0)
atomic_inc(
&BTRFS_I(inode)->outstanding_extents);
btrfs_delalloc_release_space(inode,
(num_pages - dirty_pages) <<
PAGE_CACHE_SHIFT);
}
if (copied > 0) {
ret = btrfs_dirty_pages(root, inode, pages,
dirty_pages, pos, copied,
NULL);
if (ret) {
btrfs_delalloc_release_space(inode,
dirty_pages << PAGE_CACHE_SHIFT);
btrfs_drop_pages(pages, num_pages);
break;
}
}
btrfs_drop_pages(pages, num_pages);
cond_resched();
balance_dirty_pages_ratelimited_nr(inode->i_mapping,
dirty_pages);
if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
btrfs_btree_balance_dirty(root, 1);
btrfs_throttle(root);
pos += copied;
num_written += copied;
}
kfree(pages);
return num_written ? num_written : ret;
}
static ssize_t __btrfs_direct_write(struct kiocb *iocb,
const struct iovec *iov,
unsigned long nr_segs, loff_t pos,
loff_t *ppos, size_t count, size_t ocount)
{
struct file *file = iocb->ki_filp;
struct inode *inode = fdentry(file)->d_inode;
struct iov_iter i;
ssize_t written;
ssize_t written_buffered;
loff_t endbyte;
int err;
written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
count, ocount);
/*
* the generic O_DIRECT will update in-memory i_size after the
* DIOs are done. But our endio handlers that update the on
* disk i_size never update past the in memory i_size. So we
* need one more update here to catch any additions to the
* file
*/
if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
mark_inode_dirty(inode);
}
if (written < 0 || written == count)
return written;
pos += written;
count -= written;
iov_iter_init(&i, iov, nr_segs, count, written);
written_buffered = __btrfs_buffered_write(file, &i, pos);
if (written_buffered < 0) {
err = written_buffered;
goto out;
}
endbyte = pos + written_buffered - 1;
err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
if (err)
goto out;
written += written_buffered;
*ppos = pos + written_buffered;
invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
endbyte >> PAGE_CACHE_SHIFT);
out:
return written ? written : err;
}
static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
const struct iovec *iov,
unsigned long nr_segs, loff_t pos)
{
struct file *file = iocb->ki_filp;
struct inode *inode = fdentry(file)->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
loff_t *ppos = &iocb->ki_pos;
ssize_t num_written = 0;
ssize_t err = 0;
size_t count, ocount;
vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
mutex_lock(&inode->i_mutex);
err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
if (err) {
mutex_unlock(&inode->i_mutex);
goto out;
}
count = ocount;
current->backing_dev_info = inode->i_mapping->backing_dev_info;
err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
if (err) {
mutex_unlock(&inode->i_mutex);
goto out;
}
if (count == 0) {
mutex_unlock(&inode->i_mutex);
goto out;
}
err = file_remove_suid(file);
if (err) {
mutex_unlock(&inode->i_mutex);
goto out;
}
/*
* If BTRFS flips readonly due to some impossible error
* (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
* although we have opened a file as writable, we have
* to stop this write operation to ensure FS consistency.
*/
if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
mutex_unlock(&inode->i_mutex);
err = -EROFS;
goto out;
}
file_update_time(file);
BTRFS_I(inode)->sequence++;
if (unlikely(file->f_flags & O_DIRECT)) {
num_written = __btrfs_direct_write(iocb, iov, nr_segs,
pos, ppos, count, ocount);
} else {
struct iov_iter i;
iov_iter_init(&i, iov, nr_segs, count, num_written);
num_written = __btrfs_buffered_write(file, &i, pos);
if (num_written > 0)
*ppos = pos + num_written;
}
mutex_unlock(&inode->i_mutex);
/*
* we want to make sure fsync finds this change
* but we haven't joined a transaction running right now.
*
* Later on, someone is sure to update the inode and get the
* real transid recorded.
*
* We set last_trans now to the fs_info generation + 1,
* this will either be one more than the running transaction
* or the generation used for the next transaction if there isn't
* one running right now.
*/
BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
if (num_written > 0 || num_written == -EIOCBQUEUED) {
err = generic_write_sync(file, pos, num_written);
if (err < 0 && num_written > 0)
num_written = err;
}
out:
current->backing_dev_info = NULL;
return num_written ? num_written : err;
}
int btrfs_release_file(struct inode *inode, struct file *filp)
{
/*
* ordered_data_close is set by settattr when we are about to truncate
* a file from a non-zero size to a zero size. This tries to
* flush down new bytes that may have been written if the
* application were using truncate to replace a file in place.
*/
if (BTRFS_I(inode)->ordered_data_close) {
BTRFS_I(inode)->ordered_data_close = 0;
btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
filemap_flush(inode->i_mapping);
}
if (filp->private_data)
btrfs_ioctl_trans_end(filp);
return 0;
}
/*
* fsync call for both files and directories. This logs the inode into
* the tree log instead of forcing full commits whenever possible.
*
* It needs to call filemap_fdatawait so that all ordered extent updates are
* in the metadata btree are up to date for copying to the log.
*
* It drops the inode mutex before doing the tree log commit. This is an
* important optimization for directories because holding the mutex prevents
* new operations on the dir while we write to disk.
*/
int btrfs_sync_file(struct file *file, int datasync)
{
struct dentry *dentry = file->f_path.dentry;
struct inode *inode = dentry->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
int ret = 0;
struct btrfs_trans_handle *trans;
trace_btrfs_sync_file(file, datasync);
/* we wait first, since the writeback may change the inode */
root->log_batch++;
/* the VFS called filemap_fdatawrite for us */
btrfs_wait_ordered_range(inode, 0, (u64)-1);
root->log_batch++;
/*
* check the transaction that last modified this inode
* and see if its already been committed
*/
if (!BTRFS_I(inode)->last_trans)
goto out;
/*
* if the last transaction that changed this file was before
* the current transaction, we can bail out now without any
* syncing
*/
mutex_lock(&root->fs_info->trans_mutex);
if (BTRFS_I(inode)->last_trans <=
root->fs_info->last_trans_committed) {
BTRFS_I(inode)->last_trans = 0;
mutex_unlock(&root->fs_info->trans_mutex);
goto out;
}
mutex_unlock(&root->fs_info->trans_mutex);
/*
* ok we haven't committed the transaction yet, lets do a commit
*/
if (file->private_data)
btrfs_ioctl_trans_end(file);
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
ret = btrfs_log_dentry_safe(trans, root, dentry);
if (ret < 0)
goto out;
/* we've logged all the items and now have a consistent
* version of the file in the log. It is possible that
* someone will come in and modify the file, but that's
* fine because the log is consistent on disk, and we
* have references to all of the file's extents
*
* It is possible that someone will come in and log the
* file again, but that will end up using the synchronization
* inside btrfs_sync_log to keep things safe.
*/
mutex_unlock(&dentry->d_inode->i_mutex);
if (ret != BTRFS_NO_LOG_SYNC) {
if (ret > 0) {
ret = btrfs_commit_transaction(trans, root);
} else {
ret = btrfs_sync_log(trans, root);
if (ret == 0)
ret = btrfs_end_transaction(trans, root);
else
ret = btrfs_commit_transaction(trans, root);
}
} else {
ret = btrfs_end_transaction(trans, root);
}
mutex_lock(&dentry->d_inode->i_mutex);
out:
return ret > 0 ? -EIO : ret;
}
static const struct vm_operations_struct btrfs_file_vm_ops = {
.fault = filemap_fault,
.page_mkwrite = btrfs_page_mkwrite,
};
static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct address_space *mapping = filp->f_mapping;
if (!mapping->a_ops->readpage)
return -ENOEXEC;
file_accessed(filp);
vma->vm_ops = &btrfs_file_vm_ops;
vma->vm_flags |= VM_CAN_NONLINEAR;
return 0;
}
static long btrfs_fallocate(struct file *file, int mode,
loff_t offset, loff_t len)
{
struct inode *inode = file->f_path.dentry->d_inode;
struct extent_state *cached_state = NULL;
u64 cur_offset;
u64 last_byte;
u64 alloc_start;
u64 alloc_end;
u64 alloc_hint = 0;
u64 locked_end;
u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
struct extent_map *em;
int ret;
alloc_start = offset & ~mask;
alloc_end = (offset + len + mask) & ~mask;
/* We only support the FALLOC_FL_KEEP_SIZE mode */
if (mode & ~FALLOC_FL_KEEP_SIZE)
return -EOPNOTSUPP;
/*
* wait for ordered IO before we have any locks. We'll loop again
* below with the locks held.
*/
btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
mutex_lock(&inode->i_mutex);
ret = inode_newsize_ok(inode, alloc_end);
if (ret)
goto out;
if (alloc_start > inode->i_size) {
ret = btrfs_cont_expand(inode, i_size_read(inode),
alloc_start);
if (ret)
goto out;
}
ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
if (ret)
goto out;
locked_end = alloc_end - 1;
while (1) {
struct btrfs_ordered_extent *ordered;
/* the extent lock is ordered inside the running
* transaction
*/
lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
locked_end, 0, &cached_state, GFP_NOFS);
ordered = btrfs_lookup_first_ordered_extent(inode,
alloc_end - 1);
if (ordered &&
ordered->file_offset + ordered->len > alloc_start &&
ordered->file_offset < alloc_end) {
btrfs_put_ordered_extent(ordered);
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
alloc_start, locked_end,
&cached_state, GFP_NOFS);
/*
* we can't wait on the range with the transaction
* running or with the extent lock held
*/
btrfs_wait_ordered_range(inode, alloc_start,
alloc_end - alloc_start);
} else {
if (ordered)
btrfs_put_ordered_extent(ordered);
break;
}
}
cur_offset = alloc_start;
while (1) {
em = btrfs_get_extent(inode, NULL, 0, cur_offset,
alloc_end - cur_offset, 0);
BUG_ON(IS_ERR(em) || !em);
last_byte = min(extent_map_end(em), alloc_end);
last_byte = (last_byte + mask) & ~mask;
if (em->block_start == EXTENT_MAP_HOLE ||
(cur_offset >= inode->i_size &&
!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
last_byte - cur_offset,
1 << inode->i_blkbits,
offset + len,
&alloc_hint);
if (ret < 0) {
free_extent_map(em);
break;
}
}
free_extent_map(em);
cur_offset = last_byte;
if (cur_offset >= alloc_end) {
ret = 0;
break;
}
}
unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
&cached_state, GFP_NOFS);
btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
out:
mutex_unlock(&inode->i_mutex);
return ret;
}
const struct file_operations btrfs_file_operations = {
.llseek = generic_file_llseek,
.read = do_sync_read,
.write = do_sync_write,
.aio_read = generic_file_aio_read,
.splice_read = generic_file_splice_read,
.aio_write = btrfs_file_aio_write,
.mmap = btrfs_file_mmap,
.open = generic_file_open,
.release = btrfs_release_file,
.fsync = btrfs_sync_file,
.fallocate = btrfs_fallocate,
.unlocked_ioctl = btrfs_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = btrfs_ioctl,
#endif
};