2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 19:54:03 +08:00
linux-next/drivers/spi/spi-meson-spicc.c
Neil Armstrong 454fa271bc spi: Add Meson SPICC driver
The SPICC hardware block on the Amlogic SoCs is Communication oriented and
can do Full-Duplex 8- to 32-bit width SPI transfers up to 30MHz.

The current driver only supportd the PIO transfer mode since the DMA seems
broken on available hardware.

Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
2017-05-24 18:19:25 +01:00

620 lines
16 KiB
C

/*
* Driver for Amlogic Meson SPI communication controller (SPICC)
*
* Copyright (C) BayLibre, SAS
* Author: Neil Armstrong <narmstrong@baylibre.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/reset.h>
#include <linux/gpio.h>
/*
* The Meson SPICC controller could support DMA based transfers, but is not
* implemented by the vendor code, and while having the registers documentation
* it has never worked on the GXL Hardware.
* The PIO mode is the only mode implemented, and due to badly designed HW :
* - all transfers are cutted in 16 words burst because the FIFO hangs on
* TX underflow, and there is no TX "Half-Empty" interrupt, so we go by
* FIFO max size chunk only
* - CS management is dumb, and goes UP between every burst, so is really a
* "Data Valid" signal than a Chip Select, GPIO link should be used instead
* to have a CS go down over the full transfer
*/
#define SPICC_MAX_FREQ 30000000
#define SPICC_MAX_BURST 128
/* Register Map */
#define SPICC_RXDATA 0x00
#define SPICC_TXDATA 0x04
#define SPICC_CONREG 0x08
#define SPICC_ENABLE BIT(0)
#define SPICC_MODE_MASTER BIT(1)
#define SPICC_XCH BIT(2)
#define SPICC_SMC BIT(3)
#define SPICC_POL BIT(4)
#define SPICC_PHA BIT(5)
#define SPICC_SSCTL BIT(6)
#define SPICC_SSPOL BIT(7)
#define SPICC_DRCTL_MASK GENMASK(9, 8)
#define SPICC_DRCTL_IGNORE 0
#define SPICC_DRCTL_FALLING 1
#define SPICC_DRCTL_LOWLEVEL 2
#define SPICC_CS_MASK GENMASK(13, 12)
#define SPICC_DATARATE_MASK GENMASK(18, 16)
#define SPICC_DATARATE_DIV4 0
#define SPICC_DATARATE_DIV8 1
#define SPICC_DATARATE_DIV16 2
#define SPICC_DATARATE_DIV32 3
#define SPICC_BITLENGTH_MASK GENMASK(24, 19)
#define SPICC_BURSTLENGTH_MASK GENMASK(31, 25)
#define SPICC_INTREG 0x0c
#define SPICC_TE_EN BIT(0) /* TX FIFO Empty Interrupt */
#define SPICC_TH_EN BIT(1) /* TX FIFO Half-Full Interrupt */
#define SPICC_TF_EN BIT(2) /* TX FIFO Full Interrupt */
#define SPICC_RR_EN BIT(3) /* RX FIFO Ready Interrupt */
#define SPICC_RH_EN BIT(4) /* RX FIFO Half-Full Interrupt */
#define SPICC_RF_EN BIT(5) /* RX FIFO Full Interrupt */
#define SPICC_RO_EN BIT(6) /* RX FIFO Overflow Interrupt */
#define SPICC_TC_EN BIT(7) /* Transfert Complete Interrupt */
#define SPICC_DMAREG 0x10
#define SPICC_DMA_ENABLE BIT(0)
#define SPICC_TXFIFO_THRESHOLD_MASK GENMASK(5, 1)
#define SPICC_RXFIFO_THRESHOLD_MASK GENMASK(10, 6)
#define SPICC_READ_BURST_MASK GENMASK(14, 11)
#define SPICC_WRITE_BURST_MASK GENMASK(18, 15)
#define SPICC_DMA_URGENT BIT(19)
#define SPICC_DMA_THREADID_MASK GENMASK(25, 20)
#define SPICC_DMA_BURSTNUM_MASK GENMASK(31, 26)
#define SPICC_STATREG 0x14
#define SPICC_TE BIT(0) /* TX FIFO Empty Interrupt */
#define SPICC_TH BIT(1) /* TX FIFO Half-Full Interrupt */
#define SPICC_TF BIT(2) /* TX FIFO Full Interrupt */
#define SPICC_RR BIT(3) /* RX FIFO Ready Interrupt */
#define SPICC_RH BIT(4) /* RX FIFO Half-Full Interrupt */
#define SPICC_RF BIT(5) /* RX FIFO Full Interrupt */
#define SPICC_RO BIT(6) /* RX FIFO Overflow Interrupt */
#define SPICC_TC BIT(7) /* Transfert Complete Interrupt */
#define SPICC_PERIODREG 0x18
#define SPICC_PERIOD GENMASK(14, 0) /* Wait cycles */
#define SPICC_TESTREG 0x1c
#define SPICC_TXCNT_MASK GENMASK(4, 0) /* TX FIFO Counter */
#define SPICC_RXCNT_MASK GENMASK(9, 5) /* RX FIFO Counter */
#define SPICC_SMSTATUS_MASK GENMASK(12, 10) /* State Machine Status */
#define SPICC_LBC_RO BIT(13) /* Loop Back Control Read-Only */
#define SPICC_LBC_W1 BIT(14) /* Loop Back Control Write-Only */
#define SPICC_SWAP_RO BIT(14) /* RX FIFO Data Swap Read-Only */
#define SPICC_SWAP_W1 BIT(15) /* RX FIFO Data Swap Write-Only */
#define SPICC_DLYCTL_RO_MASK GENMASK(20, 15) /* Delay Control Read-Only */
#define SPICC_DLYCTL_W1_MASK GENMASK(21, 16) /* Delay Control Write-Only */
#define SPICC_FIFORST_RO_MASK GENMASK(22, 21) /* FIFO Softreset Read-Only */
#define SPICC_FIFORST_W1_MASK GENMASK(23, 22) /* FIFO Softreset Write-Only */
#define SPICC_DRADDR 0x20 /* Read Address of DMA */
#define SPICC_DWADDR 0x24 /* Write Address of DMA */
#define writel_bits_relaxed(mask, val, addr) \
writel_relaxed((readl_relaxed(addr) & ~(mask)) | (val), addr)
#define SPICC_BURST_MAX 16
#define SPICC_FIFO_HALF 10
struct meson_spicc_device {
struct spi_master *master;
struct platform_device *pdev;
void __iomem *base;
struct clk *core;
struct spi_message *message;
struct spi_transfer *xfer;
u8 *tx_buf;
u8 *rx_buf;
unsigned int bytes_per_word;
unsigned long tx_remain;
unsigned long txb_remain;
unsigned long rx_remain;
unsigned long rxb_remain;
unsigned long xfer_remain;
bool is_burst_end;
bool is_last_burst;
};
static inline bool meson_spicc_txfull(struct meson_spicc_device *spicc)
{
return !!FIELD_GET(SPICC_TF,
readl_relaxed(spicc->base + SPICC_STATREG));
}
static inline bool meson_spicc_rxready(struct meson_spicc_device *spicc)
{
return FIELD_GET(SPICC_RH | SPICC_RR | SPICC_RF_EN,
readl_relaxed(spicc->base + SPICC_STATREG));
}
static inline u32 meson_spicc_pull_data(struct meson_spicc_device *spicc)
{
unsigned int bytes = spicc->bytes_per_word;
unsigned int byte_shift = 0;
u32 data = 0;
u8 byte;
while (bytes--) {
byte = *spicc->tx_buf++;
data |= (byte & 0xff) << byte_shift;
byte_shift += 8;
}
spicc->tx_remain--;
return data;
}
static inline void meson_spicc_push_data(struct meson_spicc_device *spicc,
u32 data)
{
unsigned int bytes = spicc->bytes_per_word;
unsigned int byte_shift = 0;
u8 byte;
while (bytes--) {
byte = (data >> byte_shift) & 0xff;
*spicc->rx_buf++ = byte;
byte_shift += 8;
}
spicc->rx_remain--;
}
static inline void meson_spicc_rx(struct meson_spicc_device *spicc)
{
/* Empty RX FIFO */
while (spicc->rx_remain &&
meson_spicc_rxready(spicc))
meson_spicc_push_data(spicc,
readl_relaxed(spicc->base + SPICC_RXDATA));
}
static inline void meson_spicc_tx(struct meson_spicc_device *spicc)
{
/* Fill Up TX FIFO */
while (spicc->tx_remain &&
!meson_spicc_txfull(spicc))
writel_relaxed(meson_spicc_pull_data(spicc),
spicc->base + SPICC_TXDATA);
}
static inline u32 meson_spicc_setup_rx_irq(struct meson_spicc_device *spicc,
u32 irq_ctrl)
{
if (spicc->rx_remain > SPICC_FIFO_HALF)
irq_ctrl |= SPICC_RH_EN;
else
irq_ctrl |= SPICC_RR_EN;
return irq_ctrl;
}
static inline void meson_spicc_setup_burst(struct meson_spicc_device *spicc,
unsigned int burst_len)
{
/* Setup Xfer variables */
spicc->tx_remain = burst_len;
spicc->rx_remain = burst_len;
spicc->xfer_remain -= burst_len * spicc->bytes_per_word;
spicc->is_burst_end = false;
if (burst_len < SPICC_BURST_MAX || !spicc->xfer_remain)
spicc->is_last_burst = true;
else
spicc->is_last_burst = false;
/* Setup burst length */
writel_bits_relaxed(SPICC_BURSTLENGTH_MASK,
FIELD_PREP(SPICC_BURSTLENGTH_MASK,
burst_len),
spicc->base + SPICC_CONREG);
/* Fill TX FIFO */
meson_spicc_tx(spicc);
}
static irqreturn_t meson_spicc_irq(int irq, void *data)
{
struct meson_spicc_device *spicc = (void *) data;
u32 ctrl = readl_relaxed(spicc->base + SPICC_INTREG);
u32 stat = readl_relaxed(spicc->base + SPICC_STATREG) & ctrl;
ctrl &= ~(SPICC_RH_EN | SPICC_RR_EN);
/* Empty RX FIFO */
meson_spicc_rx(spicc);
/* Enable TC interrupt since we transferred everything */
if (!spicc->tx_remain && !spicc->rx_remain) {
spicc->is_burst_end = true;
/* Enable TC interrupt */
ctrl |= SPICC_TC_EN;
/* Reload IRQ status */
stat = readl_relaxed(spicc->base + SPICC_STATREG) & ctrl;
}
/* Check transfer complete */
if ((stat & SPICC_TC) && spicc->is_burst_end) {
unsigned int burst_len;
/* Clear TC bit */
writel_relaxed(SPICC_TC, spicc->base + SPICC_STATREG);
/* Disable TC interrupt */
ctrl &= ~SPICC_TC_EN;
if (spicc->is_last_burst) {
/* Disable all IRQs */
writel(0, spicc->base + SPICC_INTREG);
spi_finalize_current_transfer(spicc->master);
return IRQ_HANDLED;
}
burst_len = min_t(unsigned int,
spicc->xfer_remain / spicc->bytes_per_word,
SPICC_BURST_MAX);
/* Setup burst */
meson_spicc_setup_burst(spicc, burst_len);
/* Restart burst */
writel_bits_relaxed(SPICC_XCH, SPICC_XCH,
spicc->base + SPICC_CONREG);
}
/* Setup RX interrupt trigger */
ctrl = meson_spicc_setup_rx_irq(spicc, ctrl);
/* Reconfigure interrupts */
writel(ctrl, spicc->base + SPICC_INTREG);
return IRQ_HANDLED;
}
static u32 meson_spicc_setup_speed(struct meson_spicc_device *spicc, u32 conf,
u32 speed)
{
unsigned long parent, value;
unsigned int i, div;
parent = clk_get_rate(spicc->core);
/* Find closest inferior/equal possible speed */
for (i = 0 ; i < 7 ; ++i) {
/* 2^(data_rate+2) */
value = parent >> (i + 2);
if (value <= speed)
break;
}
/* If provided speed it lower than max divider, use max divider */
if (i > 7) {
div = 7;
dev_warn_once(&spicc->pdev->dev, "unable to get close to speed %u\n",
speed);
} else
div = i;
dev_dbg(&spicc->pdev->dev, "parent %lu, speed %u -> %lu (%u)\n",
parent, speed, value, div);
conf &= ~SPICC_DATARATE_MASK;
conf |= FIELD_PREP(SPICC_DATARATE_MASK, div);
return conf;
}
static void meson_spicc_setup_xfer(struct meson_spicc_device *spicc,
struct spi_transfer *xfer)
{
u32 conf, conf_orig;
/* Read original configuration */
conf = conf_orig = readl_relaxed(spicc->base + SPICC_CONREG);
/* Select closest divider */
conf = meson_spicc_setup_speed(spicc, conf, xfer->speed_hz);
/* Setup word width */
conf &= ~SPICC_BITLENGTH_MASK;
conf |= FIELD_PREP(SPICC_BITLENGTH_MASK,
(spicc->bytes_per_word << 3) - 1);
/* Ignore if unchanged */
if (conf != conf_orig)
writel_relaxed(conf, spicc->base + SPICC_CONREG);
}
static int meson_spicc_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct meson_spicc_device *spicc = spi_master_get_devdata(master);
unsigned int burst_len;
u32 irq = 0;
/* Store current transfer */
spicc->xfer = xfer;
/* Setup transfer parameters */
spicc->tx_buf = (u8 *)xfer->tx_buf;
spicc->rx_buf = (u8 *)xfer->rx_buf;
spicc->xfer_remain = xfer->len;
/* Pre-calculate word size */
spicc->bytes_per_word =
DIV_ROUND_UP(spicc->xfer->bits_per_word, 8);
/* Setup transfer parameters */
meson_spicc_setup_xfer(spicc, xfer);
burst_len = min_t(unsigned int,
spicc->xfer_remain / spicc->bytes_per_word,
SPICC_BURST_MAX);
meson_spicc_setup_burst(spicc, burst_len);
irq = meson_spicc_setup_rx_irq(spicc, irq);
/* Start burst */
writel_bits_relaxed(SPICC_XCH, SPICC_XCH, spicc->base + SPICC_CONREG);
/* Enable interrupts */
writel_relaxed(irq, spicc->base + SPICC_INTREG);
return 1;
}
static int meson_spicc_prepare_message(struct spi_master *master,
struct spi_message *message)
{
struct meson_spicc_device *spicc = spi_master_get_devdata(master);
struct spi_device *spi = message->spi;
u32 conf = 0;
/* Store current message */
spicc->message = message;
/* Enable Master */
conf |= SPICC_ENABLE;
conf |= SPICC_MODE_MASTER;
/* SMC = 0 */
/* Setup transfer mode */
if (spi->mode & SPI_CPOL)
conf |= SPICC_POL;
else
conf &= ~SPICC_POL;
if (spi->mode & SPI_CPHA)
conf |= SPICC_PHA;
else
conf &= ~SPICC_PHA;
/* SSCTL = 0 */
if (spi->mode & SPI_CS_HIGH)
conf |= SPICC_SSPOL;
else
conf &= ~SPICC_SSPOL;
if (spi->mode & SPI_READY)
conf |= FIELD_PREP(SPICC_DRCTL_MASK, SPICC_DRCTL_LOWLEVEL);
else
conf |= FIELD_PREP(SPICC_DRCTL_MASK, SPICC_DRCTL_IGNORE);
/* Select CS */
conf |= FIELD_PREP(SPICC_CS_MASK, spi->chip_select);
/* Default Clock rate core/4 */
/* Default 8bit word */
conf |= FIELD_PREP(SPICC_BITLENGTH_MASK, 8 - 1);
writel_relaxed(conf, spicc->base + SPICC_CONREG);
/* Setup no wait cycles by default */
writel_relaxed(0, spicc->base + SPICC_PERIODREG);
writel_bits_relaxed(BIT(24), BIT(24), spicc->base + SPICC_TESTREG);
return 0;
}
static int meson_spicc_unprepare_transfer(struct spi_master *master)
{
struct meson_spicc_device *spicc = spi_master_get_devdata(master);
/* Disable all IRQs */
writel(0, spicc->base + SPICC_INTREG);
/* Disable controller */
writel_bits_relaxed(SPICC_ENABLE, 0, spicc->base + SPICC_CONREG);
device_reset_optional(&spicc->pdev->dev);
return 0;
}
static int meson_spicc_setup(struct spi_device *spi)
{
int ret = 0;
if (!spi->controller_state)
spi->controller_state = spi_master_get_devdata(spi->master);
else if (gpio_is_valid(spi->cs_gpio))
goto out_gpio;
else if (spi->cs_gpio == -ENOENT)
return 0;
if (gpio_is_valid(spi->cs_gpio)) {
ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev));
if (ret) {
dev_err(&spi->dev, "failed to request cs gpio\n");
return ret;
}
}
out_gpio:
ret = gpio_direction_output(spi->cs_gpio,
!(spi->mode & SPI_CS_HIGH));
return ret;
}
static void meson_spicc_cleanup(struct spi_device *spi)
{
if (gpio_is_valid(spi->cs_gpio))
gpio_free(spi->cs_gpio);
spi->controller_state = NULL;
}
static int meson_spicc_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct meson_spicc_device *spicc;
struct resource *res;
int ret, irq, rate;
master = spi_alloc_master(&pdev->dev, sizeof(*spicc));
if (!master) {
dev_err(&pdev->dev, "master allocation failed\n");
return -ENOMEM;
}
spicc = spi_master_get_devdata(master);
spicc->master = master;
spicc->pdev = pdev;
platform_set_drvdata(pdev, spicc);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
spicc->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(spicc->base)) {
dev_err(&pdev->dev, "io resource mapping failed\n");
ret = PTR_ERR(spicc->base);
goto out_master;
}
/* Disable all IRQs */
writel_relaxed(0, spicc->base + SPICC_INTREG);
irq = platform_get_irq(pdev, 0);
ret = devm_request_irq(&pdev->dev, irq, meson_spicc_irq,
0, NULL, spicc);
if (ret) {
dev_err(&pdev->dev, "irq request failed\n");
goto out_master;
}
spicc->core = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(spicc->core)) {
dev_err(&pdev->dev, "core clock request failed\n");
ret = PTR_ERR(spicc->core);
goto out_master;
}
ret = clk_prepare_enable(spicc->core);
if (ret) {
dev_err(&pdev->dev, "core clock enable failed\n");
goto out_master;
}
rate = clk_get_rate(spicc->core);
device_reset_optional(&pdev->dev);
master->num_chipselect = 4;
master->dev.of_node = pdev->dev.of_node;
master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_MASK(32) |
SPI_BPW_MASK(24) |
SPI_BPW_MASK(16) |
SPI_BPW_MASK(8);
master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
master->min_speed_hz = rate >> 9;
master->setup = meson_spicc_setup;
master->cleanup = meson_spicc_cleanup;
master->prepare_message = meson_spicc_prepare_message;
master->unprepare_transfer_hardware = meson_spicc_unprepare_transfer;
master->transfer_one = meson_spicc_transfer_one;
/* Setup max rate according to the Meson GX datasheet */
if ((rate >> 2) > SPICC_MAX_FREQ)
master->max_speed_hz = SPICC_MAX_FREQ;
else
master->max_speed_hz = rate >> 2;
ret = devm_spi_register_master(&pdev->dev, master);
if (!ret)
return 0;
dev_err(&pdev->dev, "spi master registration failed\n");
out_master:
spi_master_put(master);
return ret;
}
static int meson_spicc_remove(struct platform_device *pdev)
{
struct meson_spicc_device *spicc = platform_get_drvdata(pdev);
/* Disable SPI */
writel(0, spicc->base + SPICC_CONREG);
clk_disable_unprepare(spicc->core);
return 0;
}
static const struct of_device_id meson_spicc_of_match[] = {
{ .compatible = "amlogic,meson-gx-spicc", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, meson_spicc_of_match);
static struct platform_driver meson_spicc_driver = {
.probe = meson_spicc_probe,
.remove = meson_spicc_remove,
.driver = {
.name = "meson-spicc",
.of_match_table = of_match_ptr(meson_spicc_of_match),
},
};
module_platform_driver(meson_spicc_driver);
MODULE_DESCRIPTION("Meson SPI Communication Controller driver");
MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>");
MODULE_LICENSE("GPL");