2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 12:14:01 +08:00
linux-next/drivers/oprofile/buffer_sync.c
Bob Nelson 1474855d08 [CELL] oprofile: add support to OProfile for profiling CELL BE SPUs
From: Maynard Johnson <mpjohn@us.ibm.com>

This patch updates the existing arch/powerpc/oprofile/op_model_cell.c
to add in the SPU profiling capabilities.  In addition, a 'cell' subdirectory
was added to arch/powerpc/oprofile to hold Cell-specific SPU profiling code.
Exports spu_set_profile_private_kref and spu_get_profile_private_kref which
are used by OProfile to store private profile information in spufs data
structures.

Also incorporated several fixes from other patches (rrn).  Check pointer
returned from kzalloc.  Eliminated unnecessary cast.  Better error
handling and cleanup in the related area.  64-bit unsigned long parameter
was being demoted to 32-bit unsigned int and eventually promoted back to
unsigned long.

Signed-off-by: Carl Love <carll@us.ibm.com>
Signed-off-by: Maynard Johnson <mpjohn@us.ibm.com>
Signed-off-by: Bob Nelson <rrnelson@us.ibm.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
2007-07-20 21:42:24 +02:00

557 lines
13 KiB
C

/**
* @file buffer_sync.c
*
* @remark Copyright 2002 OProfile authors
* @remark Read the file COPYING
*
* @author John Levon <levon@movementarian.org>
*
* This is the core of the buffer management. Each
* CPU buffer is processed and entered into the
* global event buffer. Such processing is necessary
* in several circumstances, mentioned below.
*
* The processing does the job of converting the
* transitory EIP value into a persistent dentry/offset
* value that the profiler can record at its leisure.
*
* See fs/dcookies.c for a description of the dentry/offset
* objects.
*/
#include <linux/mm.h>
#include <linux/workqueue.h>
#include <linux/notifier.h>
#include <linux/dcookies.h>
#include <linux/profile.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/oprofile.h>
#include <linux/sched.h>
#include "oprofile_stats.h"
#include "event_buffer.h"
#include "cpu_buffer.h"
#include "buffer_sync.h"
static LIST_HEAD(dying_tasks);
static LIST_HEAD(dead_tasks);
static cpumask_t marked_cpus = CPU_MASK_NONE;
static DEFINE_SPINLOCK(task_mortuary);
static void process_task_mortuary(void);
/* Take ownership of the task struct and place it on the
* list for processing. Only after two full buffer syncs
* does the task eventually get freed, because by then
* we are sure we will not reference it again.
* Can be invoked from softirq via RCU callback due to
* call_rcu() of the task struct, hence the _irqsave.
*/
static int task_free_notify(struct notifier_block * self, unsigned long val, void * data)
{
unsigned long flags;
struct task_struct * task = data;
spin_lock_irqsave(&task_mortuary, flags);
list_add(&task->tasks, &dying_tasks);
spin_unlock_irqrestore(&task_mortuary, flags);
return NOTIFY_OK;
}
/* The task is on its way out. A sync of the buffer means we can catch
* any remaining samples for this task.
*/
static int task_exit_notify(struct notifier_block * self, unsigned long val, void * data)
{
/* To avoid latency problems, we only process the current CPU,
* hoping that most samples for the task are on this CPU
*/
sync_buffer(raw_smp_processor_id());
return 0;
}
/* The task is about to try a do_munmap(). We peek at what it's going to
* do, and if it's an executable region, process the samples first, so
* we don't lose any. This does not have to be exact, it's a QoI issue
* only.
*/
static int munmap_notify(struct notifier_block * self, unsigned long val, void * data)
{
unsigned long addr = (unsigned long)data;
struct mm_struct * mm = current->mm;
struct vm_area_struct * mpnt;
down_read(&mm->mmap_sem);
mpnt = find_vma(mm, addr);
if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
up_read(&mm->mmap_sem);
/* To avoid latency problems, we only process the current CPU,
* hoping that most samples for the task are on this CPU
*/
sync_buffer(raw_smp_processor_id());
return 0;
}
up_read(&mm->mmap_sem);
return 0;
}
/* We need to be told about new modules so we don't attribute to a previously
* loaded module, or drop the samples on the floor.
*/
static int module_load_notify(struct notifier_block * self, unsigned long val, void * data)
{
#ifdef CONFIG_MODULES
if (val != MODULE_STATE_COMING)
return 0;
/* FIXME: should we process all CPU buffers ? */
mutex_lock(&buffer_mutex);
add_event_entry(ESCAPE_CODE);
add_event_entry(MODULE_LOADED_CODE);
mutex_unlock(&buffer_mutex);
#endif
return 0;
}
static struct notifier_block task_free_nb = {
.notifier_call = task_free_notify,
};
static struct notifier_block task_exit_nb = {
.notifier_call = task_exit_notify,
};
static struct notifier_block munmap_nb = {
.notifier_call = munmap_notify,
};
static struct notifier_block module_load_nb = {
.notifier_call = module_load_notify,
};
static void end_sync(void)
{
end_cpu_work();
/* make sure we don't leak task structs */
process_task_mortuary();
process_task_mortuary();
}
int sync_start(void)
{
int err;
start_cpu_work();
err = task_handoff_register(&task_free_nb);
if (err)
goto out1;
err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
if (err)
goto out2;
err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
if (err)
goto out3;
err = register_module_notifier(&module_load_nb);
if (err)
goto out4;
out:
return err;
out4:
profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
out3:
profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
out2:
task_handoff_unregister(&task_free_nb);
out1:
end_sync();
goto out;
}
void sync_stop(void)
{
unregister_module_notifier(&module_load_nb);
profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
task_handoff_unregister(&task_free_nb);
end_sync();
}
/* Optimisation. We can manage without taking the dcookie sem
* because we cannot reach this code without at least one
* dcookie user still being registered (namely, the reader
* of the event buffer). */
static inline unsigned long fast_get_dcookie(struct dentry * dentry,
struct vfsmount * vfsmnt)
{
unsigned long cookie;
if (dentry->d_cookie)
return (unsigned long)dentry;
get_dcookie(dentry, vfsmnt, &cookie);
return cookie;
}
/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
* which corresponds loosely to "application name". This is
* not strictly necessary but allows oprofile to associate
* shared-library samples with particular applications
*/
static unsigned long get_exec_dcookie(struct mm_struct * mm)
{
unsigned long cookie = NO_COOKIE;
struct vm_area_struct * vma;
if (!mm)
goto out;
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (!vma->vm_file)
continue;
if (!(vma->vm_flags & VM_EXECUTABLE))
continue;
cookie = fast_get_dcookie(vma->vm_file->f_path.dentry,
vma->vm_file->f_path.mnt);
break;
}
out:
return cookie;
}
/* Convert the EIP value of a sample into a persistent dentry/offset
* pair that can then be added to the global event buffer. We make
* sure to do this lookup before a mm->mmap modification happens so
* we don't lose track.
*/
static unsigned long lookup_dcookie(struct mm_struct * mm, unsigned long addr, off_t * offset)
{
unsigned long cookie = NO_COOKIE;
struct vm_area_struct * vma;
for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
if (addr < vma->vm_start || addr >= vma->vm_end)
continue;
if (vma->vm_file) {
cookie = fast_get_dcookie(vma->vm_file->f_path.dentry,
vma->vm_file->f_path.mnt);
*offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
vma->vm_start;
} else {
/* must be an anonymous map */
*offset = addr;
}
break;
}
if (!vma)
cookie = INVALID_COOKIE;
return cookie;
}
static unsigned long last_cookie = INVALID_COOKIE;
static void add_cpu_switch(int i)
{
add_event_entry(ESCAPE_CODE);
add_event_entry(CPU_SWITCH_CODE);
add_event_entry(i);
last_cookie = INVALID_COOKIE;
}
static void add_kernel_ctx_switch(unsigned int in_kernel)
{
add_event_entry(ESCAPE_CODE);
if (in_kernel)
add_event_entry(KERNEL_ENTER_SWITCH_CODE);
else
add_event_entry(KERNEL_EXIT_SWITCH_CODE);
}
static void
add_user_ctx_switch(struct task_struct const * task, unsigned long cookie)
{
add_event_entry(ESCAPE_CODE);
add_event_entry(CTX_SWITCH_CODE);
add_event_entry(task->pid);
add_event_entry(cookie);
/* Another code for daemon back-compat */
add_event_entry(ESCAPE_CODE);
add_event_entry(CTX_TGID_CODE);
add_event_entry(task->tgid);
}
static void add_cookie_switch(unsigned long cookie)
{
add_event_entry(ESCAPE_CODE);
add_event_entry(COOKIE_SWITCH_CODE);
add_event_entry(cookie);
}
static void add_trace_begin(void)
{
add_event_entry(ESCAPE_CODE);
add_event_entry(TRACE_BEGIN_CODE);
}
static void add_sample_entry(unsigned long offset, unsigned long event)
{
add_event_entry(offset);
add_event_entry(event);
}
static int add_us_sample(struct mm_struct * mm, struct op_sample * s)
{
unsigned long cookie;
off_t offset;
cookie = lookup_dcookie(mm, s->eip, &offset);
if (cookie == INVALID_COOKIE) {
atomic_inc(&oprofile_stats.sample_lost_no_mapping);
return 0;
}
if (cookie != last_cookie) {
add_cookie_switch(cookie);
last_cookie = cookie;
}
add_sample_entry(offset, s->event);
return 1;
}
/* Add a sample to the global event buffer. If possible the
* sample is converted into a persistent dentry/offset pair
* for later lookup from userspace.
*/
static int
add_sample(struct mm_struct * mm, struct op_sample * s, int in_kernel)
{
if (in_kernel) {
add_sample_entry(s->eip, s->event);
return 1;
} else if (mm) {
return add_us_sample(mm, s);
} else {
atomic_inc(&oprofile_stats.sample_lost_no_mm);
}
return 0;
}
static void release_mm(struct mm_struct * mm)
{
if (!mm)
return;
up_read(&mm->mmap_sem);
mmput(mm);
}
static struct mm_struct * take_tasks_mm(struct task_struct * task)
{
struct mm_struct * mm = get_task_mm(task);
if (mm)
down_read(&mm->mmap_sem);
return mm;
}
static inline int is_code(unsigned long val)
{
return val == ESCAPE_CODE;
}
/* "acquire" as many cpu buffer slots as we can */
static unsigned long get_slots(struct oprofile_cpu_buffer * b)
{
unsigned long head = b->head_pos;
unsigned long tail = b->tail_pos;
/*
* Subtle. This resets the persistent last_task
* and in_kernel values used for switching notes.
* BUT, there is a small window between reading
* head_pos, and this call, that means samples
* can appear at the new head position, but not
* be prefixed with the notes for switching
* kernel mode or a task switch. This small hole
* can lead to mis-attribution or samples where
* we don't know if it's in the kernel or not,
* at the start of an event buffer.
*/
cpu_buffer_reset(b);
if (head >= tail)
return head - tail;
return head + (b->buffer_size - tail);
}
static void increment_tail(struct oprofile_cpu_buffer * b)
{
unsigned long new_tail = b->tail_pos + 1;
rmb();
if (new_tail < b->buffer_size)
b->tail_pos = new_tail;
else
b->tail_pos = 0;
}
/* Move tasks along towards death. Any tasks on dead_tasks
* will definitely have no remaining references in any
* CPU buffers at this point, because we use two lists,
* and to have reached the list, it must have gone through
* one full sync already.
*/
static void process_task_mortuary(void)
{
unsigned long flags;
LIST_HEAD(local_dead_tasks);
struct task_struct * task;
struct task_struct * ttask;
spin_lock_irqsave(&task_mortuary, flags);
list_splice_init(&dead_tasks, &local_dead_tasks);
list_splice_init(&dying_tasks, &dead_tasks);
spin_unlock_irqrestore(&task_mortuary, flags);
list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
list_del(&task->tasks);
free_task(task);
}
}
static void mark_done(int cpu)
{
int i;
cpu_set(cpu, marked_cpus);
for_each_online_cpu(i) {
if (!cpu_isset(i, marked_cpus))
return;
}
/* All CPUs have been processed at least once,
* we can process the mortuary once
*/
process_task_mortuary();
cpus_clear(marked_cpus);
}
/* FIXME: this is not sufficient if we implement syscall barrier backtrace
* traversal, the code switch to sb_sample_start at first kernel enter/exit
* switch so we need a fifth state and some special handling in sync_buffer()
*/
typedef enum {
sb_bt_ignore = -2,
sb_buffer_start,
sb_bt_start,
sb_sample_start,
} sync_buffer_state;
/* Sync one of the CPU's buffers into the global event buffer.
* Here we need to go through each batch of samples punctuated
* by context switch notes, taking the task's mmap_sem and doing
* lookup in task->mm->mmap to convert EIP into dcookie/offset
* value.
*/
void sync_buffer(int cpu)
{
struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[cpu];
struct mm_struct *mm = NULL;
struct task_struct * new;
unsigned long cookie = 0;
int in_kernel = 1;
unsigned int i;
sync_buffer_state state = sb_buffer_start;
unsigned long available;
mutex_lock(&buffer_mutex);
add_cpu_switch(cpu);
/* Remember, only we can modify tail_pos */
available = get_slots(cpu_buf);
for (i = 0; i < available; ++i) {
struct op_sample * s = &cpu_buf->buffer[cpu_buf->tail_pos];
if (is_code(s->eip)) {
if (s->event <= CPU_IS_KERNEL) {
/* kernel/userspace switch */
in_kernel = s->event;
if (state == sb_buffer_start)
state = sb_sample_start;
add_kernel_ctx_switch(s->event);
} else if (s->event == CPU_TRACE_BEGIN) {
state = sb_bt_start;
add_trace_begin();
} else {
struct mm_struct * oldmm = mm;
/* userspace context switch */
new = (struct task_struct *)s->event;
release_mm(oldmm);
mm = take_tasks_mm(new);
if (mm != oldmm)
cookie = get_exec_dcookie(mm);
add_user_ctx_switch(new, cookie);
}
} else {
if (state >= sb_bt_start &&
!add_sample(mm, s, in_kernel)) {
if (state == sb_bt_start) {
state = sb_bt_ignore;
atomic_inc(&oprofile_stats.bt_lost_no_mapping);
}
}
}
increment_tail(cpu_buf);
}
release_mm(mm);
mark_done(cpu);
mutex_unlock(&buffer_mutex);
}