2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 20:53:53 +08:00
linux-next/arch/x86/mm/init.c
Denys Vlasenko 1827822902 x86/e820: Use much less memory for e820/e820_saved, save up to 120k
The maximum size of e820 map array for EFI systems is defined as
E820_X_MAX (E820MAX + 3 * MAX_NUMNODES).

In x86_64 defconfig, this ends up with E820_X_MAX = 320, e820 and e820_saved
are 6404 bytes each.

With larger configs, for example Fedora kernels, E820_X_MAX = 3200, e820
and e820_saved are 64004 bytes each. Most of this space is wasted.
Typical machines have some 20-30 e820 areas at most.

After previous patch, e820 and e820_saved are pointers to e280 maps.

Change them to initially point to maps which are __initdata.

At the very end of kernel init, just before __init[data] sections are freed
in free_initmem(), allocate smaller blocks, copy maps there,
and change pointers.

The late switch makes sure that all functions which can be used to change
e820 maps are no longer accessible (they are all __init functions).

Run-tested.

Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160918182125.21000-1-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-21 15:02:12 +02:00

764 lines
22 KiB
C

#include <linux/gfp.h>
#include <linux/initrd.h>
#include <linux/ioport.h>
#include <linux/swap.h>
#include <linux/memblock.h>
#include <linux/bootmem.h> /* for max_low_pfn */
#include <asm/cacheflush.h>
#include <asm/e820.h>
#include <asm/init.h>
#include <asm/page.h>
#include <asm/page_types.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/tlb.h>
#include <asm/proto.h>
#include <asm/dma.h> /* for MAX_DMA_PFN */
#include <asm/microcode.h>
#include <asm/kaslr.h>
/*
* We need to define the tracepoints somewhere, and tlb.c
* is only compied when SMP=y.
*/
#define CREATE_TRACE_POINTS
#include <trace/events/tlb.h>
#include "mm_internal.h"
/*
* Tables translating between page_cache_type_t and pte encoding.
*
* The default values are defined statically as minimal supported mode;
* WC and WT fall back to UC-. pat_init() updates these values to support
* more cache modes, WC and WT, when it is safe to do so. See pat_init()
* for the details. Note, __early_ioremap() used during early boot-time
* takes pgprot_t (pte encoding) and does not use these tables.
*
* Index into __cachemode2pte_tbl[] is the cachemode.
*
* Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
* (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
*/
uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
[_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
[_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
[_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
[_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
[_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
[_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
};
EXPORT_SYMBOL(__cachemode2pte_tbl);
uint8_t __pte2cachemode_tbl[8] = {
[__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
[__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
[__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
[__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
[__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
[__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
};
EXPORT_SYMBOL(__pte2cachemode_tbl);
static unsigned long __initdata pgt_buf_start;
static unsigned long __initdata pgt_buf_end;
static unsigned long __initdata pgt_buf_top;
static unsigned long min_pfn_mapped;
static bool __initdata can_use_brk_pgt = true;
/*
* Pages returned are already directly mapped.
*
* Changing that is likely to break Xen, see commit:
*
* 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
*
* for detailed information.
*/
__ref void *alloc_low_pages(unsigned int num)
{
unsigned long pfn;
int i;
if (after_bootmem) {
unsigned int order;
order = get_order((unsigned long)num << PAGE_SHIFT);
return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
__GFP_ZERO, order);
}
if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
unsigned long ret;
if (min_pfn_mapped >= max_pfn_mapped)
panic("alloc_low_pages: ran out of memory");
ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
max_pfn_mapped << PAGE_SHIFT,
PAGE_SIZE * num , PAGE_SIZE);
if (!ret)
panic("alloc_low_pages: can not alloc memory");
memblock_reserve(ret, PAGE_SIZE * num);
pfn = ret >> PAGE_SHIFT;
} else {
pfn = pgt_buf_end;
pgt_buf_end += num;
printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
}
for (i = 0; i < num; i++) {
void *adr;
adr = __va((pfn + i) << PAGE_SHIFT);
clear_page(adr);
}
return __va(pfn << PAGE_SHIFT);
}
/*
* By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
* With KASLR memory randomization, depending on the machine e820 memory
* and the PUD alignment. We may need twice more pages when KASLR memory
* randomization is enabled.
*/
#ifndef CONFIG_RANDOMIZE_MEMORY
#define INIT_PGD_PAGE_COUNT 6
#else
#define INIT_PGD_PAGE_COUNT 12
#endif
#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
void __init early_alloc_pgt_buf(void)
{
unsigned long tables = INIT_PGT_BUF_SIZE;
phys_addr_t base;
base = __pa(extend_brk(tables, PAGE_SIZE));
pgt_buf_start = base >> PAGE_SHIFT;
pgt_buf_end = pgt_buf_start;
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
}
int after_bootmem;
early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
struct map_range {
unsigned long start;
unsigned long end;
unsigned page_size_mask;
};
static int page_size_mask;
static void __init probe_page_size_mask(void)
{
#if !defined(CONFIG_KMEMCHECK)
/*
* For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
* use small pages.
* This will simplify cpa(), which otherwise needs to support splitting
* large pages into small in interrupt context, etc.
*/
if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
page_size_mask |= 1 << PG_LEVEL_2M;
#endif
/* Enable PSE if available */
if (boot_cpu_has(X86_FEATURE_PSE))
cr4_set_bits_and_update_boot(X86_CR4_PSE);
/* Enable PGE if available */
if (boot_cpu_has(X86_FEATURE_PGE)) {
cr4_set_bits_and_update_boot(X86_CR4_PGE);
__supported_pte_mask |= _PAGE_GLOBAL;
} else
__supported_pte_mask &= ~_PAGE_GLOBAL;
/* Enable 1 GB linear kernel mappings if available: */
if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
printk(KERN_INFO "Using GB pages for direct mapping\n");
page_size_mask |= 1 << PG_LEVEL_1G;
} else {
direct_gbpages = 0;
}
}
#ifdef CONFIG_X86_32
#define NR_RANGE_MR 3
#else /* CONFIG_X86_64 */
#define NR_RANGE_MR 5
#endif
static int __meminit save_mr(struct map_range *mr, int nr_range,
unsigned long start_pfn, unsigned long end_pfn,
unsigned long page_size_mask)
{
if (start_pfn < end_pfn) {
if (nr_range >= NR_RANGE_MR)
panic("run out of range for init_memory_mapping\n");
mr[nr_range].start = start_pfn<<PAGE_SHIFT;
mr[nr_range].end = end_pfn<<PAGE_SHIFT;
mr[nr_range].page_size_mask = page_size_mask;
nr_range++;
}
return nr_range;
}
/*
* adjust the page_size_mask for small range to go with
* big page size instead small one if nearby are ram too.
*/
static void __ref adjust_range_page_size_mask(struct map_range *mr,
int nr_range)
{
int i;
for (i = 0; i < nr_range; i++) {
if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
!(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
unsigned long start = round_down(mr[i].start, PMD_SIZE);
unsigned long end = round_up(mr[i].end, PMD_SIZE);
#ifdef CONFIG_X86_32
if ((end >> PAGE_SHIFT) > max_low_pfn)
continue;
#endif
if (memblock_is_region_memory(start, end - start))
mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
}
if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
!(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
unsigned long start = round_down(mr[i].start, PUD_SIZE);
unsigned long end = round_up(mr[i].end, PUD_SIZE);
if (memblock_is_region_memory(start, end - start))
mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
}
}
}
static const char *page_size_string(struct map_range *mr)
{
static const char str_1g[] = "1G";
static const char str_2m[] = "2M";
static const char str_4m[] = "4M";
static const char str_4k[] = "4k";
if (mr->page_size_mask & (1<<PG_LEVEL_1G))
return str_1g;
/*
* 32-bit without PAE has a 4M large page size.
* PG_LEVEL_2M is misnamed, but we can at least
* print out the right size in the string.
*/
if (IS_ENABLED(CONFIG_X86_32) &&
!IS_ENABLED(CONFIG_X86_PAE) &&
mr->page_size_mask & (1<<PG_LEVEL_2M))
return str_4m;
if (mr->page_size_mask & (1<<PG_LEVEL_2M))
return str_2m;
return str_4k;
}
static int __meminit split_mem_range(struct map_range *mr, int nr_range,
unsigned long start,
unsigned long end)
{
unsigned long start_pfn, end_pfn, limit_pfn;
unsigned long pfn;
int i;
limit_pfn = PFN_DOWN(end);
/* head if not big page alignment ? */
pfn = start_pfn = PFN_DOWN(start);
#ifdef CONFIG_X86_32
/*
* Don't use a large page for the first 2/4MB of memory
* because there are often fixed size MTRRs in there
* and overlapping MTRRs into large pages can cause
* slowdowns.
*/
if (pfn == 0)
end_pfn = PFN_DOWN(PMD_SIZE);
else
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
#else /* CONFIG_X86_64 */
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
#endif
if (end_pfn > limit_pfn)
end_pfn = limit_pfn;
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
pfn = end_pfn;
}
/* big page (2M) range */
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
#ifdef CONFIG_X86_32
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
#else /* CONFIG_X86_64 */
end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
#endif
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask & (1<<PG_LEVEL_2M));
pfn = end_pfn;
}
#ifdef CONFIG_X86_64
/* big page (1G) range */
start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask &
((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
pfn = end_pfn;
}
/* tail is not big page (1G) alignment */
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask & (1<<PG_LEVEL_2M));
pfn = end_pfn;
}
#endif
/* tail is not big page (2M) alignment */
start_pfn = pfn;
end_pfn = limit_pfn;
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
if (!after_bootmem)
adjust_range_page_size_mask(mr, nr_range);
/* try to merge same page size and continuous */
for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
unsigned long old_start;
if (mr[i].end != mr[i+1].start ||
mr[i].page_size_mask != mr[i+1].page_size_mask)
continue;
/* move it */
old_start = mr[i].start;
memmove(&mr[i], &mr[i+1],
(nr_range - 1 - i) * sizeof(struct map_range));
mr[i--].start = old_start;
nr_range--;
}
for (i = 0; i < nr_range; i++)
pr_debug(" [mem %#010lx-%#010lx] page %s\n",
mr[i].start, mr[i].end - 1,
page_size_string(&mr[i]));
return nr_range;
}
struct range pfn_mapped[E820_X_MAX];
int nr_pfn_mapped;
static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
nr_pfn_mapped, start_pfn, end_pfn);
nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
max_pfn_mapped = max(max_pfn_mapped, end_pfn);
if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
max_low_pfn_mapped = max(max_low_pfn_mapped,
min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
}
bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
int i;
for (i = 0; i < nr_pfn_mapped; i++)
if ((start_pfn >= pfn_mapped[i].start) &&
(end_pfn <= pfn_mapped[i].end))
return true;
return false;
}
/*
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
* This runs before bootmem is initialized and gets pages directly from
* the physical memory. To access them they are temporarily mapped.
*/
unsigned long __ref init_memory_mapping(unsigned long start,
unsigned long end)
{
struct map_range mr[NR_RANGE_MR];
unsigned long ret = 0;
int nr_range, i;
pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
start, end - 1);
memset(mr, 0, sizeof(mr));
nr_range = split_mem_range(mr, 0, start, end);
for (i = 0; i < nr_range; i++)
ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
mr[i].page_size_mask);
add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
return ret >> PAGE_SHIFT;
}
/*
* We need to iterate through the E820 memory map and create direct mappings
* for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
* create direct mappings for all pfns from [0 to max_low_pfn) and
* [4GB to max_pfn) because of possible memory holes in high addresses
* that cannot be marked as UC by fixed/variable range MTRRs.
* Depending on the alignment of E820 ranges, this may possibly result
* in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
*
* init_mem_mapping() calls init_range_memory_mapping() with big range.
* That range would have hole in the middle or ends, and only ram parts
* will be mapped in init_range_memory_mapping().
*/
static unsigned long __init init_range_memory_mapping(
unsigned long r_start,
unsigned long r_end)
{
unsigned long start_pfn, end_pfn;
unsigned long mapped_ram_size = 0;
int i;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
if (start >= end)
continue;
/*
* if it is overlapping with brk pgt, we need to
* alloc pgt buf from memblock instead.
*/
can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
init_memory_mapping(start, end);
mapped_ram_size += end - start;
can_use_brk_pgt = true;
}
return mapped_ram_size;
}
static unsigned long __init get_new_step_size(unsigned long step_size)
{
/*
* Initial mapped size is PMD_SIZE (2M).
* We can not set step_size to be PUD_SIZE (1G) yet.
* In worse case, when we cross the 1G boundary, and
* PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
* to map 1G range with PTE. Hence we use one less than the
* difference of page table level shifts.
*
* Don't need to worry about overflow in the top-down case, on 32bit,
* when step_size is 0, round_down() returns 0 for start, and that
* turns it into 0x100000000ULL.
* In the bottom-up case, round_up(x, 0) returns 0 though too, which
* needs to be taken into consideration by the code below.
*/
return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
}
/**
* memory_map_top_down - Map [map_start, map_end) top down
* @map_start: start address of the target memory range
* @map_end: end address of the target memory range
*
* This function will setup direct mapping for memory range
* [map_start, map_end) in top-down. That said, the page tables
* will be allocated at the end of the memory, and we map the
* memory in top-down.
*/
static void __init memory_map_top_down(unsigned long map_start,
unsigned long map_end)
{
unsigned long real_end, start, last_start;
unsigned long step_size;
unsigned long addr;
unsigned long mapped_ram_size = 0;
/* xen has big range in reserved near end of ram, skip it at first.*/
addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
real_end = addr + PMD_SIZE;
/* step_size need to be small so pgt_buf from BRK could cover it */
step_size = PMD_SIZE;
max_pfn_mapped = 0; /* will get exact value next */
min_pfn_mapped = real_end >> PAGE_SHIFT;
last_start = start = real_end;
/*
* We start from the top (end of memory) and go to the bottom.
* The memblock_find_in_range() gets us a block of RAM from the
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
* for page table.
*/
while (last_start > map_start) {
if (last_start > step_size) {
start = round_down(last_start - 1, step_size);
if (start < map_start)
start = map_start;
} else
start = map_start;
mapped_ram_size += init_range_memory_mapping(start,
last_start);
last_start = start;
min_pfn_mapped = last_start >> PAGE_SHIFT;
if (mapped_ram_size >= step_size)
step_size = get_new_step_size(step_size);
}
if (real_end < map_end)
init_range_memory_mapping(real_end, map_end);
}
/**
* memory_map_bottom_up - Map [map_start, map_end) bottom up
* @map_start: start address of the target memory range
* @map_end: end address of the target memory range
*
* This function will setup direct mapping for memory range
* [map_start, map_end) in bottom-up. Since we have limited the
* bottom-up allocation above the kernel, the page tables will
* be allocated just above the kernel and we map the memory
* in [map_start, map_end) in bottom-up.
*/
static void __init memory_map_bottom_up(unsigned long map_start,
unsigned long map_end)
{
unsigned long next, start;
unsigned long mapped_ram_size = 0;
/* step_size need to be small so pgt_buf from BRK could cover it */
unsigned long step_size = PMD_SIZE;
start = map_start;
min_pfn_mapped = start >> PAGE_SHIFT;
/*
* We start from the bottom (@map_start) and go to the top (@map_end).
* The memblock_find_in_range() gets us a block of RAM from the
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
* for page table.
*/
while (start < map_end) {
if (step_size && map_end - start > step_size) {
next = round_up(start + 1, step_size);
if (next > map_end)
next = map_end;
} else {
next = map_end;
}
mapped_ram_size += init_range_memory_mapping(start, next);
start = next;
if (mapped_ram_size >= step_size)
step_size = get_new_step_size(step_size);
}
}
void __init init_mem_mapping(void)
{
unsigned long end;
probe_page_size_mask();
#ifdef CONFIG_X86_64
end = max_pfn << PAGE_SHIFT;
#else
end = max_low_pfn << PAGE_SHIFT;
#endif
/* the ISA range is always mapped regardless of memory holes */
init_memory_mapping(0, ISA_END_ADDRESS);
/* Init the trampoline, possibly with KASLR memory offset */
init_trampoline();
/*
* If the allocation is in bottom-up direction, we setup direct mapping
* in bottom-up, otherwise we setup direct mapping in top-down.
*/
if (memblock_bottom_up()) {
unsigned long kernel_end = __pa_symbol(_end);
/*
* we need two separate calls here. This is because we want to
* allocate page tables above the kernel. So we first map
* [kernel_end, end) to make memory above the kernel be mapped
* as soon as possible. And then use page tables allocated above
* the kernel to map [ISA_END_ADDRESS, kernel_end).
*/
memory_map_bottom_up(kernel_end, end);
memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
} else {
memory_map_top_down(ISA_END_ADDRESS, end);
}
#ifdef CONFIG_X86_64
if (max_pfn > max_low_pfn) {
/* can we preseve max_low_pfn ?*/
max_low_pfn = max_pfn;
}
#else
early_ioremap_page_table_range_init();
#endif
load_cr3(swapper_pg_dir);
__flush_tlb_all();
early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
}
/*
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
* is valid. The argument is a physical page number.
*
*
* On x86, access has to be given to the first megabyte of ram because that area
* contains BIOS code and data regions used by X and dosemu and similar apps.
* Access has to be given to non-kernel-ram areas as well, these contain the PCI
* mmio resources as well as potential bios/acpi data regions.
*/
int devmem_is_allowed(unsigned long pagenr)
{
if (pagenr < 256)
return 1;
if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
return 0;
if (!page_is_ram(pagenr))
return 1;
return 0;
}
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long begin_aligned, end_aligned;
/* Make sure boundaries are page aligned */
begin_aligned = PAGE_ALIGN(begin);
end_aligned = end & PAGE_MASK;
if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
begin = begin_aligned;
end = end_aligned;
}
if (begin >= end)
return;
/*
* If debugging page accesses then do not free this memory but
* mark them not present - any buggy init-section access will
* create a kernel page fault:
*/
if (debug_pagealloc_enabled()) {
pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
begin, end - 1);
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
} else {
/*
* We just marked the kernel text read only above, now that
* we are going to free part of that, we need to make that
* writeable and non-executable first.
*/
set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
free_reserved_area((void *)begin, (void *)end,
POISON_FREE_INITMEM, what);
}
}
void __ref free_initmem(void)
{
e820_reallocate_tables();
free_init_pages("unused kernel",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
}
#ifdef CONFIG_BLK_DEV_INITRD
void __init free_initrd_mem(unsigned long start, unsigned long end)
{
/*
* end could be not aligned, and We can not align that,
* decompresser could be confused by aligned initrd_end
* We already reserve the end partial page before in
* - i386_start_kernel()
* - x86_64_start_kernel()
* - relocate_initrd()
* So here We can do PAGE_ALIGN() safely to get partial page to be freed
*/
free_init_pages("initrd", start, PAGE_ALIGN(end));
}
#endif
void __init zone_sizes_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
#ifdef CONFIG_ZONE_DMA
max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
#endif
#ifdef CONFIG_ZONE_DMA32
max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
#endif
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
#ifdef CONFIG_HIGHMEM
max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
#endif
free_area_init_nodes(max_zone_pfns);
}
DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
#ifdef CONFIG_SMP
.active_mm = &init_mm,
.state = 0,
#endif
.cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
};
EXPORT_SYMBOL_GPL(cpu_tlbstate);
void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
{
/* entry 0 MUST be WB (hardwired to speed up translations) */
BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
__pte2cachemode_tbl[entry] = cache;
}