2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-19 19:14:01 +08:00
linux-next/kernel/sched/cpupri.c
Qais Yousef e94f80f6c4 sched/rt: cpupri_find: Trigger a full search as fallback
If we failed to find a fitting CPU, in cpupri_find(), we only fallback
to the level we found a hit at.

But Steve suggested to fallback to a second full scan instead as this
could be a better effort.

	https://lore.kernel.org/lkml/20200304135404.146c56eb@gandalf.local.home/

We trigger the 2nd search unconditionally since the argument about
triggering a full search is that the recorded fall back level might have
become empty by then. Which means storing any data about what happened
would be meaningless and stale.

I had a humble try at timing it and it seemed okay for the small 6 CPUs
system I was running on

	https://lore.kernel.org/lkml/20200305124324.42x6ehjxbnjkklnh@e107158-lin.cambridge.arm.com/

On large system this second full scan could be expensive. But there are
no users outside capacity awareness for this fitness function at the
moment. Heterogeneous systems tend to be small with 8cores in total.

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20200310142219.syxzn5ljpdxqtbgx@e107158-lin.cambridge.arm.com
2020-03-20 13:06:20 +01:00

293 lines
8.1 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* kernel/sched/cpupri.c
*
* CPU priority management
*
* Copyright (C) 2007-2008 Novell
*
* Author: Gregory Haskins <ghaskins@novell.com>
*
* This code tracks the priority of each CPU so that global migration
* decisions are easy to calculate. Each CPU can be in a state as follows:
*
* (INVALID), IDLE, NORMAL, RT1, ... RT99
*
* going from the lowest priority to the highest. CPUs in the INVALID state
* are not eligible for routing. The system maintains this state with
* a 2 dimensional bitmap (the first for priority class, the second for CPUs
* in that class). Therefore a typical application without affinity
* restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
* searches). For tasks with affinity restrictions, the algorithm has a
* worst case complexity of O(min(102, nr_domcpus)), though the scenario that
* yields the worst case search is fairly contrived.
*/
#include "sched.h"
/* Convert between a 140 based task->prio, and our 102 based cpupri */
static int convert_prio(int prio)
{
int cpupri;
if (prio == CPUPRI_INVALID)
cpupri = CPUPRI_INVALID;
else if (prio == MAX_PRIO)
cpupri = CPUPRI_IDLE;
else if (prio >= MAX_RT_PRIO)
cpupri = CPUPRI_NORMAL;
else
cpupri = MAX_RT_PRIO - prio + 1;
return cpupri;
}
static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
struct cpumask *lowest_mask, int idx)
{
struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
int skip = 0;
if (!atomic_read(&(vec)->count))
skip = 1;
/*
* When looking at the vector, we need to read the counter,
* do a memory barrier, then read the mask.
*
* Note: This is still all racey, but we can deal with it.
* Ideally, we only want to look at masks that are set.
*
* If a mask is not set, then the only thing wrong is that we
* did a little more work than necessary.
*
* If we read a zero count but the mask is set, because of the
* memory barriers, that can only happen when the highest prio
* task for a run queue has left the run queue, in which case,
* it will be followed by a pull. If the task we are processing
* fails to find a proper place to go, that pull request will
* pull this task if the run queue is running at a lower
* priority.
*/
smp_rmb();
/* Need to do the rmb for every iteration */
if (skip)
return 0;
if (cpumask_any_and(p->cpus_ptr, vec->mask) >= nr_cpu_ids)
return 0;
if (lowest_mask) {
cpumask_and(lowest_mask, p->cpus_ptr, vec->mask);
/*
* We have to ensure that we have at least one bit
* still set in the array, since the map could have
* been concurrently emptied between the first and
* second reads of vec->mask. If we hit this
* condition, simply act as though we never hit this
* priority level and continue on.
*/
if (cpumask_empty(lowest_mask))
return 0;
}
return 1;
}
int cpupri_find(struct cpupri *cp, struct task_struct *p,
struct cpumask *lowest_mask)
{
return cpupri_find_fitness(cp, p, lowest_mask, NULL);
}
/**
* cpupri_find_fitness - find the best (lowest-pri) CPU in the system
* @cp: The cpupri context
* @p: The task
* @lowest_mask: A mask to fill in with selected CPUs (or NULL)
* @fitness_fn: A pointer to a function to do custom checks whether the CPU
* fits a specific criteria so that we only return those CPUs.
*
* Note: This function returns the recommended CPUs as calculated during the
* current invocation. By the time the call returns, the CPUs may have in
* fact changed priorities any number of times. While not ideal, it is not
* an issue of correctness since the normal rebalancer logic will correct
* any discrepancies created by racing against the uncertainty of the current
* priority configuration.
*
* Return: (int)bool - CPUs were found
*/
int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
struct cpumask *lowest_mask,
bool (*fitness_fn)(struct task_struct *p, int cpu))
{
int task_pri = convert_prio(p->prio);
int idx, cpu;
BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
for (idx = 0; idx < task_pri; idx++) {
if (!__cpupri_find(cp, p, lowest_mask, idx))
continue;
if (!lowest_mask || !fitness_fn)
return 1;
/* Ensure the capacity of the CPUs fit the task */
for_each_cpu(cpu, lowest_mask) {
if (!fitness_fn(p, cpu))
cpumask_clear_cpu(cpu, lowest_mask);
}
/*
* If no CPU at the current priority can fit the task
* continue looking
*/
if (cpumask_empty(lowest_mask))
continue;
return 1;
}
/*
* If we failed to find a fitting lowest_mask, kick off a new search
* but without taking into account any fitness criteria this time.
*
* This rule favours honouring priority over fitting the task in the
* correct CPU (Capacity Awareness being the only user now).
* The idea is that if a higher priority task can run, then it should
* run even if this ends up being on unfitting CPU.
*
* The cost of this trade-off is not entirely clear and will probably
* be good for some workloads and bad for others.
*
* The main idea here is that if some CPUs were overcommitted, we try
* to spread which is what the scheduler traditionally did. Sys admins
* must do proper RT planning to avoid overloading the system if they
* really care.
*/
if (fitness_fn)
return cpupri_find(cp, p, lowest_mask);
return 0;
}
/**
* cpupri_set - update the CPU priority setting
* @cp: The cpupri context
* @cpu: The target CPU
* @newpri: The priority (INVALID-RT99) to assign to this CPU
*
* Note: Assumes cpu_rq(cpu)->lock is locked
*
* Returns: (void)
*/
void cpupri_set(struct cpupri *cp, int cpu, int newpri)
{
int *currpri = &cp->cpu_to_pri[cpu];
int oldpri = *currpri;
int do_mb = 0;
newpri = convert_prio(newpri);
BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
if (newpri == oldpri)
return;
/*
* If the CPU was currently mapped to a different value, we
* need to map it to the new value then remove the old value.
* Note, we must add the new value first, otherwise we risk the
* cpu being missed by the priority loop in cpupri_find.
*/
if (likely(newpri != CPUPRI_INVALID)) {
struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
cpumask_set_cpu(cpu, vec->mask);
/*
* When adding a new vector, we update the mask first,
* do a write memory barrier, and then update the count, to
* make sure the vector is visible when count is set.
*/
smp_mb__before_atomic();
atomic_inc(&(vec)->count);
do_mb = 1;
}
if (likely(oldpri != CPUPRI_INVALID)) {
struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
/*
* Because the order of modification of the vec->count
* is important, we must make sure that the update
* of the new prio is seen before we decrement the
* old prio. This makes sure that the loop sees
* one or the other when we raise the priority of
* the run queue. We don't care about when we lower the
* priority, as that will trigger an rt pull anyway.
*
* We only need to do a memory barrier if we updated
* the new priority vec.
*/
if (do_mb)
smp_mb__after_atomic();
/*
* When removing from the vector, we decrement the counter first
* do a memory barrier and then clear the mask.
*/
atomic_dec(&(vec)->count);
smp_mb__after_atomic();
cpumask_clear_cpu(cpu, vec->mask);
}
*currpri = newpri;
}
/**
* cpupri_init - initialize the cpupri structure
* @cp: The cpupri context
*
* Return: -ENOMEM on memory allocation failure.
*/
int cpupri_init(struct cpupri *cp)
{
int i;
for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
struct cpupri_vec *vec = &cp->pri_to_cpu[i];
atomic_set(&vec->count, 0);
if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
goto cleanup;
}
cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
if (!cp->cpu_to_pri)
goto cleanup;
for_each_possible_cpu(i)
cp->cpu_to_pri[i] = CPUPRI_INVALID;
return 0;
cleanup:
for (i--; i >= 0; i--)
free_cpumask_var(cp->pri_to_cpu[i].mask);
return -ENOMEM;
}
/**
* cpupri_cleanup - clean up the cpupri structure
* @cp: The cpupri context
*/
void cpupri_cleanup(struct cpupri *cp)
{
int i;
kfree(cp->cpu_to_pri);
for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
free_cpumask_var(cp->pri_to_cpu[i].mask);
}