2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 06:34:17 +08:00
linux-next/arch/sparc64/kernel/process.c
David S. Miller c73fcc846c [SPARC]: Fix serial console device detection.
The current scheme works on static interpretation of text names, which
is wrong.

The output-device setting, for example, must be resolved via an alias
or similar to a full path name to the console device.

Paths also contain an optional set of 'options', which starts with a
colon at the end of the path.  The option area is used to specify
which of two serial ports ('a' or 'b') the path refers to when a
device node drives multiple ports.  'a' is assumed if the option
specification is missing.

This was caught by the UltraSPARC-T1 simulator.  The 'output-device'
property was set to 'ttya' and we didn't pick upon the fact that this
is an OBP alias set to '/virtual-devices/console'.  Instead we saw it
as the first serial console device, instead of the hypervisor console.

The infrastructure is now there to take advantage of this to resolve
the console correctly even in multi-head situations in fbcon too.

Thanks to Greg Onufer for the bug report.

Signed-off-by: David S. Miller <davem@davemloft.net>
2007-07-20 16:59:26 -07:00

874 lines
23 KiB
C

/* $Id: process.c,v 1.131 2002/02/09 19:49:30 davem Exp $
* arch/sparc64/kernel/process.c
*
* Copyright (C) 1995, 1996 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <stdarg.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/kallsyms.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/compat.h>
#include <linux/tick.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <asm/oplib.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/pstate.h>
#include <asm/elf.h>
#include <asm/fpumacro.h>
#include <asm/head.h>
#include <asm/cpudata.h>
#include <asm/mmu_context.h>
#include <asm/unistd.h>
#include <asm/hypervisor.h>
#include <asm/sstate.h>
/* #define VERBOSE_SHOWREGS */
static void sparc64_yield(int cpu)
{
if (tlb_type != hypervisor)
return;
clear_thread_flag(TIF_POLLING_NRFLAG);
smp_mb__after_clear_bit();
while (!need_resched() && !cpu_is_offline(cpu)) {
unsigned long pstate;
/* Disable interrupts. */
__asm__ __volatile__(
"rdpr %%pstate, %0\n\t"
"andn %0, %1, %0\n\t"
"wrpr %0, %%g0, %%pstate"
: "=&r" (pstate)
: "i" (PSTATE_IE));
if (!need_resched() && !cpu_is_offline(cpu))
sun4v_cpu_yield();
/* Re-enable interrupts. */
__asm__ __volatile__(
"rdpr %%pstate, %0\n\t"
"or %0, %1, %0\n\t"
"wrpr %0, %%g0, %%pstate"
: "=&r" (pstate)
: "i" (PSTATE_IE));
}
set_thread_flag(TIF_POLLING_NRFLAG);
}
/* The idle loop on sparc64. */
void cpu_idle(void)
{
int cpu = smp_processor_id();
set_thread_flag(TIF_POLLING_NRFLAG);
while(1) {
tick_nohz_stop_sched_tick();
while (!need_resched() && !cpu_is_offline(cpu))
sparc64_yield(cpu);
tick_nohz_restart_sched_tick();
preempt_enable_no_resched();
#ifdef CONFIG_HOTPLUG_CPU
if (cpu_is_offline(cpu))
cpu_play_dead();
#endif
schedule();
preempt_disable();
}
}
extern char reboot_command [];
extern void (*prom_palette)(int);
extern void (*prom_keyboard)(void);
void machine_halt(void)
{
sstate_halt();
if (prom_palette)
prom_palette (1);
if (prom_keyboard)
prom_keyboard();
prom_halt();
panic("Halt failed!");
}
void machine_alt_power_off(void)
{
sstate_poweroff();
if (prom_palette)
prom_palette(1);
if (prom_keyboard)
prom_keyboard();
prom_halt_power_off();
panic("Power-off failed!");
}
void machine_restart(char * cmd)
{
char *p;
sstate_reboot();
p = strchr (reboot_command, '\n');
if (p) *p = 0;
if (prom_palette)
prom_palette (1);
if (prom_keyboard)
prom_keyboard();
if (cmd)
prom_reboot(cmd);
if (*reboot_command)
prom_reboot(reboot_command);
prom_reboot("");
panic("Reboot failed!");
}
#ifdef CONFIG_COMPAT
static void show_regwindow32(struct pt_regs *regs)
{
struct reg_window32 __user *rw;
struct reg_window32 r_w;
mm_segment_t old_fs;
__asm__ __volatile__ ("flushw");
rw = compat_ptr((unsigned)regs->u_regs[14]);
old_fs = get_fs();
set_fs (USER_DS);
if (copy_from_user (&r_w, rw, sizeof(r_w))) {
set_fs (old_fs);
return;
}
set_fs (old_fs);
printk("l0: %08x l1: %08x l2: %08x l3: %08x "
"l4: %08x l5: %08x l6: %08x l7: %08x\n",
r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
printk("i0: %08x i1: %08x i2: %08x i3: %08x "
"i4: %08x i5: %08x i6: %08x i7: %08x\n",
r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
}
#else
#define show_regwindow32(regs) do { } while (0)
#endif
static void show_regwindow(struct pt_regs *regs)
{
struct reg_window __user *rw;
struct reg_window *rwk;
struct reg_window r_w;
mm_segment_t old_fs;
if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
__asm__ __volatile__ ("flushw");
rw = (struct reg_window __user *)
(regs->u_regs[14] + STACK_BIAS);
rwk = (struct reg_window *)
(regs->u_regs[14] + STACK_BIAS);
if (!(regs->tstate & TSTATE_PRIV)) {
old_fs = get_fs();
set_fs (USER_DS);
if (copy_from_user (&r_w, rw, sizeof(r_w))) {
set_fs (old_fs);
return;
}
rwk = &r_w;
set_fs (old_fs);
}
} else {
show_regwindow32(regs);
return;
}
printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
if (regs->tstate & TSTATE_PRIV)
print_symbol("I7: <%s>\n", rwk->ins[7]);
}
void show_stackframe(struct sparc_stackf *sf)
{
unsigned long size;
unsigned long *stk;
int i;
printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n"
"l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3],
sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n"
"i4: %016lx i5: %016lx fp: %016lx ret_pc: %016lx\n",
sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3],
sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc);
printk("sp: %016lx x0: %016lx x1: %016lx x2: %016lx\n"
"x3: %016lx x4: %016lx x5: %016lx xx: %016lx\n",
(unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1],
sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
sf->xxargs[0]);
size = ((unsigned long)sf->fp) - ((unsigned long)sf);
size -= STACKFRAME_SZ;
stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ);
i = 0;
do {
printk("s%d: %016lx\n", i++, *stk++);
} while ((size -= sizeof(unsigned long)));
}
void show_stackframe32(struct sparc_stackf32 *sf)
{
unsigned long size;
unsigned *stk;
int i;
printk("l0: %08x l1: %08x l2: %08x l3: %08x\n",
sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3]);
printk("l4: %08x l5: %08x l6: %08x l7: %08x\n",
sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
printk("i0: %08x i1: %08x i2: %08x i3: %08x\n",
sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3]);
printk("i4: %08x i5: %08x fp: %08x ret_pc: %08x\n",
sf->ins[4], sf->ins[5], sf->fp, sf->callers_pc);
printk("sp: %08x x0: %08x x1: %08x x2: %08x\n"
"x3: %08x x4: %08x x5: %08x xx: %08x\n",
sf->structptr, sf->xargs[0], sf->xargs[1],
sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
sf->xxargs[0]);
size = ((unsigned long)sf->fp) - ((unsigned long)sf);
size -= STACKFRAME32_SZ;
stk = (unsigned *)((unsigned long)sf + STACKFRAME32_SZ);
i = 0;
do {
printk("s%d: %08x\n", i++, *stk++);
} while ((size -= sizeof(unsigned)));
}
#ifdef CONFIG_SMP
static DEFINE_SPINLOCK(regdump_lock);
#endif
void __show_regs(struct pt_regs * regs)
{
#ifdef CONFIG_SMP
unsigned long flags;
/* Protect against xcall ipis which might lead to livelock on the lock */
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
"wrpr %0, %1, %%pstate"
: "=r" (flags)
: "i" (PSTATE_IE));
spin_lock(&regdump_lock);
#endif
printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
regs->tpc, regs->tnpc, regs->y, print_tainted());
print_symbol("TPC: <%s>\n", regs->tpc);
printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
regs->u_regs[3]);
printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
regs->u_regs[7]);
printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
regs->u_regs[11]);
printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
regs->u_regs[15]);
print_symbol("RPC: <%s>\n", regs->u_regs[15]);
show_regwindow(regs);
#ifdef CONFIG_SMP
spin_unlock(&regdump_lock);
__asm__ __volatile__("wrpr %0, 0, %%pstate"
: : "r" (flags));
#endif
}
#ifdef VERBOSE_SHOWREGS
static void idump_from_user (unsigned int *pc)
{
int i;
int code;
if((((unsigned long) pc) & 3))
return;
pc -= 3;
for(i = -3; i < 6; i++) {
get_user(code, pc);
printk("%c%08x%c",i?' ':'<',code,i?' ':'>');
pc++;
}
printk("\n");
}
#endif
void show_regs(struct pt_regs *regs)
{
#ifdef VERBOSE_SHOWREGS
extern long etrap, etraptl1;
#endif
__show_regs(regs);
#if 0
#ifdef CONFIG_SMP
{
extern void smp_report_regs(void);
smp_report_regs();
}
#endif
#endif
#ifdef VERBOSE_SHOWREGS
if (regs->tpc >= &etrap && regs->tpc < &etraptl1 &&
regs->u_regs[14] >= (long)current - PAGE_SIZE &&
regs->u_regs[14] < (long)current + 6 * PAGE_SIZE) {
printk ("*********parent**********\n");
__show_regs((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF));
idump_from_user(((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF))->tpc);
printk ("*********endpar**********\n");
}
#endif
}
void show_regs32(struct pt_regs32 *regs)
{
printk("PSR: %08x PC: %08x NPC: %08x Y: %08x %s\n", regs->psr,
regs->pc, regs->npc, regs->y, print_tainted());
printk("g0: %08x g1: %08x g2: %08x g3: %08x ",
regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
regs->u_regs[3]);
printk("g4: %08x g5: %08x g6: %08x g7: %08x\n",
regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
regs->u_regs[7]);
printk("o0: %08x o1: %08x o2: %08x o3: %08x ",
regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
regs->u_regs[11]);
printk("o4: %08x o5: %08x sp: %08x ret_pc: %08x\n",
regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
regs->u_regs[15]);
}
unsigned long thread_saved_pc(struct task_struct *tsk)
{
struct thread_info *ti = task_thread_info(tsk);
unsigned long ret = 0xdeadbeefUL;
if (ti && ti->ksp) {
unsigned long *sp;
sp = (unsigned long *)(ti->ksp + STACK_BIAS);
if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
sp[14]) {
unsigned long *fp;
fp = (unsigned long *)(sp[14] + STACK_BIAS);
if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
ret = fp[15];
}
}
return ret;
}
/* Free current thread data structures etc.. */
void exit_thread(void)
{
struct thread_info *t = current_thread_info();
if (t->utraps) {
if (t->utraps[0] < 2)
kfree (t->utraps);
else
t->utraps[0]--;
}
if (test_and_clear_thread_flag(TIF_PERFCTR)) {
t->user_cntd0 = t->user_cntd1 = NULL;
t->pcr_reg = 0;
write_pcr(0);
}
}
void flush_thread(void)
{
struct thread_info *t = current_thread_info();
struct mm_struct *mm;
if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
clear_ti_thread_flag(t, TIF_ABI_PENDING);
if (test_ti_thread_flag(t, TIF_32BIT))
clear_ti_thread_flag(t, TIF_32BIT);
else
set_ti_thread_flag(t, TIF_32BIT);
}
mm = t->task->mm;
if (mm)
tsb_context_switch(mm);
set_thread_wsaved(0);
/* Turn off performance counters if on. */
if (test_and_clear_thread_flag(TIF_PERFCTR)) {
t->user_cntd0 = t->user_cntd1 = NULL;
t->pcr_reg = 0;
write_pcr(0);
}
/* Clear FPU register state. */
t->fpsaved[0] = 0;
if (get_thread_current_ds() != ASI_AIUS)
set_fs(USER_DS);
/* Init new signal delivery disposition. */
clear_thread_flag(TIF_NEWSIGNALS);
}
/* It's a bit more tricky when 64-bit tasks are involved... */
static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
{
unsigned long fp, distance, rval;
if (!(test_thread_flag(TIF_32BIT))) {
csp += STACK_BIAS;
psp += STACK_BIAS;
__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
fp += STACK_BIAS;
} else
__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
/* Now 8-byte align the stack as this is mandatory in the
* Sparc ABI due to how register windows work. This hides
* the restriction from thread libraries etc. -DaveM
*/
csp &= ~7UL;
distance = fp - psp;
rval = (csp - distance);
if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
rval = 0;
else if (test_thread_flag(TIF_32BIT)) {
if (put_user(((u32)csp),
&(((struct reg_window32 __user *)rval)->ins[6])))
rval = 0;
} else {
if (put_user(((u64)csp - STACK_BIAS),
&(((struct reg_window __user *)rval)->ins[6])))
rval = 0;
else
rval = rval - STACK_BIAS;
}
return rval;
}
/* Standard stuff. */
static inline void shift_window_buffer(int first_win, int last_win,
struct thread_info *t)
{
int i;
for (i = first_win; i < last_win; i++) {
t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
memcpy(&t->reg_window[i], &t->reg_window[i+1],
sizeof(struct reg_window));
}
}
void synchronize_user_stack(void)
{
struct thread_info *t = current_thread_info();
unsigned long window;
flush_user_windows();
if ((window = get_thread_wsaved()) != 0) {
int winsize = sizeof(struct reg_window);
int bias = 0;
if (test_thread_flag(TIF_32BIT))
winsize = sizeof(struct reg_window32);
else
bias = STACK_BIAS;
window -= 1;
do {
unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
struct reg_window *rwin = &t->reg_window[window];
if (!copy_to_user((char __user *)sp, rwin, winsize)) {
shift_window_buffer(window, get_thread_wsaved() - 1, t);
set_thread_wsaved(get_thread_wsaved() - 1);
}
} while (window--);
}
}
static void stack_unaligned(unsigned long sp)
{
siginfo_t info;
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRALN;
info.si_addr = (void __user *) sp;
info.si_trapno = 0;
force_sig_info(SIGBUS, &info, current);
}
void fault_in_user_windows(void)
{
struct thread_info *t = current_thread_info();
unsigned long window;
int winsize = sizeof(struct reg_window);
int bias = 0;
if (test_thread_flag(TIF_32BIT))
winsize = sizeof(struct reg_window32);
else
bias = STACK_BIAS;
flush_user_windows();
window = get_thread_wsaved();
if (likely(window != 0)) {
window -= 1;
do {
unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
struct reg_window *rwin = &t->reg_window[window];
if (unlikely(sp & 0x7UL))
stack_unaligned(sp);
if (unlikely(copy_to_user((char __user *)sp,
rwin, winsize)))
goto barf;
} while (window--);
}
set_thread_wsaved(0);
return;
barf:
set_thread_wsaved(window + 1);
do_exit(SIGILL);
}
asmlinkage long sparc_do_fork(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size)
{
int __user *parent_tid_ptr, *child_tid_ptr;
#ifdef CONFIG_COMPAT
if (test_thread_flag(TIF_32BIT)) {
parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
} else
#endif
{
parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
}
return do_fork(clone_flags, stack_start,
regs, stack_size,
parent_tid_ptr, child_tid_ptr);
}
/* Copy a Sparc thread. The fork() return value conventions
* under SunOS are nothing short of bletcherous:
* Parent --> %o0 == childs pid, %o1 == 0
* Child --> %o0 == parents pid, %o1 == 1
*/
int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
unsigned long unused,
struct task_struct *p, struct pt_regs *regs)
{
struct thread_info *t = task_thread_info(p);
char *child_trap_frame;
/* Calculate offset to stack_frame & pt_regs */
child_trap_frame = task_stack_page(p) + (THREAD_SIZE - (TRACEREG_SZ+STACKFRAME_SZ));
memcpy(child_trap_frame, (((struct sparc_stackf *)regs)-1), (TRACEREG_SZ+STACKFRAME_SZ));
t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
(((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
t->new_child = 1;
t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
t->kregs = (struct pt_regs *)(child_trap_frame+sizeof(struct sparc_stackf));
t->fpsaved[0] = 0;
if (regs->tstate & TSTATE_PRIV) {
/* Special case, if we are spawning a kernel thread from
* a userspace task (via KMOD, NFS, or similar) we must
* disable performance counters in the child because the
* address space and protection realm are changing.
*/
if (t->flags & _TIF_PERFCTR) {
t->user_cntd0 = t->user_cntd1 = NULL;
t->pcr_reg = 0;
t->flags &= ~_TIF_PERFCTR;
}
t->kregs->u_regs[UREG_FP] = t->ksp;
t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
flush_register_windows();
memcpy((void *)(t->ksp + STACK_BIAS),
(void *)(regs->u_regs[UREG_FP] + STACK_BIAS),
sizeof(struct sparc_stackf));
t->kregs->u_regs[UREG_G6] = (unsigned long) t;
t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
} else {
if (t->flags & _TIF_32BIT) {
sp &= 0x00000000ffffffffUL;
regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
}
t->kregs->u_regs[UREG_FP] = sp;
t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
if (sp != regs->u_regs[UREG_FP]) {
unsigned long csp;
csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
if (!csp)
return -EFAULT;
t->kregs->u_regs[UREG_FP] = csp;
}
if (t->utraps)
t->utraps[0]++;
}
/* Set the return value for the child. */
t->kregs->u_regs[UREG_I0] = current->pid;
t->kregs->u_regs[UREG_I1] = 1;
/* Set the second return value for the parent. */
regs->u_regs[UREG_I1] = 0;
if (clone_flags & CLONE_SETTLS)
t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
return 0;
}
/*
* This is the mechanism for creating a new kernel thread.
*
* NOTE! Only a kernel-only process(ie the swapper or direct descendants
* who haven't done an "execve()") should use this: it will work within
* a system call from a "real" process, but the process memory space will
* not be freed until both the parent and the child have exited.
*/
pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
long retval;
/* If the parent runs before fn(arg) is called by the child,
* the input registers of this function can be clobbered.
* So we stash 'fn' and 'arg' into global registers which
* will not be modified by the parent.
*/
__asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
"mov %5, %%g3\n\t" /* Save ARG into global */
"mov %1, %%g1\n\t" /* Clone syscall nr. */
"mov %2, %%o0\n\t" /* Clone flags. */
"mov 0, %%o1\n\t" /* usp arg == 0 */
"t 0x6d\n\t" /* Linux/Sparc clone(). */
"brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
" mov %%o0, %0\n\t"
"jmpl %%g2, %%o7\n\t" /* Call the function. */
" mov %%g3, %%o0\n\t" /* Set arg in delay. */
"mov %3, %%g1\n\t"
"t 0x6d\n\t" /* Linux/Sparc exit(). */
/* Notreached by child. */
"1:" :
"=r" (retval) :
"i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
"i" (__NR_exit), "r" (fn), "r" (arg) :
"g1", "g2", "g3", "o0", "o1", "memory", "cc");
return retval;
}
/*
* fill in the user structure for a core dump..
*/
void dump_thread(struct pt_regs * regs, struct user * dump)
{
/* Only should be used for SunOS and ancient a.out
* SparcLinux binaries... Not worth implementing.
*/
memset(dump, 0, sizeof(struct user));
}
typedef struct {
union {
unsigned int pr_regs[32];
unsigned long pr_dregs[16];
} pr_fr;
unsigned int __unused;
unsigned int pr_fsr;
unsigned char pr_qcnt;
unsigned char pr_q_entrysize;
unsigned char pr_en;
unsigned int pr_q[64];
} elf_fpregset_t32;
/*
* fill in the fpu structure for a core dump.
*/
int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
{
unsigned long *kfpregs = current_thread_info()->fpregs;
unsigned long fprs = current_thread_info()->fpsaved[0];
if (test_thread_flag(TIF_32BIT)) {
elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
if (fprs & FPRS_DL)
memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
sizeof(unsigned int) * 32);
else
memset(&fpregs32->pr_fr.pr_regs[0], 0,
sizeof(unsigned int) * 32);
fpregs32->pr_qcnt = 0;
fpregs32->pr_q_entrysize = 8;
memset(&fpregs32->pr_q[0], 0,
(sizeof(unsigned int) * 64));
if (fprs & FPRS_FEF) {
fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
fpregs32->pr_en = 1;
} else {
fpregs32->pr_fsr = 0;
fpregs32->pr_en = 0;
}
} else {
if(fprs & FPRS_DL)
memcpy(&fpregs->pr_regs[0], kfpregs,
sizeof(unsigned int) * 32);
else
memset(&fpregs->pr_regs[0], 0,
sizeof(unsigned int) * 32);
if(fprs & FPRS_DU)
memcpy(&fpregs->pr_regs[16], kfpregs+16,
sizeof(unsigned int) * 32);
else
memset(&fpregs->pr_regs[16], 0,
sizeof(unsigned int) * 32);
if(fprs & FPRS_FEF) {
fpregs->pr_fsr = current_thread_info()->xfsr[0];
fpregs->pr_gsr = current_thread_info()->gsr[0];
} else {
fpregs->pr_fsr = fpregs->pr_gsr = 0;
}
fpregs->pr_fprs = fprs;
}
return 1;
}
/*
* sparc_execve() executes a new program after the asm stub has set
* things up for us. This should basically do what I want it to.
*/
asmlinkage int sparc_execve(struct pt_regs *regs)
{
int error, base = 0;
char *filename;
/* User register window flush is done by entry.S */
/* Check for indirect call. */
if (regs->u_regs[UREG_G1] == 0)
base = 1;
filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename,
(char __user * __user *)
regs->u_regs[base + UREG_I1],
(char __user * __user *)
regs->u_regs[base + UREG_I2], regs);
putname(filename);
if (!error) {
fprs_write(0);
current_thread_info()->xfsr[0] = 0;
current_thread_info()->fpsaved[0] = 0;
regs->tstate &= ~TSTATE_PEF;
task_lock(current);
current->ptrace &= ~PT_DTRACE;
task_unlock(current);
}
out:
return error;
}
unsigned long get_wchan(struct task_struct *task)
{
unsigned long pc, fp, bias = 0;
unsigned long thread_info_base;
struct reg_window *rw;
unsigned long ret = 0;
int count = 0;
if (!task || task == current ||
task->state == TASK_RUNNING)
goto out;
thread_info_base = (unsigned long) task_stack_page(task);
bias = STACK_BIAS;
fp = task_thread_info(task)->ksp + bias;
do {
/* Bogus frame pointer? */
if (fp < (thread_info_base + sizeof(struct thread_info)) ||
fp >= (thread_info_base + THREAD_SIZE))
break;
rw = (struct reg_window *) fp;
pc = rw->ins[7];
if (!in_sched_functions(pc)) {
ret = pc;
goto out;
}
fp = rw->ins[6] + bias;
} while (++count < 16);
out:
return ret;
}