mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-09 14:14:00 +08:00
39485ed95d
Until commite7c587da12
("x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP"), KVM was testing both Intel and AMD CPUID bits before allowing the guest to write MSR_IA32_SPEC_CTRL and MSR_IA32_PRED_CMD. Testing only Intel bits on VMX processors, or only AMD bits on SVM processors, fails if the guests are created with the "opposite" vendor as the host. While at it, also tweak the host CPU check to use the vendor-agnostic feature bit X86_FEATURE_IBPB, since we only care about the availability of the MSR on the host here and not about specific CPUID bits. Fixes:e7c587da12
("x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP") Cc: stable@vger.kernel.org Reported-by: Denis V. Lunev <den@openvz.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
342 lines
9.3 KiB
C
342 lines
9.3 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef ARCH_X86_KVM_CPUID_H
|
|
#define ARCH_X86_KVM_CPUID_H
|
|
|
|
#include "x86.h"
|
|
#include <asm/cpu.h>
|
|
#include <asm/processor.h>
|
|
#include <uapi/asm/kvm_para.h>
|
|
|
|
extern u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
|
|
void kvm_set_cpu_caps(void);
|
|
|
|
void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
|
|
void kvm_update_pv_runtime(struct kvm_vcpu *vcpu);
|
|
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
|
|
u32 function, u32 index);
|
|
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries,
|
|
unsigned int type);
|
|
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid *cpuid,
|
|
struct kvm_cpuid_entry __user *entries);
|
|
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries);
|
|
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries);
|
|
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
|
|
u32 *ecx, u32 *edx, bool exact_only);
|
|
|
|
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu);
|
|
|
|
static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->arch.maxphyaddr;
|
|
}
|
|
|
|
static inline bool kvm_vcpu_is_illegal_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
|
|
{
|
|
return (gpa >= BIT_ULL(cpuid_maxphyaddr(vcpu)));
|
|
}
|
|
|
|
struct cpuid_reg {
|
|
u32 function;
|
|
u32 index;
|
|
int reg;
|
|
};
|
|
|
|
static const struct cpuid_reg reverse_cpuid[] = {
|
|
[CPUID_1_EDX] = { 1, 0, CPUID_EDX},
|
|
[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
|
|
[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
|
|
[CPUID_1_ECX] = { 1, 0, CPUID_ECX},
|
|
[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
|
|
[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
|
|
[CPUID_7_0_EBX] = { 7, 0, CPUID_EBX},
|
|
[CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX},
|
|
[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
|
|
[CPUID_6_EAX] = { 6, 0, CPUID_EAX},
|
|
[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
|
|
[CPUID_7_ECX] = { 7, 0, CPUID_ECX},
|
|
[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
|
|
[CPUID_7_EDX] = { 7, 0, CPUID_EDX},
|
|
[CPUID_7_1_EAX] = { 7, 1, CPUID_EAX},
|
|
};
|
|
|
|
/*
|
|
* Reverse CPUID and its derivatives can only be used for hardware-defined
|
|
* feature words, i.e. words whose bits directly correspond to a CPUID leaf.
|
|
* Retrieving a feature bit or masking guest CPUID from a Linux-defined word
|
|
* is nonsensical as the bit number/mask is an arbitrary software-defined value
|
|
* and can't be used by KVM to query/control guest capabilities. And obviously
|
|
* the leaf being queried must have an entry in the lookup table.
|
|
*/
|
|
static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
|
|
{
|
|
BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
|
|
BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
|
|
BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
|
|
BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
|
|
BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
|
|
BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
|
|
}
|
|
|
|
/*
|
|
* Retrieve the bit mask from an X86_FEATURE_* definition. Features contain
|
|
* the hardware defined bit number (stored in bits 4:0) and a software defined
|
|
* "word" (stored in bits 31:5). The word is used to index into arrays of
|
|
* bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
|
|
*/
|
|
static __always_inline u32 __feature_bit(int x86_feature)
|
|
{
|
|
reverse_cpuid_check(x86_feature / 32);
|
|
return 1 << (x86_feature & 31);
|
|
}
|
|
|
|
#define feature_bit(name) __feature_bit(X86_FEATURE_##name)
|
|
|
|
static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
|
|
{
|
|
unsigned int x86_leaf = x86_feature / 32;
|
|
|
|
reverse_cpuid_check(x86_leaf);
|
|
return reverse_cpuid[x86_leaf];
|
|
}
|
|
|
|
static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
|
|
u32 reg)
|
|
{
|
|
switch (reg) {
|
|
case CPUID_EAX:
|
|
return &entry->eax;
|
|
case CPUID_EBX:
|
|
return &entry->ebx;
|
|
case CPUID_ECX:
|
|
return &entry->ecx;
|
|
case CPUID_EDX:
|
|
return &entry->edx;
|
|
default:
|
|
BUILD_BUG();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
|
|
unsigned int x86_feature)
|
|
{
|
|
const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
|
|
|
|
return __cpuid_entry_get_reg(entry, cpuid.reg);
|
|
}
|
|
|
|
static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
|
|
unsigned int x86_feature)
|
|
{
|
|
u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
|
|
|
|
return *reg & __feature_bit(x86_feature);
|
|
}
|
|
|
|
static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
|
|
unsigned int x86_feature)
|
|
{
|
|
return cpuid_entry_get(entry, x86_feature);
|
|
}
|
|
|
|
static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
|
|
unsigned int x86_feature)
|
|
{
|
|
u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
|
|
|
|
*reg &= ~__feature_bit(x86_feature);
|
|
}
|
|
|
|
static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
|
|
unsigned int x86_feature)
|
|
{
|
|
u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
|
|
|
|
*reg |= __feature_bit(x86_feature);
|
|
}
|
|
|
|
static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
|
|
unsigned int x86_feature,
|
|
bool set)
|
|
{
|
|
u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
|
|
|
|
/*
|
|
* Open coded instead of using cpuid_entry_{clear,set}() to coerce the
|
|
* compiler into using CMOV instead of Jcc when possible.
|
|
*/
|
|
if (set)
|
|
*reg |= __feature_bit(x86_feature);
|
|
else
|
|
*reg &= ~__feature_bit(x86_feature);
|
|
}
|
|
|
|
static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry,
|
|
enum cpuid_leafs leaf)
|
|
{
|
|
u32 *reg = cpuid_entry_get_reg(entry, leaf * 32);
|
|
|
|
BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps));
|
|
*reg = kvm_cpu_caps[leaf];
|
|
}
|
|
|
|
static __always_inline u32 *guest_cpuid_get_register(struct kvm_vcpu *vcpu,
|
|
unsigned int x86_feature)
|
|
{
|
|
const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
|
|
struct kvm_cpuid_entry2 *entry;
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, cpuid.function, cpuid.index);
|
|
if (!entry)
|
|
return NULL;
|
|
|
|
return __cpuid_entry_get_reg(entry, cpuid.reg);
|
|
}
|
|
|
|
static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu,
|
|
unsigned int x86_feature)
|
|
{
|
|
u32 *reg;
|
|
|
|
reg = guest_cpuid_get_register(vcpu, x86_feature);
|
|
if (!reg)
|
|
return false;
|
|
|
|
return *reg & __feature_bit(x86_feature);
|
|
}
|
|
|
|
static __always_inline void guest_cpuid_clear(struct kvm_vcpu *vcpu,
|
|
unsigned int x86_feature)
|
|
{
|
|
u32 *reg;
|
|
|
|
reg = guest_cpuid_get_register(vcpu, x86_feature);
|
|
if (reg)
|
|
*reg &= ~__feature_bit(x86_feature);
|
|
}
|
|
|
|
static inline bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0, 0);
|
|
return best &&
|
|
(is_guest_vendor_amd(best->ebx, best->ecx, best->edx) ||
|
|
is_guest_vendor_hygon(best->ebx, best->ecx, best->edx));
|
|
}
|
|
|
|
static inline int guest_cpuid_family(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
|
|
if (!best)
|
|
return -1;
|
|
|
|
return x86_family(best->eax);
|
|
}
|
|
|
|
static inline int guest_cpuid_model(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
|
|
if (!best)
|
|
return -1;
|
|
|
|
return x86_model(best->eax);
|
|
}
|
|
|
|
static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
|
|
if (!best)
|
|
return -1;
|
|
|
|
return x86_stepping(best->eax);
|
|
}
|
|
|
|
static inline bool guest_has_spec_ctrl_msr(struct kvm_vcpu *vcpu)
|
|
{
|
|
return (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) ||
|
|
guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) ||
|
|
guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) ||
|
|
guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD));
|
|
}
|
|
|
|
static inline bool guest_has_pred_cmd_msr(struct kvm_vcpu *vcpu)
|
|
{
|
|
return (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) ||
|
|
guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB));
|
|
}
|
|
|
|
static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT;
|
|
}
|
|
|
|
static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->arch.msr_misc_features_enables &
|
|
MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
|
|
}
|
|
|
|
static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
|
|
{
|
|
unsigned int x86_leaf = x86_feature / 32;
|
|
|
|
reverse_cpuid_check(x86_leaf);
|
|
kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
|
|
}
|
|
|
|
static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
|
|
{
|
|
unsigned int x86_leaf = x86_feature / 32;
|
|
|
|
reverse_cpuid_check(x86_leaf);
|
|
kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
|
|
}
|
|
|
|
static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature)
|
|
{
|
|
unsigned int x86_leaf = x86_feature / 32;
|
|
|
|
reverse_cpuid_check(x86_leaf);
|
|
return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature);
|
|
}
|
|
|
|
static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
|
|
{
|
|
return !!kvm_cpu_cap_get(x86_feature);
|
|
}
|
|
|
|
static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
|
|
{
|
|
if (boot_cpu_has(x86_feature))
|
|
kvm_cpu_cap_set(x86_feature);
|
|
}
|
|
|
|
static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
|
|
{
|
|
return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
|
|
}
|
|
|
|
static __always_inline bool guest_pv_has(struct kvm_vcpu *vcpu,
|
|
unsigned int kvm_feature)
|
|
{
|
|
if (!vcpu->arch.pv_cpuid.enforce)
|
|
return true;
|
|
|
|
return vcpu->arch.pv_cpuid.features & (1u << kvm_feature);
|
|
}
|
|
|
|
#endif
|