2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-24 13:13:57 +08:00
linux-next/mm/slab.h
Linus Torvalds 2e17ce1106 slab changes for 5.19
-----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEjUuTAak14xi+SF7M4CHKc/GJqRAFAmKLUYoACgkQ4CHKc/GJ
 qRCMFwf/Tm1cf2JLUANrT58rjkrrj15EtKhnJdm5/yvmsWKps7WKPP4jeUHe+NTO
 NovAGt67lG1l6LMLczZkWckOkWlyYjC42CPDLdxRUkk+zQRb3nRA8Nbt6VTNBOfQ
 0wTLOqXgsNXdSPSVUsKGL8kIAHNQTMX+7TjO6s7CXy/5Qag6r1iZX2HZxASOHxLa
 yYzaJ9pJRZBAMGnzV6L6v0J8KPnjYO0fB68S1qYQTbhoRxchtFF+0AIr1JydGgBI
 9RFUowTrSpJkZtcSjabopvZz4JfCRDP+eAxkyw13feji7MG1FMX74HgDdw+HhzTv
 R2/6iA5WcsmzcXopsfMx8lUP/KIfPw==
 =gnSc
 -----END PGP SIGNATURE-----

Merge tag 'slab-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab

Pull slab updates from Vlastimil Babka:

 - Conversion of slub_debug stack traces to stackdepot, allowing more
   useful debugfs-based inspection for e.g. memory leak debugging.
   Allocation and free debugfs info now includes full traces and is
   sorted by the unique trace frequency.

   The stackdepot conversion was already attempted last year but
   reverted by ae14c63a9f. The memory overhead (while not actually
   enabled on boot) has been meanwhile solved by making the large
   stackdepot allocation dynamic. The xfstest issues haven't been
   reproduced on current kernel locally nor in -next, so the slab cache
   layout changes that originally made that bug manifest were probably
   not the root cause.

 - Refactoring of dma-kmalloc caches creation.

 - Trivial cleanups such as removal of unused parameters, fixes and
   clarifications of comments.

 - Hyeonggon Yoo joins as a reviewer.

* tag 'slab-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
  MAINTAINERS: add myself as reviewer for slab
  mm/slub: remove unused kmem_cache_order_objects max
  mm: slab: fix comment for __assume_kmalloc_alignment
  mm: slab: fix comment for ARCH_KMALLOC_MINALIGN
  mm/slub: remove unneeded return value of slab_pad_check
  mm/slab_common: move dma-kmalloc caches creation into new_kmalloc_cache()
  mm/slub: remove meaningless node check in ___slab_alloc()
  mm/slub: remove duplicate flag in allocate_slab()
  mm/slub: remove unused parameter in setup_object*()
  mm/slab.c: fix comments
  slab, documentation: add description of debugfs files for SLUB caches
  mm/slub: sort debugfs output by frequency of stack traces
  mm/slub: distinguish and print stack traces in debugfs files
  mm/slub: use stackdepot to save stack trace in objects
  mm/slub: move struct track init out of set_track()
  lib/stackdepot: allow requesting early initialization dynamically
  mm/slub, kunit: Make slub_kunit unaffected by user specified flags
  mm/slab: remove some unused functions
2022-05-25 10:24:04 -07:00

887 lines
23 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
* Internal slab definitions
*/
/* Reuses the bits in struct page */
struct slab {
unsigned long __page_flags;
#if defined(CONFIG_SLAB)
union {
struct list_head slab_list;
struct rcu_head rcu_head;
};
struct kmem_cache *slab_cache;
void *freelist; /* array of free object indexes */
void *s_mem; /* first object */
unsigned int active;
#elif defined(CONFIG_SLUB)
union {
struct list_head slab_list;
struct rcu_head rcu_head;
#ifdef CONFIG_SLUB_CPU_PARTIAL
struct {
struct slab *next;
int slabs; /* Nr of slabs left */
};
#endif
};
struct kmem_cache *slab_cache;
/* Double-word boundary */
void *freelist; /* first free object */
union {
unsigned long counters;
struct {
unsigned inuse:16;
unsigned objects:15;
unsigned frozen:1;
};
};
unsigned int __unused;
#elif defined(CONFIG_SLOB)
struct list_head slab_list;
void *__unused_1;
void *freelist; /* first free block */
long units;
unsigned int __unused_2;
#else
#error "Unexpected slab allocator configured"
#endif
atomic_t __page_refcount;
#ifdef CONFIG_MEMCG
unsigned long memcg_data;
#endif
};
#define SLAB_MATCH(pg, sl) \
static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
SLAB_MATCH(flags, __page_flags);
SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */
#ifndef CONFIG_SLOB
SLAB_MATCH(rcu_head, rcu_head);
#endif
SLAB_MATCH(_refcount, __page_refcount);
#ifdef CONFIG_MEMCG
SLAB_MATCH(memcg_data, memcg_data);
#endif
#undef SLAB_MATCH
static_assert(sizeof(struct slab) <= sizeof(struct page));
/**
* folio_slab - Converts from folio to slab.
* @folio: The folio.
*
* Currently struct slab is a different representation of a folio where
* folio_test_slab() is true.
*
* Return: The slab which contains this folio.
*/
#define folio_slab(folio) (_Generic((folio), \
const struct folio *: (const struct slab *)(folio), \
struct folio *: (struct slab *)(folio)))
/**
* slab_folio - The folio allocated for a slab
* @slab: The slab.
*
* Slabs are allocated as folios that contain the individual objects and are
* using some fields in the first struct page of the folio - those fields are
* now accessed by struct slab. It is occasionally necessary to convert back to
* a folio in order to communicate with the rest of the mm. Please use this
* helper function instead of casting yourself, as the implementation may change
* in the future.
*/
#define slab_folio(s) (_Generic((s), \
const struct slab *: (const struct folio *)s, \
struct slab *: (struct folio *)s))
/**
* page_slab - Converts from first struct page to slab.
* @p: The first (either head of compound or single) page of slab.
*
* A temporary wrapper to convert struct page to struct slab in situations where
* we know the page is the compound head, or single order-0 page.
*
* Long-term ideally everything would work with struct slab directly or go
* through folio to struct slab.
*
* Return: The slab which contains this page
*/
#define page_slab(p) (_Generic((p), \
const struct page *: (const struct slab *)(p), \
struct page *: (struct slab *)(p)))
/**
* slab_page - The first struct page allocated for a slab
* @slab: The slab.
*
* A convenience wrapper for converting slab to the first struct page of the
* underlying folio, to communicate with code not yet converted to folio or
* struct slab.
*/
#define slab_page(s) folio_page(slab_folio(s), 0)
/*
* If network-based swap is enabled, sl*b must keep track of whether pages
* were allocated from pfmemalloc reserves.
*/
static inline bool slab_test_pfmemalloc(const struct slab *slab)
{
return folio_test_active((struct folio *)slab_folio(slab));
}
static inline void slab_set_pfmemalloc(struct slab *slab)
{
folio_set_active(slab_folio(slab));
}
static inline void slab_clear_pfmemalloc(struct slab *slab)
{
folio_clear_active(slab_folio(slab));
}
static inline void __slab_clear_pfmemalloc(struct slab *slab)
{
__folio_clear_active(slab_folio(slab));
}
static inline void *slab_address(const struct slab *slab)
{
return folio_address(slab_folio(slab));
}
static inline int slab_nid(const struct slab *slab)
{
return folio_nid(slab_folio(slab));
}
static inline pg_data_t *slab_pgdat(const struct slab *slab)
{
return folio_pgdat(slab_folio(slab));
}
static inline struct slab *virt_to_slab(const void *addr)
{
struct folio *folio = virt_to_folio(addr);
if (!folio_test_slab(folio))
return NULL;
return folio_slab(folio);
}
static inline int slab_order(const struct slab *slab)
{
return folio_order((struct folio *)slab_folio(slab));
}
static inline size_t slab_size(const struct slab *slab)
{
return PAGE_SIZE << slab_order(slab);
}
#ifdef CONFIG_SLOB
/*
* Common fields provided in kmem_cache by all slab allocators
* This struct is either used directly by the allocator (SLOB)
* or the allocator must include definitions for all fields
* provided in kmem_cache_common in their definition of kmem_cache.
*
* Once we can do anonymous structs (C11 standard) we could put a
* anonymous struct definition in these allocators so that the
* separate allocations in the kmem_cache structure of SLAB and
* SLUB is no longer needed.
*/
struct kmem_cache {
unsigned int object_size;/* The original size of the object */
unsigned int size; /* The aligned/padded/added on size */
unsigned int align; /* Alignment as calculated */
slab_flags_t flags; /* Active flags on the slab */
unsigned int useroffset;/* Usercopy region offset */
unsigned int usersize; /* Usercopy region size */
const char *name; /* Slab name for sysfs */
int refcount; /* Use counter */
void (*ctor)(void *); /* Called on object slot creation */
struct list_head list; /* List of all slab caches on the system */
};
#endif /* CONFIG_SLOB */
#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif
#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#endif
#include <linux/memcontrol.h>
#include <linux/fault-inject.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/random.h>
#include <linux/sched/mm.h>
#include <linux/list_lru.h>
/*
* State of the slab allocator.
*
* This is used to describe the states of the allocator during bootup.
* Allocators use this to gradually bootstrap themselves. Most allocators
* have the problem that the structures used for managing slab caches are
* allocated from slab caches themselves.
*/
enum slab_state {
DOWN, /* No slab functionality yet */
PARTIAL, /* SLUB: kmem_cache_node available */
PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
UP, /* Slab caches usable but not all extras yet */
FULL /* Everything is working */
};
extern enum slab_state slab_state;
/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;
/* The list of all slab caches on the system */
extern struct list_head slab_caches;
/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;
/* A table of kmalloc cache names and sizes */
extern const struct kmalloc_info_struct {
const char *name[NR_KMALLOC_TYPES];
unsigned int size;
} kmalloc_info[];
#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
void setup_kmalloc_cache_index_table(void);
void create_kmalloc_caches(slab_flags_t);
/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
#endif
gfp_t kmalloc_fix_flags(gfp_t flags);
/* Functions provided by the slab allocators */
int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
slab_flags_t flags, unsigned int useroffset,
unsigned int usersize);
extern void create_boot_cache(struct kmem_cache *, const char *name,
unsigned int size, slab_flags_t flags,
unsigned int useroffset, unsigned int usersize);
int slab_unmergeable(struct kmem_cache *s);
struct kmem_cache *find_mergeable(unsigned size, unsigned align,
slab_flags_t flags, const char *name, void (*ctor)(void *));
#ifndef CONFIG_SLOB
struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *));
slab_flags_t kmem_cache_flags(unsigned int object_size,
slab_flags_t flags, const char *name);
#else
static inline struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *))
{ return NULL; }
static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
slab_flags_t flags, const char *name)
{
return flags;
}
#endif
/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
SLAB_CACHE_DMA32 | SLAB_PANIC | \
SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
#else
#define SLAB_DEBUG_FLAGS (0)
#endif
#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
SLAB_ACCOUNT)
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
SLAB_TEMPORARY | SLAB_ACCOUNT | SLAB_NO_USER_FLAGS)
#else
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
#endif
/* Common flags available with current configuration */
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
/* Common flags permitted for kmem_cache_create */
#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
SLAB_RED_ZONE | \
SLAB_POISON | \
SLAB_STORE_USER | \
SLAB_TRACE | \
SLAB_CONSISTENCY_CHECKS | \
SLAB_MEM_SPREAD | \
SLAB_NOLEAKTRACE | \
SLAB_RECLAIM_ACCOUNT | \
SLAB_TEMPORARY | \
SLAB_ACCOUNT | \
SLAB_NO_USER_FLAGS)
bool __kmem_cache_empty(struct kmem_cache *);
int __kmem_cache_shutdown(struct kmem_cache *);
void __kmem_cache_release(struct kmem_cache *);
int __kmem_cache_shrink(struct kmem_cache *);
void slab_kmem_cache_release(struct kmem_cache *);
struct seq_file;
struct file;
struct slabinfo {
unsigned long active_objs;
unsigned long num_objs;
unsigned long active_slabs;
unsigned long num_slabs;
unsigned long shared_avail;
unsigned int limit;
unsigned int batchcount;
unsigned int shared;
unsigned int objects_per_slab;
unsigned int cache_order;
};
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos);
/*
* Generic implementation of bulk operations
* These are useful for situations in which the allocator cannot
* perform optimizations. In that case segments of the object listed
* may be allocated or freed using these operations.
*/
void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
{
return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
}
#ifdef CONFIG_SLUB_DEBUG
#ifdef CONFIG_SLUB_DEBUG_ON
DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
#else
DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
#endif
extern void print_tracking(struct kmem_cache *s, void *object);
long validate_slab_cache(struct kmem_cache *s);
static inline bool __slub_debug_enabled(void)
{
return static_branch_unlikely(&slub_debug_enabled);
}
#else
static inline void print_tracking(struct kmem_cache *s, void *object)
{
}
static inline bool __slub_debug_enabled(void)
{
return false;
}
#endif
/*
* Returns true if any of the specified slub_debug flags is enabled for the
* cache. Use only for flags parsed by setup_slub_debug() as it also enables
* the static key.
*/
static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
{
if (IS_ENABLED(CONFIG_SLUB_DEBUG))
VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
if (__slub_debug_enabled())
return s->flags & flags;
return false;
}
#ifdef CONFIG_MEMCG_KMEM
/*
* slab_objcgs - get the object cgroups vector associated with a slab
* @slab: a pointer to the slab struct
*
* Returns a pointer to the object cgroups vector associated with the slab,
* or NULL if no such vector has been associated yet.
*/
static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
{
unsigned long memcg_data = READ_ONCE(slab->memcg_data);
VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
slab_page(slab));
VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
}
int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
gfp_t gfp, bool new_slab);
void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
enum node_stat_item idx, int nr);
static inline void memcg_free_slab_cgroups(struct slab *slab)
{
kfree(slab_objcgs(slab));
slab->memcg_data = 0;
}
static inline size_t obj_full_size(struct kmem_cache *s)
{
/*
* For each accounted object there is an extra space which is used
* to store obj_cgroup membership. Charge it too.
*/
return s->size + sizeof(struct obj_cgroup *);
}
/*
* Returns false if the allocation should fail.
*/
static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
struct list_lru *lru,
struct obj_cgroup **objcgp,
size_t objects, gfp_t flags)
{
struct obj_cgroup *objcg;
if (!memcg_kmem_enabled())
return true;
if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
return true;
objcg = get_obj_cgroup_from_current();
if (!objcg)
return true;
if (lru) {
int ret;
struct mem_cgroup *memcg;
memcg = get_mem_cgroup_from_objcg(objcg);
ret = memcg_list_lru_alloc(memcg, lru, flags);
css_put(&memcg->css);
if (ret)
goto out;
}
if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
goto out;
*objcgp = objcg;
return true;
out:
obj_cgroup_put(objcg);
return false;
}
static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
struct obj_cgroup *objcg,
gfp_t flags, size_t size,
void **p)
{
struct slab *slab;
unsigned long off;
size_t i;
if (!memcg_kmem_enabled() || !objcg)
return;
for (i = 0; i < size; i++) {
if (likely(p[i])) {
slab = virt_to_slab(p[i]);
if (!slab_objcgs(slab) &&
memcg_alloc_slab_cgroups(slab, s, flags,
false)) {
obj_cgroup_uncharge(objcg, obj_full_size(s));
continue;
}
off = obj_to_index(s, slab, p[i]);
obj_cgroup_get(objcg);
slab_objcgs(slab)[off] = objcg;
mod_objcg_state(objcg, slab_pgdat(slab),
cache_vmstat_idx(s), obj_full_size(s));
} else {
obj_cgroup_uncharge(objcg, obj_full_size(s));
}
}
obj_cgroup_put(objcg);
}
static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
void **p, int objects)
{
struct kmem_cache *s;
struct obj_cgroup **objcgs;
struct obj_cgroup *objcg;
struct slab *slab;
unsigned int off;
int i;
if (!memcg_kmem_enabled())
return;
for (i = 0; i < objects; i++) {
if (unlikely(!p[i]))
continue;
slab = virt_to_slab(p[i]);
/* we could be given a kmalloc_large() object, skip those */
if (!slab)
continue;
objcgs = slab_objcgs(slab);
if (!objcgs)
continue;
if (!s_orig)
s = slab->slab_cache;
else
s = s_orig;
off = obj_to_index(s, slab, p[i]);
objcg = objcgs[off];
if (!objcg)
continue;
objcgs[off] = NULL;
obj_cgroup_uncharge(objcg, obj_full_size(s));
mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
-obj_full_size(s));
obj_cgroup_put(objcg);
}
}
#else /* CONFIG_MEMCG_KMEM */
static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
{
return NULL;
}
static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
{
return NULL;
}
static inline int memcg_alloc_slab_cgroups(struct slab *slab,
struct kmem_cache *s, gfp_t gfp,
bool new_slab)
{
return 0;
}
static inline void memcg_free_slab_cgroups(struct slab *slab)
{
}
static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
struct list_lru *lru,
struct obj_cgroup **objcgp,
size_t objects, gfp_t flags)
{
return true;
}
static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
struct obj_cgroup *objcg,
gfp_t flags, size_t size,
void **p)
{
}
static inline void memcg_slab_free_hook(struct kmem_cache *s,
void **p, int objects)
{
}
#endif /* CONFIG_MEMCG_KMEM */
#ifndef CONFIG_SLOB
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
struct slab *slab;
slab = virt_to_slab(obj);
if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
__func__))
return NULL;
return slab->slab_cache;
}
static __always_inline void account_slab(struct slab *slab, int order,
struct kmem_cache *s, gfp_t gfp)
{
if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
memcg_alloc_slab_cgroups(slab, s, gfp, true);
mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
PAGE_SIZE << order);
}
static __always_inline void unaccount_slab(struct slab *slab, int order,
struct kmem_cache *s)
{
if (memcg_kmem_enabled())
memcg_free_slab_cgroups(slab);
mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
-(PAGE_SIZE << order));
}
static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
struct kmem_cache *cachep;
if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
!kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
return s;
cachep = virt_to_cache(x);
if (WARN(cachep && cachep != s,
"%s: Wrong slab cache. %s but object is from %s\n",
__func__, s->name, cachep->name))
print_tracking(cachep, x);
return cachep;
}
#endif /* CONFIG_SLOB */
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifndef CONFIG_SLUB
return s->object_size;
#else /* CONFIG_SLUB */
# ifdef CONFIG_SLUB_DEBUG
/*
* Debugging requires use of the padding between object
* and whatever may come after it.
*/
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
return s->object_size;
# endif
if (s->flags & SLAB_KASAN)
return s->object_size;
/*
* If we have the need to store the freelist pointer
* back there or track user information then we can
* only use the space before that information.
*/
if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
return s->inuse;
/*
* Else we can use all the padding etc for the allocation
*/
return s->size;
#endif
}
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
struct list_lru *lru,
struct obj_cgroup **objcgp,
size_t size, gfp_t flags)
{
flags &= gfp_allowed_mask;
might_alloc(flags);
if (should_failslab(s, flags))
return NULL;
if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
return NULL;
return s;
}
static inline void slab_post_alloc_hook(struct kmem_cache *s,
struct obj_cgroup *objcg, gfp_t flags,
size_t size, void **p, bool init)
{
size_t i;
flags &= gfp_allowed_mask;
/*
* As memory initialization might be integrated into KASAN,
* kasan_slab_alloc and initialization memset must be
* kept together to avoid discrepancies in behavior.
*
* As p[i] might get tagged, memset and kmemleak hook come after KASAN.
*/
for (i = 0; i < size; i++) {
p[i] = kasan_slab_alloc(s, p[i], flags, init);
if (p[i] && init && !kasan_has_integrated_init())
memset(p[i], 0, s->object_size);
kmemleak_alloc_recursive(p[i], s->object_size, 1,
s->flags, flags);
}
memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
}
#ifndef CONFIG_SLOB
/*
* The slab lists for all objects.
*/
struct kmem_cache_node {
spinlock_t list_lock;
#ifdef CONFIG_SLAB
struct list_head slabs_partial; /* partial list first, better asm code */
struct list_head slabs_full;
struct list_head slabs_free;
unsigned long total_slabs; /* length of all slab lists */
unsigned long free_slabs; /* length of free slab list only */
unsigned long free_objects;
unsigned int free_limit;
unsigned int colour_next; /* Per-node cache coloring */
struct array_cache *shared; /* shared per node */
struct alien_cache **alien; /* on other nodes */
unsigned long next_reap; /* updated without locking */
int free_touched; /* updated without locking */
#endif
#ifdef CONFIG_SLUB
unsigned long nr_partial;
struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
atomic_long_t nr_slabs;
atomic_long_t total_objects;
struct list_head full;
#endif
#endif
};
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
return s->node[node];
}
/*
* Iterator over all nodes. The body will be executed for each node that has
* a kmem_cache_node structure allocated (which is true for all online nodes)
*/
#define for_each_kmem_cache_node(__s, __node, __n) \
for (__node = 0; __node < nr_node_ids; __node++) \
if ((__n = get_node(__s, __node)))
#endif
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
void dump_unreclaimable_slab(void);
#else
static inline void dump_unreclaimable_slab(void)
{
}
#endif
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
#ifdef CONFIG_SLAB_FREELIST_RANDOM
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
gfp_t gfp);
void cache_random_seq_destroy(struct kmem_cache *cachep);
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep,
unsigned int count, gfp_t gfp)
{
return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */
static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
{
if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
&init_on_alloc)) {
if (c->ctor)
return false;
if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
return flags & __GFP_ZERO;
return true;
}
return flags & __GFP_ZERO;
}
static inline bool slab_want_init_on_free(struct kmem_cache *c)
{
if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
&init_on_free))
return !(c->ctor ||
(c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
return false;
}
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
void debugfs_slab_release(struct kmem_cache *);
#else
static inline void debugfs_slab_release(struct kmem_cache *s) { }
#endif
#ifdef CONFIG_PRINTK
#define KS_ADDRS_COUNT 16
struct kmem_obj_info {
void *kp_ptr;
struct slab *kp_slab;
void *kp_objp;
unsigned long kp_data_offset;
struct kmem_cache *kp_slab_cache;
void *kp_ret;
void *kp_stack[KS_ADDRS_COUNT];
void *kp_free_stack[KS_ADDRS_COUNT];
};
void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
#endif
#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
void __check_heap_object(const void *ptr, unsigned long n,
const struct slab *slab, bool to_user);
#else
static inline
void __check_heap_object(const void *ptr, unsigned long n,
const struct slab *slab, bool to_user)
{
}
#endif
#endif /* MM_SLAB_H */